remote sensing Review Quantitative Remote Sensing at Ultra-High Resolution with UAV Spectroscopy: A Review of Sensor Technology, Measurement Procedures, and Data Correction Workflows HelgeAasen1,*,EijaHonkavaara2 ID,ArkoLucieer3 ID andPabloJ.Zarco-Tejada4 1 CropScienceGroup,InstituteofAgriculturalSciences,ETHZurich,8092Zurich,Switzerland 2 DepartmentofRemoteSensingandPhotogrammetry,FinnishGeospatialResearchInstitute, NationalLandSurveyofFinland,Geodeetinrinne2,02431Masala,Finland;eija.honkavaara@nls.fi 3 DisciplineofGeographyandSpatialSciences,SchoolofTechnology,EnvironmentsandDesign, CollegeofSciencesandEngineering,UniversityofTasmania,PrivateBag76,Hobart7005,Australia; [email protected] 4 EuropeanCommission(EC),JointResearchCentre(JRC),DirectorateD—SustainableResources, ViaE.Fermi2749—TP261,26a/043,I-21027Ispra,Italy;[email protected] * Correspondence:[email protected] (cid:1)(cid:2)(cid:3)(cid:1)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7) Received:25May2018;Accepted:30June2018;Published:9July2018 Abstract: Inthelast10years,developmentinrobotics,computervision,andsensortechnologyhas providednewspectralremotesensingtoolstocaptureunprecedentedultra-highspatialandhigh spectralresolutionwithunmannedaerialvehicles(UAVs).Thisdevelopmenthasledtoarevolutionin geospatialdatacollectioninwhichnotonlyfewspecialistdataproviderscollectanddeliverremotely sensed data, but a whole diverse community is potentially able to gather geospatial data that fit theirneeds. However,thediversificationofsensingsystemsanduserapplicationschallengesthe commonapplicationofgoodpracticeproceduresthatensurethequalityofthedata. Thischallenge canonlybemetbyestablishingandcommunicatingcommonproceduresthathavehaddemonstrated successinscientificexperimentsandoperationaldemonstrations. Inthisreview,weevaluatethe state-of-the-artmethodsinUAVspectralremotesensinganddiscusssensortechnology,measurement procedures,geometricprocessing,andradiometriccalibrationbasedontheliteratureandmorethan adecadeofexperimentation. Wefollowthe‘journey’ofthereflectedenergyfromtheparticlein the environment to its representation as a pixel in a 2D or 2.5D map, or 3D spectral point cloud. Additionally,wereflectonthecurrentrevolutioninremotesensing,andidentifytrends,potential opportunities,andlimitations. Keywords: imaging spectroscopy; spectral; unmanned aerial vehicles; unmanned aerial systems (UAS);RemotelyPilotedAircraftSystems(RPAS);drone;calibration;hyperspectral;multispectral; low-altitude;remotesensing;sensors;2Dimager;pushbroom;snapshot;spectroradiometers 1. Introduction Overthepastdecade,thenumberofapplicationsofunmannedaerialvehicles(UAVs,alsoreferred toasdrones,unmannedaerial/aircraftsystems(UAS),orremotelypilotedaircraftsystems(RPAS) has exploded. Already in 2008, unmanned robots were envisioned to bring about a new era in agriculture[1]. RecentstudieshaveshownthatUAVremotesensingtechniquesarerevolutionizing forest studies [2], spatial ecology [3], ecohydrology [4,5] and other environmental monitoring applications[6]. Themaindriverforthisrevolutionisthefastpaceoftechnologicaladvancesandthe RemoteSens.2018,10,1091;doi:10.3390/rs10071091 www.mdpi.com/journal/remotesensing RemoteSens.2018,10,1091 2of42 miniaturizationofsensors,airframes,andsoftware[7]. AwiderangeofUAVplatformsandsensors have been developed in the last decade. They have given individual scientists, small teams, and Remote Sens. 2018, 10, x FOR PEER REVIEW 2 of 42 the commercial sector the opportunity to repeatedly obtain low-cost imagery at ultra-high spatial resoluadtivoannsc(e1s camndt oth1e mm)inthiaattuhriazvaetiobne eonf tsaeinlosorersd, taoirsfrpaemciefisc, aanreda sso,fptwroadrue c[t7s],. aAn dwdideeli vraenryget iomf eUsA[3V,8 –11]. Morepolvatefro,rmcosm anpdu steinnsgorpso hwaveer baenedn deeavseylotpoedu isne thcoe nlassut mdeecra-dger.a Tdheeys ohfatvwe agriveepn aincdkiavgidesu,alw schiiecnhtisitns,c lude modesrmnacllo tmeapmust,e arnvdi stihoen caonmdmpehrcoiatol gsercatmorm theetr oypaplogroturinthitym tsos ruecpheaatsedsltyr uocbttuarine florowm-comsto itmioange(SryfM at) [12], arebeucltorma-hinigghc shpeaatipael rreasnodluativoanisl a(1b lcemt otom 1a mny) tuhsaet rhsa.ve been tailored to specific areas, products, and Bdeelfiovreeryth teimereas o[3f,8U–A11V].s ,Mthoeremovaejor,r ictoymopfustpinegct rpaolwdeart aasnedts ewasays ptor oudsue cceodnbsuymeexrt-egrrnaadled saotfatwsuarpep liers packages, which include modern computer vision and photogrammetry algorithms such as structure (companiesorinstitutions)inastandardizedwayusingafewtypesofsensorson-boardsatellitesand from motion (SfM) [12], are becoming cheaper and available to many users. mannedaircraft. Today,researchteamsownorevenbuildtheirownsensingsystemsandprocess Before the era of UAVs, the majority of spectral datasets was produced by external data suppliers theirdatathemselveswithouttheneedforexternaldatasuppliers. Technologyisdevelopingrapidly (companies or institutions) in a standardized way using a few types of sensors on-board satellites andofferingnewtypesofsensors. Thisdiversificationmakesdataqualityassuranceconsiderations and manned aircraft. Today, research teams own or even build their own sensing systems and process eventmheoirr edactrai ttihceaml—seilnveps awrtitihcuoulat rthfeo rneqeuda fnotri teaxttievrneaal nddatsap seucptpralilerrse.m Teocthensoelnogsyin igs daepvperloopaicnhge rsa,pgiidvlye nthe compalnedx iotyffeorfintgh enegweo tmypeetsr iocf asnendsorrasd. iTohmise dtrivicercsoifrirceactitoionn msarkeeqsu diraetad qfuoarlaitcyc ausrsautreanspcee ccotrnossidcoerpayti-ofnosc used envireovnemn emnotrael crreimticoatl—esienn psairntgic.ular for quantitative and spectral remote sensing approaches, given the Scopmecptlreaxlitrye mof othtee sgeenosminegtrigc aatnhde rrsadiniofmoremtriact icoonrrbecytimonesa rseuqruiinregdt hfoer raacdcuiarnatcee sepmecittrtoesdco(pey.g-f.,oicnustehde case ofchleonrvoirpohnymllenfltuaol rreemscoetne csee)n,srienflg.e cted,andtransmittedfromparticles,objects,orsurfaces. However, Spectral remote sensing gathers information by measuring the radiance emitted (e.g., in the case thisinformationisinfluencedbyenvironmentalconditions(mainlytheilluminationconditions)and of chlorophyll fluorescence), reflected, and transmitted from particles, objects, or surfaces. However, modifiedbythesensor,measurementprotocol,andthedata-processingprocedure. Thus,itiscritical this information is influenced by environmental conditions (mainly the illumination conditions) and tounderstandthefullsensingprocess,sinceundesiredeffectsduringdataacquisitionandprocessing modified by the sensor, measurement protocol, and the data-processing procedure. Thus, it is critical mayhaveasignificantimpactontheconfidenceofdecisionsmadeusingthedata[13]. Moreover, to understand the full sensing process, since undesired effects during data acquisition and processing itisamlsaoya hpavreer ae qsuiginsiiftiecatnot liamtepraucts oenp tihxee lcsotnofiudnendceer sotfa dnedcitshioenbs imolaodgei cuaslinpgr othcee sdsaetsa o[1f3t]h. eMEoarertohvesry, s tem (c.f.[1it4 i]s) .also a prerequisite to later use pixels to understand the biological processes of the Earth system R(ce.fc. e[1n4t]l)y. , several papers have reviewed the literature for UAV technology and its application in Earth oRbesceenrvtlayt, isoenve[r7a–l 1p0a,p1e5r–s1 h7a]v.eW reivthiewtheed itshseu leitserpatoutreen ftoiar lUlyAaVr tiescinhgnoflroogmy aannd iitnsc arpepalsiicnagtiodni vine rsity Earth observation [7–10,15–17]. With the issues potentially arising from an increasing diversity of ofsmallspectralsensorsforUAVremotesensing,thereisalsoagrowingneedtospreadknowledgeon small spectral sensors for UAV remote sensing, there is also a growing need to spread knowledge on sensortechnology,dataacquisition,protocols,anddataprocessing. Thus,theobjectiveofthisreview sensor technology, data acquisition, protocols, and data processing. Thus, the objective of this review istodescribeanddiscussrecentspectralUAVsensingtechnology,itsintegrationonUAVplatforms, is to describe and discuss recent spectral UAV sensing technology, its integration on UAV platforms, andgeometricandradiometricdata-processingproceduresforspectraldatacapturedbyUAVsensing and geometric and radiometric data-processing procedures for spectral data captured by UAV systemsbasedontheliterature,butalsoonmorethanadecadeofourownexperiences. Ouraimisto sensing systems based on the literature, but also on more than a decade of our own experiences. Our followaimth eiss tiog nfoalllothwr otuheg hsitghneals ethnrsoinugghp trhoec essesn(sFinigg uprreo1ce)sasn (dFidguisrceu 1s)s aimndp odristacunstss itmeppsotrotaanct qsuteipres rteol iable datawaciqtuhirUe AreVliasbpleec dtraatal sweinthsi UngA.VA sdpdecittiroanl saelnlys,inwge. Aredfldeictitoonnalltyh,e wceu rrerfelnecttr oenv othlue tciuornreinntr reemvooltuetisoenn isni ngto identriefymtorteen sdenssainngd tpo oidteennttiifayl st.rends and potentials. FigurFeig1u.rTe h1e. Tphaet hpaotfh ionff ionrfmoramtiaotinonfr formoma ap paarrttiiccllee ((ee..gg..,, ppigigmmenetnst wswithitinh itnhet hleeafl)e,a ofb),jeocbt,j eocr ts,uorrfascue rtfoa ceto the data product. The spectral signal is influenced by the environment, the sensor, the measurement thedataproduct.Thespectralsignalisinfluencedbytheenvironment,thesensor,themeasurement protocol, and data processing on the path to its representation as a pixel in a data product. protocol, and data processing on the path to its representation as a pixel in a data product. In combination with metadata, this representation becomes information. Incombinationwithmetadata,thisrepresentationbecomesinformation. This review is structured as follows. Different technical solutions for spectral UAV sensor Ttehchisnorleovgiye warei dsesstcrruibcetdu rine dSeactsiofno 2ll.o Twhes .geDomifefetrriec natndte rcahdnioimcaeltrsico lpurtoicoensssinfgo rstesppse acrtrea ellaUboArVatesde nsor technionl oSgeyctiaornesd 3e sacnridb e4d, rinesSpeeccttiivoenly2.. ITnh eSegcetioomn e5t,r iwcea nbduirladd aio mmoerteri ccopmropcleestes inpgictsuterep soaf rseigenlaifbicoarnatt edin RemoteSens.2018,10,1091 3of42 Sections3and4,respectively.InSection5,webuildamorecompletepictureofsignificantdevelopment stepsandpresenttherecommendedbestpractices. TheconclusionsinSection6completethisreview. 2. SpectralUAVSensors Spectral sensing can be performed using different approaches. Since in most countries the thresholdtoflyUAVswithoutpermissionisbelowatake-offweightof30kg,thispaperwillfocus on sensors that can be carried by these UAVs. Generally, spectral sensors capture information in spectrally and radiometrically characterized bands. Commonly, they are distinguished by the arrangementand/oranumberofbands[18,19]. Furthermore,sensorscanbeclassifiedonthebasis ofthemethodbywhichtheyachievespatialdiscriminationandthemethodbywhichtheyachieve spectraldiscrimination[20]. Inthefollowingsubsections,weintroduceseveraltypesofsensorsthat areavailableforUAVswithsomeexampleapplications. Table1attheendofSection2summarizesthe differentsensortypes. 2.1. PointSpectrometers Pointspectrometers(referredtoasspectroradiometersiftheyarespectrallyandradiometrically calibrated)captureindividualspectralsignaturesofobjects. Thespectrometer’sfieldofview(FOV) andthedistancetotheobjectdefinethefootprintofthemeasurement. Already in 2008, point spectrometers were mounted on flying platforms (e.g., [21]). Recently, spectrometershavebeenminiaturizedsuchthattheirsizeandthepayloadcapacityofUAVsconverged. In 2014, Burkart et al. [22] developed an ultra-lightweight UAV spectrometer system based on the compact Ocean Optics STS [23] for field spectroscopy. It recorded spectral information in the wavelengthrangeof338nmto824nm,withafullwidthathalfmaximum(FWHM)of3nmandaFOV of12◦,andlateritwasusedasaflyinggoniometertomeasurethebidirectionalreflectancedistribution functionofvegetation[24].Garzonioetal.[25]presentedasystemtomeasuresun-inducedfluorescence intheoxygenAabsorptionbandwiththehigh-spectralresolutionspectrometerOceanopticsUSB4000 withanFWHMof1.5nmandaFOVof6◦. Furthermore,UAVpointspectrometershavebeenusedto investigatetheimpactofenvironmentalvariablesonwaterreflectance[26]andforintercomparison withdatafromamoderateresolutionimagingspectroradiometer(MODIS)inGreenland[27]. Besides, UAVpointmeasurementshavebeenfusedwithmultispectral2Dimagingsensors[28]andapplied fromfixed-wingUAVs[29],e.g.,tomonitorphytoplanktonbloom[30]. Additionally,firstattempts have been made to build low-cost whiskbroom systems for UAVs, which are able to quickly scan pointsonthesurface[31]. The benefits of point spectrometers are their high spectral resolution, high dynamic range, highsignal-to-noiseratio(SNR),andlowweight. TheUSB4000weighsapproximately190g,andthe STSspectrometeronlyweighsabout60g. Incombinationwithamicrocontroller,thetotalready-to-fly payloadwiththeSTSisonly216g[22], allowingtheirinstallationonverysmallUAVs. However, sincetheirdatacontainsnospatialreference,auxiliarydataisrequiredforgeoreferencing;thismakes additionaldevicesnecessary,increasingtheoverallweightandcostofthesystem(c.f. Section3.1). Inaddition,thedatawithintheFOVofthespectrometercannotbespatiallyresolved;i.e.,eachspectral measurementincludesspectralinformationfromobjectswithintheFOVofthesensor. 2.2. PushbroomSpectrometers Thepushbroomsensorrecordsalineofspectralinformationateachexposure. Byrepeatingthe recordingofindividuallinesduringflight,acontinuousspectralimageovertheobjectisobtained. EachpixelrepresentsthespectralsignatureoftheobjectswithinitsinstantaneousFOV(IFOV)[32]. Thepushbroomdesignhasbeenthe‘standard’designforlargeairborneimagingspectrometersfor manyyears;however,miniaturizationforsmallUAVshasonlyrecentlybeenachieved. Zarco-Tejada et al. [33] demonstrated the use of narrow-band indices acquired from a UAV platformforwaterstressdetectioninanorchardusingaHeadwallmicro-HyperspecVNIRpushbroom RemoteSens.2018,10,1091 4of42 scanner[34]withaFWHMof3.2nmor6.4nm,dependingontheslitused. Inaddition,pushbroom scannershavebeenusedtodetectplantdiseases[35],estimategrossprimaryproduction(GPP)by means of physiological vegetation indices [36], and retrieve chlorophyll fluorescence by means of the Fraunhofer line depth method with three narrow spectral bands around the O2-A absorption featureat760nm[35,36]. Pushbroomsensorshavealsobeenflowntogetherwithlightdetectionand ranging(LiDAR)systemstofusespectraland3Ddata[37]. Mostofthesestudieswerecarriedoutwith fixed-wingUAVsatflyingaltitudesof330–575mabovegroundlevel(AGL),resultinginaground samplingdistance(GSD)of0.3–0.4m. Pushbroomsystemshavealsobeenmountedonmulti-rotor UAVs,flyinglowerandslower,resultinginultra-highgroundsamplingdistances(<10cmpixelsize). Lucieeretal.[38]andMalenovskyetal.[39]achievedresolutionsofupto4cmtomapthehealthof Antarcticmossbeds. State-of-the-artpushbroomsensorsforUAVsweighbetween0.5–4kg(typically~1kg)including thelens. However,duetothelargeamountofdatacapturedbysuchasensor,amini-computerwith considerablestoragecapacityhastobeflowntogetherwiththesensor,whichincreasesthepayload (Section 3.2). Suomalainen et al. [40] built a hyperspectral mapping system based on off-the-shelf components. Theirtotalsystemincludedapushbroomspectrometer,globalnavigationsatellitesystem (GNSS)receiverandinertialmeasurementunit(IMU),ared–green–blue(RGB)camera,andaRaspberry PItocontrolthesystemandactingasadatasink.Thetotalweightofthesystemwas2kg[40].Recently, companiesthatformerlyfocusedonfull-sizeaircraftsystemshavealsoattemptedtominiaturizetheir sensorsforUAVsandprovideself-containedsystemsincludingthesensor,GNSS/IMU,andcontrol andstoragedevices(e.g.,[41]). Thebenefitsofpushbroomdevicesincludetheirhighspatialandspectralresolution, andthe abilitytoprovidespatiallyresolvedimages.Comparedtothepointspectrometers,theyareheavierand requiremorepowerfulon-boardcomputers. Similartopointspectrometers,pushbroomsystemsneed additionalequipmenton-boardtheUAVtoenableaccurategeoreferencingofthedata(c.f. Section3.2). 2.3. Spectral2DImagers 2Dspectralimagersrecordspectraldataintwospatialdimensionswithineveryexposure.Thishas openedupnewwaysofimagingspectroscopy[42],sincecomputervisionalgorithmscanbeusedto composeascenefromindividualimages,andspectraland3Dinformationcanberetrievedfromthe samedataandcomposedto(hyper)spectraldigitalsurfacemodels[43,44]. Since[43]firstattempted tocategorize2Dimagers(thencommonlyreferredtoasimage-framecamerasorcentralperspective images [32]), new technologies have appeared. Today, 2D imagers exist that record the spectral bandssequentiallyoraltogetherwithinasnapshot. Inaddition,multi-camerasystemsrecordspectral bandssynchronouslywithseveralcameras. Inthefollowingsections, thesedifferenttechnologies arereviewed. 2.3.1. Multi-Camera2DImagers A multi-camera 2D imager uses several integrated cameras to record a multispectral or hyperspectralimage. Often,thisisdonebyplacingfilterswithaspecificwavelengthconfiguration in front of the detector. The first popular camera for this type for UAV application was the MCA, whichhadfourorsixcameras. Someexamplesofapplicationsthathavebeendevelopedwiththis firstbulkymodel(2.7kg)carriedouton-boardahelicopterUAVincludewaterstressdetectionand precisionagriculturestudies[45–47]. FurtherminiaturizationoftheMCAmodelintothemini-MCA cameraenableditsusefromlightweightplatformsforvegetationdetectioninherbaceouscrops[48] andweedmapping[49]. However,duetoitstechnicalconfiguration,calibrationandpost-processing ofdatawascomplex[50]. Additionally,thecamerahadarollingshutter,wherenotallpartsofthe imagearerecordedatthesametime. Formovingscenes(e.g.,duetothemovementofthesensor), thisresultsin“rolling-shutter”effectsthatdistorttheimages. Thus,rollingshuttercamerasarenot RemoteSens.2018,10,1091 5of42 suitedfortakingimagesduringUAVmovement. NewerTetracamcamerasnowalsouseglobalshutter intheMacawmodel. Recently,similarbutmorecompactsystemshaveappearedonthemarket. Amongthemarethe MicaSenseParrotSequoiaandRedEdge(-m)[51,52]withfourandfivespectralbands(blue,green,red, rededge,near-infrared),andtheMAIAcamera[53],withninebandscapturedbyseparateimaging sensorsthatoperatesimultaneously.Suchcameraswereusedtoassessforesthealth[54],leafareaindex inmangroveforests[55]andgrapevinediseaseinfestation[56]. Inaddition,self-builtmulti-camera spectral2Dsystemshavebeenusedtoidentifywaterstress[57]aswellascropbiomassandnitrogen content[58]. 2.3.2. Sequential2DImagers Sequential band systems record bands or sets of bands sequentially in time, with a time lag between two consecutive spectral bands. These systems have often been called image-frame sensors[43,44,59,60].AnexampleofsuchasystemistheRikolahyperspectralimagerbySenopOy[61] thatisbasedonthetunableFabry–PérotInterferometer(FPI).Thecameraweighs720g. Thedesired spectralbandsareobtainedbyscanningthespectralrangewithdifferentairgapvalueswithinthe FPI[44,62]. Thecurrentcommercialcamerahasapproximately1010×1010pixels,providingavertical andhorizontalFOVof36.5◦ [61,63]. Intotal,380spectralbandscanbeselectedwitha1-nmspectral stepinthespectralrangeofapproximately500–900nm,butintypicalUAVoperation,50–100bands arecollected. TheFWHMincreaseswiththewavelengthiftheorderofinterferenceandthereflectance of the mirrors remain the same [64]. However, in practical implementation of the Rikola camera, theresultingFWHMsaresimilarinthevisibleandnear-infrared(NIR)ranges: approximately5–12nm. TheRikolaHSIrecordsupto32individualbandswithinasecond;so,forexample,ahypercubewith 60 freely selectable individual bands can be captured within a 2-s interval. Recently, a sort-wave infrared(SWIR)rangeprototypecamerawasdeveloped,withaspectralrangeof0.9–1.7µmandan imagesizeof320×256pixels[65,66]. Benefitsofthesequential2Dimagersarethecomparablyhighspatialresolutionandtheflexibility tochoosespectralbands. Atthesametime, themorebandsthatarechosen, thelongerittakesto recordallofthem. Inmobileapplications,thebandsinindividualcubeshavespatialoffsetsthatneed tobecorrectedinpost-processing(c.f. Section3.3.2)[44,67,68]. Theframerate,exposuretime,number ofbands,andflyingheightlimittheflightspeedintunablefilter-basedsystems. TheFPIcamerashave beenusedinvariousenvironmentalremotesensingstudies,includingprecisionagriculture[44,69–71], peat production area moisture monitoring [65], tree species classification, forest stand parameter estimation,biodiversityassessment[72–74],mineralexploration[68],anddetectionofinsectdamage inforests[60,75]. 2.3.3. Snapshot2DImagers Snapshotsystemsrecordallofthebandsatthesametime[43,76,77],whichhastheadvantage thatnospatialco-registrationneedstobecarriedout[43]. Currently,multi-pointandfilter-on-chip snapshotsystemsexistforUAVs. Multi-pointspectrometer Multi-pointspectrometersuseabeamsplittertodividethe2Dimageintosections,ofwhichthe signalisspreadinthespectraldomain[78]. AnexampleistheCubertFirefleye[79]. Thecameraand acontrollingcomputerweighsabout1kgandrecordsanimagecubewith50×50pixelofspectral datafrom450–900nmwithanFWHMof5nm(460nm)to25nm(860nm). Simultaneously,aone megapixelgreyimagewiththesameextentistakenandcanbeusedtocollatetheimagesintoafull scene[43]. Multi-pointsnapshotcamerashavebeenusedtoderivechlorophyll[42],plantheight[43] andleafareaindex[80]incrops. RemoteSens.2018,10,1091 6of42 Theadvantageofmulti-point2Dimagersisthattheyrecordallofthespectralinformationfor each point in the image at the same time, and typical integration times are very short due to the Rheimgohte lSiegnhs.t 2t0h18r,o 1u0,g xh FpOuRt .PEHERo RwEeVvIEeWr, t he disadvantage is the relatively low spatial resolution 6o foft h4e2 spectralinformation. Mosaic filter-on-chip cameras Mosaicfilter-on-chipcameras In the mosaic filter-on-chip technology, each pixel carries a spectral filter that has a certain transImnisthsieonm, osusachic afisl tthere- opnri-nchciipplet eocfh an oBlaoygeyr, peaatcthernp iixne lanc aRrGrieBs caamspeerac.t rTahlefi cltoemrbthinaetdh iansfoarmcearttiaoinn otrfa tnhsem piisxseiolsn w,siuthcihna as mthoespaircin ocri ptilleeso fthaeBna ryeeprrpesaetntetrsn thine aspneRcGtraBl cinamfoermraa.tTiohne ocof mthbei nareeda isnefeonrm byat tiohne toiflet.h Tehpei xteeclhsnwoiltohginy ais mbaosseadic oonr at itlhesint hweanferre porne tsoepn tosft ah emsopneocctrharloimnfaotricm caotmiopnloemftehnetaarryea mseeteanl–boyxitdhee stielme.iTcohnedteucchtonro l(oCgMyOisSb)a sseednsoonr aint hwinhwichaf ethreo nwtaofpero fcoanmtaoinnos cbharnomd aptaicssc ofmiltperlesm theantt airsyolmateet aslp–eocxtirdael wseamviecloenngdtuhcst oarcc(oCrMdiOngS )tos ethnes oFrabinryw–Phéicrhot tihnetewrfearfeerncceo pntrainincispblea n[8d1,p82a]s.s Tfihlete wrsaftehrast airseo lpartoedsupceecdtr ianl aw raavnegleen ogft hspsaatciaclo crdoninfiggutoratthioenFsa, binrycl–uPdéirnogt ilninteearfre, rmenocseaipc,r ianncdip tliele[-8b1a,s8e2d]. fiTltheersw. Tahfeirss teacrhenpirqoudeu wceads dinevaerlaonpgede obfys Ipmaetica lucsoinngfi gthuer aFtPioI nfisl,teinrsc ltuod pinrogvliidnee adri,ffmeroesnati cs,paenctdratli lbe-abnadsse d[8fi1]l.t eCrus.rrTehnitslyt,e tchhen ciqhuipe iws aasvdaielavbelleo pfeodr tbhye Irmanegceu osifn 4g70th–e63F0P nImfil tienr s16to (4p r×o v4i dpeatdteifrfne)r ebnatnsdpse wctritahl ba asnpdasti[a8l 1r]e.soCluutriroenn tolyf, 5th1e2 c×h 2i5p6i spaixvealisl,a abnled fionr tthhee rraannggee ooff 640700––1603000n nmmi nin1 265( b4a×nd4sp (a5t ×te 5rn p)abttaenrdns) wwiitthh aa ssppaattiiaall rreessoolluuttiioonn ooff 541029 ×× 221566 ppiixxeellss., Tanhde iFnWthHeMra nisg eboelfo6w00 1–51 0n0m0n fmori nbo2t5hb saynsdtesm(5s×. T5hpea ttwteorn c)hwipitsh aarsep ianttieaglrreasteodlu itnioton coafm40e9ra×s b2y1 6sepvixerealsl .cTohmepFaWniHesM, anisdb weleoiwgh1 b5enlomwf o40r0b ogt h(e.sgy.s, t[e8m3,s8.4T])h. Seot wfaor,c ohniplys fairresti nattetegmraptetsd winittho tchaims enraeswb ytescehvneoralolcgoym hpaavneie sb,eaennd pwuebiglihshbeedlo w[8450,806g], (ein.gc.l,u[8d3in,8g4 ])a. Ssotufdary, oonnly hfiorswt atttoe moppttsimwiizteh tthhies dneemwotesachicninoglo ogfy thhea vimebaegeens [p8u7b].l iRsheceedn[t8ly5,, 8I6m],eicn hclausd ainnngoausntcueddy ao SnWhIoRw vteorsoipotnim ofi zteheth ceamdeemrao [s8a8ic].i ng oftheThime aagdevsa[n8t7a]g.eR eocfe fnilttleyr,-Iomne-cchhipas caanmneoruansc iesd thaaStW thIReyv reercsoiornd oafllt hoef cthame beraand[8s8 ]a.t the same time. AddiTtihoenaaldlyv,a tnhteayg earoef vfielrtye rl-iognh-tc, hainpdc caamne braes caisrrtiheadt bthye symraelclo UrdAValsl. oTfhteh edibsaanddvsanattatghee iss atmhaet teiamche. bAadnddi tiiso njuasltl ym,tehaesyuraerde voenrcye lwigihtht,ina nedaccha ntilbee acnadr rtiheudsb, yacscmuraaltleU sApVecst.raTlh ienfdoirsmadavtiaonnt afogre oisneth baatneda cihs obnanlyd aivsajiulasbtlme eoanscuer eevdeoryn cfeeww pitihxienlse. aCcuhrtrielentalyn,d ththisu iss, taaccckuleradt ebys pselicgthratllyi ndfeofromcuastiinogn tfhoer coanmeebraan adnids ionntleyrpaovlaaitliaobnl eteocnhcneiqeuveesr. yTfheewy hpaixveel sa. hCiguhrreern stplya,titahli sreissotlauctkiolend thbayn smliguhlttil-ypodienfto scpuescintrgomtheetecrasm, beurat tahned riandteiorpmoeltartiico npetercfohrnmiqaunecse. Tohf etyheh afivlteear-hoing-hcherips pteactihanlorelosgoylu thioasn tnhoatn ymetu rlteia-pchoeindt sthpee cqtruoamlietyte rosf, ebsuttabthlieshreadd isoemnseitnrgic ppreinrfcoiprmleas ntcheato ifs tuhseefidl tienr -pooni-ncth aipndte lcihnne oslcoagnynihnags dneovticyeest. rTehaicsh medaitnhley qreusaulilttys forfoemst tahbel itsehcehdnisceanl scihnagllpernignecsip dleusritnhga tthise umsaenduinfapctouirnitnagn pdrolicneesss c(ia.en.n, sintrgondgev viacreisa.tTiohni somf tahien tlhyicreksnuelstss ofrfo tmhet hfeiltteerc henleicmalecnhtsa lbleentgweesednu ardinjagctehnet mpaixneulsfa) catundri ntghep rnoocveseslt(yi .eo.f, stthreo ntgecvhanriiqautieo.n Foifgtuhree t2h icshknowesss iomftahgeesfi lctaeprteuleremde bnyts ab seetqwueeenntiaadl j2aDce nimtpaigxeerl,s a) amnudlttih-eponionvte slptyecotfrothmeetteecrh, nainqdu ea. fFilitgeur-roen2-cshhiopw ssniampsahgoest ccaampteurrae.d byasequential2Dimager,amulti-pointspectrometer,andafilter-on-chipsnapshotcamera. FFiigguurree 22.. EExxaammppllee iimmaaggeess ccaappttuurreedd bbyy tthhee sseeqquueennttiiaall RRiikkoollaa FFaabbrryy––PPéérroott IInntteerrffeerroommeetteerr ((FFPPII)) ((lleefftt)),, mmuullttii--ppooiinntt ssppeeccttrroommeetteerr CCUUBBEERRTT FFiirreefflleeyyee ((cceenntteerr)) aanndd ffiilltteerr--oonn--cchhiipp IImmeecc NNIIRR ((rriigghhtt)) 22DD iimmaaggeerrss.. TThhee eexxcceerrpptt sshhoowwss oonnee 55 ×× 55 ttiliele uusseedd ttoo ccaappttuurree tthhee ssppeeccttrraall iinnffoorrmmaattiioonn.. SSppaattiioossppeeccttrraall ffiilltteerr--oonn--cchhiipp ccaammeerraass TToo aaddddrreessss tthhee llaatttteerr,, aa mmooddiififieedd vveerrssiioonn ooff tthhee fifilltteerr--oonn--cchhiipp ccaammeerraa ccaalllleedd CCOOSSII CCaamm hhaass bbeeeenn ddeevveellooppeedd [[8899]].. TThhiiss sseennssoorr nnoo lloonnggeerr uusseess aa ssmmaallll nnuummbbeerr ooff ssppeeccttrraall ffiilltteerrss iinn aa ttiilleedd oorr ppiixxeell--wwiissee mmoossaaiicc aarrrraannggeemmeenntt.. IInnsstteeaadd, ,aa llaarrggeerr nnuummbbeerr ooff nnaarrrrooww bbaanndd ffiilltteerrss aarree uusseedd,, wwhhiicchh aarree ssaammpplleedd ddeennsseellyy eennoouugghh ttoo hhaavvee ccoonnttiinnuuoouuss ssppeeccttrraall ssaammpplliinngg.. TThhee ffiilltteerrss aarree aarrrraannggeedd iinn aa lliinnee--wwiissee ffaasshhiioonn,, wwiitthh aa nn aammoouunntt ooff lliinneess ((aa ssmmaallll nnuummbbeerr,, ffiivvee oorr eeiigghhtt)) ooff tthhee ssaammee ffiilltteerr nneexxtt ttoo eeaacchh ootthheerr,, ffoolllloowweedd bbyy nn lliinneess ooff ssppeeccttrraallllyy aaddjjaacceenntt ffiilltteerr bbaannddss.. IInn tthhiiss aarrrraannggeemmeenntt,, ffiilltteerrss oonn aaddjjaacceenntt ppiixxeellss oonnllyy vvaarryy slightly in thickness, leading to much cleaner spectral responses than the 4 × 4 and 5 × 5 pattern. The COSI Cam prototype [89] was the first camera using such a chip, capturing more than 100 spectral bands in the range of 600 nm–900 nm. In a further development, by using two types of filter material on the chip, a larger spectral range of 475 nm–925 nm was achieved (ButterflEYE LS; [90]) with a spectral sampling of less than 2.5 nm. RemoteSens.2018,10,1091 7of42 slightlyinthickness, leadingtomuchcleanerspectralresponsesthanthe4 × 4and5 × 5pattern. TheCOSICamprototype[89]wasthefirstcamerausingsuchachip,capturingmorethan100spectral bandsintherangeof600nm–900nm.Inafurtherdevelopment,byusingtwotypesoffiltermaterialon thechip,alargerspectralrangeof475nm–925nmwasachieved(ButterflEYELS;[90])withaspectral samplingoflessthan2.5nm. Physically, these cameras are filter-on-chip cameras, but their filter arrangement requires adifferent mode of operation. Their operation includes scanning over an area, and is similar to theoperationofapushbroomcamera. Therefore,thesesensorsarealsoreferredtoasspatiospectral scanners. The2Dsensorcanbeseenasalargearrayof1Dsensors,eachcapturingadifferentspectral band(infact,nduplicatelinesperband). Tocaptureallofthespectralbandsateverylocation,anew imagehastobecapturedeverytimetheplatformhasmovedtheequivalentofnlines. Thisisachieved by limiting the flyingspeed andoperating thecamera witha highframe rate(typically 30frames persecond(fps)),whichmeansalargerportionoftheflyingtimeisusedforcollectinginformation. Aspecializedprocessingworkflowthengeneratesthefullimagecubeforthescene[90]. Due to their improved design, the radiometric quality of the spectrospatial cameras is better comparedtotheclassicalfilter-on-chipdesign. Atthesametime,theirdataenablesthereconstruction ofthe3Dgeometrysimilartoother2Dimagersduetothe2Dspatialinformationwithintheimages. Simaetal.[91]showedthatagoodspatialco-registrationcanbeachievedthatalsoallowsextraction ofdigitalsurfacemodels(DSMs). Thedrawbackofthesesystemsisthattheyrequirelargestorage capacityandalowerflyingspeedtoobtainfullcoverageoverthetargetofinterest. Afurtherchallenge inthiskindofsensoristhateachbandhasdifferentanisotropyeffectsasaresultofhavingdifferent viewanglestotheobject. Characterized(modified)RGBcameras RGB and modified RGB cameras (e.g., where the infrared filter is removed, and so called color-infraredcameras(CIR)withgreen, redandnear-infraredbands)canalsobeusedtocapture spectral data if they are spectrally and radiometrically characterized, and the automatic image adjustmentisturnedoff.Thesecamerasonlyhaveaverylimitednumberofratherwidespectralbands, buthaveaveryhighspatialresolutionatcomparativelylowcost. AnexampleistheCanons110NIR, whichrecordsgreen(560nm,FWHM:50nm),red(625nm,FWHM:90nm),andnear-infrared(850nm, FWHM:100nm)bandsat3000by4000pixels. Forsomecameras,firmwareenhancementssuchas theCanonHackDevelopmentKit(CHDKCommunity,2017)areavailableandprovideadditional functionality beyond the native camera firmware, which is potentially useful for remote sensing activities. Berraetal.[92]demonstratedhowtocharacterizesuchcamerasandcomparedtheresultsof multi-temporalflightstomapphenologytoLandsat8data. While the main advantage of RGB and CIR cameras is their high spatial resolution and comparativelylowcost,amainlimitationistheoverlapbetweenspectralbands. Additionally,these bandsalsodonotcomplywiththebandsoriginallyusedinstandardvegetationindices(VIs). Thus, thepseudo-normalizeddifferencevegetationindex(pseudo-NDVI)iscalculated,wheretheavailable bandsareusedinsomecombination. However,thesecameraswerenotintentionallybuiltforprecise radiometric measurements, and thus might lack stability. Thus, one needs to be careful with the settings,sinceimage-processingprocedureswithinthecameramightaltertheinformationcapturedby thecamera. Thebestwaytouseconsumer-gradecamerasistostoreimagesinarawdataformat(e.g., openDNG;[93]). Inaddition,someconsumer-gradesystemsonlyofferalowradiometricresolution ofeightbitsperchannel,whichmightbeunabletoresolvesubtleradiometricdifferences. RemoteSens.2018,10,1091 8of42 Table1.Differentspectralsensortypesforunmannedaerialvehicle(UAV)sensingsystemswithpropertiesofexamplesensors.Theexactnumbersmayvarybetween Remote Sens. 2018, 10, x FOR PEER REVIEW 8 of 49 differenRtemmotoe Sdenesl.s 2,01a8n, 1d0, sx hFOoRu PldEEjRu RsEtVbIEeWt a kenasindication.Thevisualizationsindicatetheimagecubeslicesrecordedduringeachmeasure8m oef 4n9t ofasensortype(adapted Remote Sens. 2018, 10, x FOR PEER REVIEW 8 of 49 fromdrawiTTnaagbbsllee p11.r. oDDviifffifeedrreeenndtt ssbppyeeccSttrrtaaell fssaeennnssooLrr ittvyyeppenesss ff)oo.rr Tuuhnnmmeaainnnnnfeeoddr maaeerraiiaatlli ovvneehhiiiccnllee t((hUUeAAtVVa)) bsseelennssiiisnnggc ossyymsstteepmmosss wwediitthho ppfrrooinppeefrrottiireemss ooaff teeixxoaanmmfppolleeu ssneenndssooirrnss.. tTThhheee leeixxtaaeccrtt anntuuummrbbeee,rross nmmaawyy evvbaarrsyyi tesofthemanufacturers,and bTeatbwlee e1n. dDiiffffeerreenntt mspoedcetlrsa,l asnedn ssohro tuyldp ejus sfto br eu tnamkeann anse idn daiecraitaiol nv.e Thhicel ev i(sUuAalViz)a tsioennss iinngd iscyastete tmhes iwmiatghe p cruobpee srltiiceess orfe ceoxradmedp ldeu sreinngs oerasc.h T mhee aesxuarcetm neunmt obfe ar ss emnsaoyr vtyaprye personalcob(braeerdttewwaspeepteeennod nddfiirdffoffeeemrrnee nncdtter ammwwooiddniteeghllsss ,, S paartnnoeddvf iassdhhneooduuL lldbdiy v jju ueSssnttt ebbsfeea fnttraa okkLeeminvn e aanVsss ii)Inn.T ddTiOicchaaett (iioofinnonf..r o TTrthhmheea evvtiiiossCuunaOa lliiinzzS aaIttthiiocoenna sstm aiinbn)dld,eii ccTiaasrtt eeoc ttonhhmede piimmLosaaøeggdkee eccouuffb brieeno ssfmlloiiccremeHss arrteyeiccoSoonrrp ddfeeeoddxu ndd(duuf orriiinnnrgg t t ehehaaeecc hhlMi tmmerjeeoaaatssluuunrrreieer,mm )o,eennna ttn w oodffe baa sR ssieetoennsbss ooeorrf rt ttyythppPeeea rkerfromMicasense(forthe (adapted from drawings provided by Stefan Livens). The information in the table is composed of information found in the literature, on websites of the RedEdge-mm(a)da.naFupWtfeadcHt ufrrMeorms:, fadunrldalw pwienrigsdos ntpharl ocavotirdrheeasdpl fobnymd Seatnexcfeiam nw iuLthimv Set.nesf)a.n T Lhive einnsf ofrromma tVioInT Oin ( fothr et htea bClOe SisI ccaomm),p Torsoendd o Lf øiknef ofrrommat HioynS pfoeuxn (dfo ri nth teh Me jloitlnerira)t,u arned, oRno bweretb Psaitrekse ro ff rothme manufacturers, and personal correspondence with Stefan Livens from VITO (for the COSI cam), Trond Løke from HySpex (for the Mjolnir), and Robert Parker from Mmaicnausfeancsteu r(feorrs ,t ahne dR pederEsdognea-lm co).r rFeWspHoMnd: efnuclle wwiidthth S atet fhaanl fL mivaexnism fruomm. VITO (for the COSI cam), Trond Løke from HySpex (for the Mjolnir), and Robert Parker from Micasense (for the RedEdge-m). FWHM: full width at half maximum. Micasense (for the RedEdge-m). FWHM: full width at half maximum. DDDDaaaattttaaaa CCCCuuuubbbbeeee SSSSlllliiiicccceeee DDSSSiiDcccmmSaaainnnecemnannnnnssiieinnniinnoogggsinn ni ogn SSSpppaaatttiiiaaalll RRRSeeepsssaoootllliuuuatttliiioooRnnne soluSSStipppoeeenccctttrrraaalll BBBaaannndddsssS ***p***e ctrSSSapppleeeBcccattt((rrrnFFaaadWWlll RsRRHHeee*MMsss*ooo))lll u uutttiiiooonnnS pectBBB(rFiiiatttWl DDDRHeeeepppMstttohhh)l ution EEExxxBaaaimmmtDpppllleeee p SSSteeehnnnsssooorrrsss ExampleSensors Dimension (FWHM) Point Point Point Point ssspppasaaptttiiiaaaalllt ial nnnooonnneee none +++++++++++++++++++++++++++ ( ( ( (((111333000666222444444888)))))) ++++++++++++++++++(++(++++13++++++06++++++2 4 (((4(((8000111)...)–––111111–––222111 000nnn mmmnnnmmm))) ))) +++++++++111111(262626(01 bbbbbb.–1iiiiiitt1tttt– 21 0nnmm)) OOOcccOOOeeeaaacccnnneee aaa11OOOnnn62ppp OOObbtttiiipppiicccttssstttiii UcUcUcsssSSS SSSBBBTTT444SSS000 000 000 OcOeacneaOnpOtipcstiUcsSSBT4S000 HySpex Mjolnir V Pushbroom Pushbroom Pushbroom Pushbroom ssspppasaaptttiiiaaaalllt ial VNIR SWIR VNIR SWIR VNIR SWIR VNIRSWIR++++++++++++++++++ ( ( ( (((111666222222444000000)))))) ++++++((16224++++++00++++++))++++++++++++ ((((((232323000000000000)))))) ++++++++++++++((++++++23+ + + 00(((+++33300 ...))(((222~~~–––666666 n.n.n.444mmm nnn)))mmm ))) +++++(+1111311626262.(2 ~bbbbbb–6iiiiii6tttttt .n4mn)mSSS)mmmpppHHHeeeiiicycyccyccBBBrrriiiSSSmmmooSSoaSaappppy-py-py- e ehehhAAsAsseeexxxyyyppHpHccci i i pppiiMiMeMsesesm(my(m(yaaacecece666SSj j KKj rKrr000 ooOOoOpsApsA11sA000EEElllpppe62CeCnCnn–––iiiSSSeexessxsi1i1i1IIIbbTTTaracrcarc ,,,666MM ///KKKiiRRRRSRSRS444nnntt 0EE0EE0jEEjeeeaaa(((oo 9 99ssSsLSLnSLnnnnnlloo7o77nTnTTo o o mmm1110n0n0niiR-R-R-0r00r–––hhohoo))) EEE,,,2 2 2 VVnynyn y HHHL5L5L5pp p PP0P00 ee eeeSe111000iiimaararr6k6k6kp ssHsdndndn aaaepppi mm wmww ccyeeeBricaca)c)a)Som S a,,,lllp l l l -py heAsexypHcipiesM(myeac6SrKj0OospA0EpleCn–iSesx1iIcTar,6M/KRRS4n0EEje(oa9sLSnnlo7nTmo1n0iR-0r–o)hE,2VnyHL5pP0e1e0ia6krdnsapwmea)cl,l 2DimagerR emo2D imager 2D imager 2D imager te SequentialSeMulti-cameranmulti-)bands.Sequential Sequential Sequential 2Multi-camera Multi-camera Multi-camera 01(multi-) band (multi-) band (multi-) band 8, 10, x FOR PEER REVIEW ssssssppppppseeeasaapcccpttttttiiierrraaaaaacallltllt l i raall SWIR VNIR VNIR VNIR ++++++++++++ +++((+(VNIR1+1+1++2 2 2 ((((888111+30000002+ 000××0×0+00 99×9 ×××66 6(2 1+00011152)))000+6 8000)+000 0)))( ×1 090600×)+++1++++0+++++++ 0 (((((((3015151500))0)0) )000 ))) ++++((++++51+++++++) 0 (+(+(+(1011 2 (((000)0555–––––––44431110000222 n n nnnnnmmmmmmm))))))) +++(+11111110(2222225– – bbbbbb41iiiiii0tttttt2 nnmm))PPPaaarrrrrrooottt SSSMMMeeePqqqiiircccRRRuuuoaaaoioioitssskkkoiiieeeaoaoaot11nnny,,,lllmmm22 sasasaTpTTeee aaabbFeFeeFe RRccRc tttPPiiPFrraraatteeeIIIaaaPwww dddccVcVVIEaEa Ea NSNNmmmdddWIIIggg RRRMMMeeeI R ---i mi mi mP nnnii a i MMMrr9oCCC tAoAASfM,,, e49qicR uaioskeioanl,msaTeaFeRctPraeIawdcVEaNmdIgRMe-imniMCA, ( R WI ++(320×256) ++(30) ++(20–30nm) PrototypeFPISWIR S nt oi ulti-p none + (50 × 50) +++ (125) +++ (5–25 nm) 12 bit Cubert FireFleye M snapshot Filter-on-chip none VIS NIR ++++ ((541029 ×× 227126)) ++++ ((1265)) ++++ ((55––1100 nnmm)) 1100 bbiitt iimmeecc SSNNmm45xx45 ** d) difie o m zed (RGB none ++++ 3000 × 4000 + (3) + (50–100 nm) 12 bit canon s110 (NIR) acteri Char Remote Sens. 2018, 10, x FOR PEER REVIEW 9 of 49 RReemmoottee SSeennss.. 22001188,, 1100,, xx FFOORR PPEEEERR RREEVVIIEEWW 99 ooff 4499 RemoteSens.2018,10,1091 9of42 R WIR SWIWIR ++++++ (((333222000 ××× 222555666))) +++T+++ (a((333b000))) l e1.Con++t+++.+ (((222000–––333000 nnnmmm))) PPPrrroootttoootttyyypppeee FFFPPPIII SSSWWWIIIRRR SS Scanning SpectralResolution DataCubeSlice SpatialResolution SpectralBands** BitDepth ExampleSensors Dimension (FWHM) Multi-pointMulti-point Multi-point Multi-point nnnooonnnneeeo ne +++ (((555000 ××× 5550+00))) (50×50) +++++++++ (((111222555))) +++(+++1+++2+++5 ((()555–––222555 nnnmmm))) +++111(2225 –bbb2iiittt5 nm) CCCuuubbb1eee2rrrttt b FFFiiiitrrreeeFFFllleeeyyyeee CubertFireFleye er snapshot snapshot snapshot snapshot Filter-on-chipFilter-on-chip Filter-on-chip Filter-on-chip nnnooonnnneeeo ne VIS NIR VIS NIR VIS NIR ++++++NIRVIS++++++ ((((((545454101010292929 ×××××× 222222717171262626++))))))++ ((541029××22++++++71++++++26 ))((((((121212656565)))))) ++++((12++++++65++++++ )) ((((((555555––––––111111000000 nnnnnnmmmmmm)))))) ++++((11111155000000–– bbbbbb11iiiiii00tttttt nnmm)) iiiiiimmmmmmeeeeee11cccccc00 SSSSSSbbNNNNNNiittmmmmmm454545xxxxxx454545 ****** iimmeeccSSNNmm45xx45** g ma 2DiRemote SensCharacterized. 2(modified)RGB0Characterized (modified) 1Characterized (modified) Characterized (modified) 8, RGB RGB RGB 10, x FOR PEER REVIEW nnnooonnnneeeo ne ++++++++++++ 3330000+00000+ ×××+ 44+400003000000 00×4000 +++ (((333))) +(+++3 )(((555000–––111000000 nnnmmm))) +(50111–222 1 bbb0iiittt0 nm) cccaaannnooo1nnn2 sssb111i111t000 (((NNNIIIRRR))) 10 of 49c anons110(NIR) alal atiospectrpatiospectr spastpioastpioescptreacl tral ++++ 200+0 +++2000 ++ (160) ++(1+6+0 ()5–10 nm) ++(85 –b1it0 nm) CubertC 8BOubStiItt ecrafmlE Y E LS CubertCBOuStItecraflmEYELS pS S * Sold by different companies, e.g., Cubert Butterfly VIS/NIR, ximea MQ022HG-IM-SM4X4-VIS/MQ022HG-IM-SM5X5-NIR, photonFocus MV1-D2048x1088-HS03-96-G2/ MV1-D2048x*1 S0o8l8d- HbyS d0i2ff-e9r6e-nGt c2o.m**pnanuimes,b ee.gr.o, Cfuspbeerctt Braulttbearfnlyd VsIdSe/NpIeRn, dxsimoena tMheQ0c2o2nHfiGg-uIMra-tSiMon4Xa4n-dVIbSi/nMnQin02g2oHfGt-hIMed-SeMv5icXe5s-NanIRd, pshhootuolndFojucusst bMeVu1s-Ded20a4s8xa10r8e8fe-HreSn0c3e-. 96-G2/MV1-D2048x1088-HS02-96-G2. ** number of spectral bands depends on the configuration and binning of the devices and should just be used as a reference. RemoteSens.2018,10,1091 10of42 3. IntegrationofSensorsandGeometricProcessing AccurategeometricprocessingisacrucialtaskinthedataprocessingworkflowforUAVdatasets. Fundamentalstepsincludethedeterminationofthesensorinteriorcharacteristicsofthesensorsystem (interiororientation),theexteriororientationofthedatasequence(positionandrotationofthesensor duringthedatacapture),andtheobjectgeometricmodeltofindthegeometricrelationshipbetween theobjectandtherecordedradiancevalue. Accuratepositionandorientationinformationisrequiredtocomputethelocationofeachpixel on the ground. Full-size airborne hyperspectral sensors follow the pushbroom design, and some canuseasurvey-gradedifferentialGNSSreceiver(typicallymulti-constellationanddualfrequency capabilities)andIMUtodeterminethepositionandorientation(pitch,roll,andheading)oftheimage lines. Whenpost-processedagainstaGNSSbasestationestablishedoverasurveymarkatashort baseline(within5–10km),apositioningaccuracyof1–4cmcanbeachievedfortheon-boardGNSS antenna,afterwhichpropagationofallofthepose-relatederrorstypicallyresultsin5–10cmdirect georeferencingaccuracyofUASimagedata. Thiscanbefurtherimprovedbyusinggroundcontrol points(GCPs)measuredwithadifferentialGNSSroveronthegroundoratotalstationsurvey[94–97]. OneofthechallengesinhyperspectraldatacollectionfromUAVsisthelimitationinweightandsizeof thetotalsensorpayload. Survey-gradeGNSSandIMUsensorstendtoberelativelyheavy,bulky,and expensive,e.g.,fiberopticgyro(FOG)IMUsprovidingabsoluteaccuracyinorientationof<0.05◦ [98]. Developmentinmicroelectromechanicalsystems(MEMS)hasresultedinsmallandlightweightIMUs suitableforUAVapplications;however,traditionally,theabsoluteaccuracyoftheseMEMSIMUshas beenrelativelypoor(e.g.,typically~1◦absoluteaccuracyinpitch,roll,andyaw)[98].Theimpactofa1◦ errorataflyingheightof50mabovegroundlevel(AGL)isa0.87-mgeometricoffsetforapixelonthe ground. IfweconsiderthekeybenefitofUAVremotesensingtobetheabilitytocollectsub-decimeter resolutionimagery,thensuchalargeerrorispotentiallyunacceptable.Thecombinederrorinpitch,roll, heading,andpositioncanmakethisevenworse. Thereisanimportantrequirementfortheoptimal combinationofsensorstodetermineaccuratepositionandorientation(pose)ofthespectralsensor duringacquisition(whichalsorequiresaccuratetimesynchronization),oranappropriategeometric processingstrategybasedonimagematchingandgroundcontrolpoints(GCPs). 3.1. GeoreferencingofPointSpectrometerData Whilepointspectrometersofferhighspectralresolution,theirdatacontainnospatialreference. Thus,precisepositioningandorientationinformationaswellasanaccuratedigitalsurfacemodelare necessarytoprojectthemeasurementpointsonthesurface.OneapproachistousepreciseGNSS/IMU equipment,whichisstillexpensive. Analternativeistoalignandcapturedatasimultaneouslywith a2Dimager,suchasforexamplewithaneithermonochromeorRGBmachinevisioncamera(e.g.,[25]). Inanextstep,computervisionalgorithmssuchasSfMcanthenbeusedtoderivetheorientationand positionoftheimagesandtheassociatedpointspectrometermeasurements,assumingthattheimages containsufficientfeaturesandarecapturedwithenoughoverlap[99,100]. Whilethesecondapproach ischeaperthanthefirst,bothaddadditionalpayloadtobecarriedbythesensingsystem. Forboth approaches, accuratetimesynchronizationbetweenthespectroradiometerandtheGNSS/IMUor cameraisrequired. Furthermore,eachspectroradiometerhasacertainFOVdeterminedbytheslitor foreoptic,whichcanbeconstrainedwithadditionalaccessories,suchasaGershuntubeorcollimating lens. Finally,theintegrationtimeofthespectroradiometerwillalsohaveanimpactonthesizeofthe footprint. Foraspectroradiometerwitharelativelylongintegrationtime(e.g.,1s)onamovingUAV platform,thecircularfootprintwillbe‘draggedout’intoanelongatedshape. Additionally,inoff-nadir measurements,thecircularfootprintalsoelongatestoanellipticalshape[24]. Thecombinedeffects oftheposition,orientation,FOV,integrationtimeofthespectroradiometer,flyingheightandspeed oftheUAV,andthesurfacetopographywilldeterminethelocationandsize/shapeofthespectral footprint. Finally, one should also consider that measurements of a field spectrometer are center
Description: