ebook img

Quantitative systems pharmacology : models and model-based systems with applications PDF

417 Pages·2018·19.823 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Quantitative systems pharmacology : models and model-based systems with applications

This page intentionally left blank Computer Aided Chemical Engineering Quantitative Systems Pharmacology Models and Model-Based Systems with Applications Volume 42 Edited by Davide Manca Process Systems EngineeringLaboratory, Dipartimento di Chimica, Materialie Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Milano, Italy Elsevier Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates Copyright#2018ElsevierB.V.Allrightsreserved. Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite:www.elsevier.com/permissions. Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein). Notices Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices,or medicaltreatmentmaybecomenecessary. Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribedherein. Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthesafety ofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility. Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproducts liability,negligenceorotherwise,orfromanyuseoroperationofanymethods,products, instructions,orideascontainedinthematerialherein. LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary ISBN:978-0-444-63964-6 ISSN:1570-7946 ForinformationonallElsevierpublications visitourwebsiteathttps://www.elsevier.com/books-and-journals Publisher:SusanDennis AcquisitionEditor:KostasKIMarinakis EditorialProjectManager:KarenR.Miller ProductionProjectManager:BharatwajVaratharajan CoverDesigner:GregHarris TypesetbySPiGlobal,India Contents Contributors.............................................................................................................xv Preface....................................................................................................................xix Acknowledgments..................................................................................................xxi SECTION 1 INTRODUCTION TO QUANTITATIVE SYSTEMS PHARMACOLOGY CHAPTER 1 Quantitative Systems Pharmacology: Extending the Envelope Through Systems Engineering...................3 Clara Hartmanshenn, Rohit T.Rao,Seul-A.Bae, Megerle L. Scherholz, Alison Acevedo, Kamau K.Pierre, Ioannis P. Androulakis 1. Introduction.....................................................................................3 2. TheEmergence ofQSP Modeling.................................................4 2.1. Multiscale Modeling:Beyond the DrugTarget.....................5 2.2. Modelingthe Disease State....................................................6 3. Modeling Drug Exposure andDrugResponse at the Systemic Level.....................................................................9 4. Modeling Biological and Drug Interactions at the Molecular Level..................................................................11 4.1. Omics Data...........................................................................11 4.2. Genomics..............................................................................11 4.3. Transcriptomics....................................................................12 4.4. Proteomics............................................................................13 4.5. Metabolomics........................................................................13 4.6. Omics Network Using PathwayEnrichment.......................14 4.7. Case Study: PathwayEnrichment for Synthetic MPL......................................................................15 5. Summary of the Model Development Process.............................17 6. QSPinContext.............................................................................18 6.1. Case Study: Cortisol Regulation inthe Context ofEnvironmentalClues: Next Challenges...........................20 7. HowSystems Engineering Can Enable QSP...............................22 8. FinalComments............................................................................23 Acknowledgments.............................................................................24 References..........................................................................................24 v vi Contents SECTION 2 MODELING AND APPLICATIONS OF SYSTEMIC PHARMACOKINETICS AND PHARMACODYNAMICS CHAPTER 2 An Engineering Oriented Approach to Physiologically Based Pharmacokinetic and Pharmacodynamic Modeling...............................................37 Roberto A. Abbiati, Adriana Savoca, Davide Manca 1. Introduction...................................................................................37 2. Classic Compartmental Pharmacokinetic Models........................39 3. Physiologically Based Pharmacokinetic Models.........................40 3.1. Individualizationof the PharmacokineticPrediction...........44 3.2. Model Identification.............................................................44 4. Introduction toPharmacodynamics..............................................49 5. Mathematical Formulation of aPBPK Model.............................49 5.1. The PBPK Model.................................................................50 6. Mathematical Formulation of PDModels....................................55 6.1. Direct Effect Model:Hill Equation......................................56 6.2. IndirectResponse Models....................................................58 6.3. Irreversible Effect Models....................................................60 7. Conclusions...................................................................................60 References..........................................................................................61 CHAPTER 3 Advanced Techniques for the Optimal Design of Experiments in Pharmacokinetics...............................65 Federico Galvanin, Fabrizio Bezzo 1. Introduction...................................................................................65 2. Identifying aPhysiologicalModel: TheNeedfor Experimental Design.....................................................................66 3. Design of Experiments Under Constraints for Physiological Models....................................................................67 3.1. Design Procedure..................................................................69 3.2. Design ofExperimental Protocols Under Uncertainty............................................................................69 4. Case Study I: Identification of aPK–PD Model.........................71 5. Case Study II: Design of More Effective ClinicalTests for the Study ofVWD..................................................................76 6. Conclusions...................................................................................81 References..........................................................................................82 Contents vii CHAPTER 4 On the Identifiability of Physiological Models: Optimal Design of Clinical Tests.......................................85 Fabrizio Bezzo, FedericoGalvanin 1. Introduction...................................................................................85 2. TheConcept ofIdentifiability......................................................87 3. Identifiability Tests.......................................................................88 3.1. APriori Testsfor Parametric Identifiability........................88 3.2. APosteriori Tests for ParametricIdentifiability.................89 3.3. Practical IdentifiabilityofParametric Models.....................92 4. Identifiability inthe Developmentof Compartmental Models...........................................................................................93 5. Optimal Design of ClinicalTests for Guaranteed Identifiability.................................................................................95 6. Case Study: Identification ofPhysiologicalModels ofVWD.........................................................................................97 6.1. StructuralIdentifiabilityofCandidate VWD Models......................................................................101 6.2. Practical IdentifiabilityFrom Clinical Tests andInformation Analysis...................................................103 7. Conclusions.................................................................................107 References........................................................................................108 CHAPTER 5 Bayesian Hierarchical Modeling of Gabapentin Absorption and Disposition with Application to Dosing Regimen Assessment.......................................111 Stephen D. Stamatis, LinasMockus, Lee E.Kirsch, Gintaras V. Reklaitis 1. Introduction.................................................................................111 2. Methods.......................................................................................113 3. Model Description......................................................................115 3.1. Absorption Model...............................................................116 3.2. Disposition Model..............................................................118 3.3. Initial Conditions................................................................121 3.4. Statistical Model.................................................................121 4. Implementation...........................................................................125 5. Results and Discussion...............................................................128 6. Conclusions.................................................................................133 7. Future Directions........................................................................134 References........................................................................................134 viii Contents CHAPTER 6 Computational Tools in the Assistance of Personalized Healthcare...............................................139 Maria M. Papathanasiou,Melis Onel, Ioana Nascu, EfstratiosN. Pistikopoulos 1. Introduction.................................................................................139 1.1. DiseaseDynamics...............................................................139 1.2. Patient Variability...............................................................140 1.3. Data Availability.................................................................141 2. Mathematical Approaches inBiomedical Systems.......................................................................................142 2.1. Big Data Analytics.............................................................142 2.2. Metabolic Networks andOther Modeling Approaches.........................................................................145 2.3. Dynamic,Quantitative Mathematical Modeling.............................................................................146 3. ControlinBiomedical Systems..................................................153 4. The PAROC Framework andSoftware Platform......................157 4.1. High-Fidelity Modelingand Analysis................................158 4.2. Model Approximation........................................................158 4.3. Multiparametric Programming andControl.......................159 4.4. Moving Horizon Estimation (MHE)..................................159 5. PAROC ApplicationtoBiomedical Systems.............................161 5.1. AML....................................................................................161 5.2. The AnesthesiaProcess......................................................170 5.3. Diabetes..............................................................................180 6. Conclusions.................................................................................187 Acknowledgments...........................................................................188 Appendix A.1. Mathematical Model for AML...................................................188 A.1.1. Treatment Inflow............................................................188 A.1.2. Pharmacokinetic Model..................................................188 A.1.3. PharmacodynamicModel...............................................189 A.1.4. Cancer Cell Cycle Model...............................................189 A.1.5. Normal CellCycle Model..............................................190 A.1.6. Drug Subcutaneous Route..............................................191 Appendix A.2. Mathematical Model for Intravenous Anesthesia...................................................................................191 Appendix A.3. Mathematical Model for Volatile Anesthesia...................................................................................193 Appendix A.4. Mathematical Model for Diabetes..............................................195 References........................................................................................198 Contents ix SECTION 3 TRANSPORT AND DISTRIBUTION OF DRUGS TO TARGET SITES CHAPTER 7 Multiscale Models for Transport and Biodistribution of Therapeutics in Cancer...................209 Arturas Ziemys,Milos Kojic, Miljan Milosevic, Bernhard Schrefler,Mauro Ferrari 1. Introduction.................................................................................209 2. Computational Modelsof Payload Release From Drug Vectors...............................................................................210 3. Computational Modelsof Biodistributionin Tissue Microenvironment.......................................................................217 4. BiodistributionModelsfor the Entire Tumor............................221 4.1. Pipe 1D Vessel Network....................................................224 4.2. Smeared 3D Model Data....................................................224 4.3. Time Steps..........................................................................224 5. Tumor ResponseModel..............................................................227 6. Concluding Remarks...................................................................233 Acknowledgement...........................................................................233 References........................................................................................234 CHAPTER 8 Quantitative Systems Pharmacology on Cancer Drug Delivery to Target Sites: Application of Chemical Engineering Tools.............................................239 Roberto A.Abbiati,JessieL.-S. Au 1. Introduction.................................................................................240 1.1. Purposeof QuantitativeSystems Pharmacology...............240 1.2. Unique Challenges for Cancer Therapeutics.....................240 1.3. ApplicationofChemical Engineering Tools inQSP........241 1.4. ContentOverview...............................................................241 2. Kinetic Processes inDelivering Therapeutics toTheir Intended Targets.........................................................................242 2.1. Transport From the Injection Siteto the Tumor Interstitium..........................................................................242 2.2. Transport From the Interstitial Space toMolecular Targets on Cell Membrane orInside the Cell...................242 3. Transport Barriers.......................................................................244 3.1. Reduced Transport Due to Abnormality inTumor Blood and Lymphatic Systems...........................................244 3.2. Extravasation......................................................................245 3.3. Interstitial Transport...........................................................245

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.