ebook img

Quantitative Determination of Alkaloids in Lotus Flower (Flower Buds of Nelumbo nucifera) and PDF

17 Pages·2016·1.65 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Quantitative Determination of Alkaloids in Lotus Flower (Flower Buds of Nelumbo nucifera) and

molecules Article Quantitative Determination of Alkaloids in Lotus Flower (Flower Buds of Nelumbo nucifera) and Their Melanogenesis Inhibitory Activity ToshioMorikawa1,2,†,NiichiroKitagawa1,3,†,GenzohTanabe4,KiyofumiNinomiya1,2, ShuheiOkugawa1,3,ChiakiMotai1,3,IyoriKamei1,MasayukiYoshikawa1,I-JungLee5 andOsamuMuraoka1,2,4,* 1 PharmaceuticalResearchandTechnologyInstitute,KindaiUniversity,3-4-1Kowakae,Higashi-osaka, Osaka577-8502,Japan;[email protected](T.M.);[email protected](N.K.); [email protected](K.N.);[email protected](S.O.); [email protected](C.M.);[email protected](I.K.); [email protected](M.Y.) 2 AntiagingCenter,KindaiUniversity,3-4-1Kowakae,Higashi-osaka,Osaka577-8502,Japan 3 KoshiroCompanyLtd.,2-5-8Doshomachi,Chuo-ku,Osaka541-0045,Japan 4 FacultyofPharmacy,KindaiUniversity,3-4-1Kowakae,Higashi-osaka,Osaka577-8502,Japan; [email protected] 5 NationalResearchInstituteofChineseMedicine,155-1,Sec.2,LinongSt.,BeitouDistrict,Taipei11221, Taiwan;[email protected] * Correspondence:[email protected];Tel.:+81-643-074-015;Fax:+81-667-212-505 † Theseauthorscontributedequallytothiswork. AcademicEditor:MichaelWink Received:5July2016;Accepted:12July2016;Published:19July2016 Abstract: A quantitative analytical method for five aporphine alkaloids, nuciferine (1), nornuciferine (2), N-methylasimilobine (3), asimilobine (4), and pronuciferine (5), and five benzylisoquinolinealkaloids,armepavine(6),norarmepavine(7),N-methylcoclaurine(8),coclaurine (9),andnorjuziphine(10),identifiedastheconstituentsresponsibleforthemelanogenesisinhibitory activityoftheextractsoflotusflowers(theflowerbudsofNelumbonucifera),hasbeendevelopedusing liquidchromatography-massspectrometry. Theoptimumconditionsforseparationanddetectionof these10alkaloidswereachievedonaπNAPcolumn,areversed-phasecolumnwithnaphthylethyl group-bondedsilicapackingmaterial,withCH CN–0.2%aqueousaceticacidasthemobilephaseand 3 usingmassspectrometryequippedwithapositive-modeelectrosprayionizationsource.Accordingto theprotocolestablished,distributionsofthese10alkaloidsinthepetal,receptacle,andstamenparts, whichwereseparatedfromthewholeflower,wereexamined. Asexpected,excellentcorrelations wereobservedbetweenthetotalalkaloidcontentandmelanogenesisinhibitoryactivity. Among theactivealkaloids,nornuciferine(2)wasfoundtogiveacarbamatesalt(211)viaformationofan unstablecarbamicacid(21)byabsorptionofcarbondioxidefromtheair. Keywords: lotus flower; Nelumbo nucifera; melanogenesis inhibitor; nuciferine; nornuciferine; quantitativeanalysis;carbamatesalt 1. Introduction A Nymphaeaceae plant Nelumbo nucifera Gaertn. (common name “lotus” in English) is extensivelycultivatedinEasternAsiancountries[1–3]. Allpartsofthisplant,includingtheleaves, stamens, flowers, seeds, and rhizomes, have been used as traditional medicines or vegetables for thousands of years [2–4]. The lotus flower, the flower buds of N. nucifera, has been used for the treatment of vomiting blood, bleeding caused by internal and external injuries, and various skin Molecules2016,21,930;doi:10.3390/molecules21070930 www.mdpi.com/journal/molecules Molecules2016,21,930 2of17 diseases,andalsoasasedativeandananti-inflammatoryagentintraditionalAsianmedicines[2]. In the course of our studies on the bioactive constituents from the flower buds of N. nucifera, we have isolated several alkaloids, e.g., nuciferine (1), nornuciferine (2), N-methylasimilobine (3), asimilobine (4), pronuciferine (5), and armepavine (6), with melanogenesis inhibitory activities in theophylline-stimulatedmurineB16melanoma4A5cells[2]. Asaresultoftheincreasinginterest in lotus flower as a possible cosmetic for skin whitening, there is a strong demand for efficient quality control measurements to ensure the authenticity and content of the active constituents in such products, and to verify the labeled claims. In this paper, we propose a simple, rapid, and precise analytical method for liquid chromatography-mass spectrometry (LC-MS) simultaneous quantitativedeterminationoffiveaporphinealkaloids(1–5)andfivebenzylisoquinolinealkaloids,(6), norarmepavine(7),N-methylcoclaurine(8),coclaurine(9),andnorjuziphine(10),usingaone-step samplepreparationprocedure. 2. ResultsandDiscussion 2.1. IsolationofPrincipalAlkaloids(1–10)fromLotusFlower To obtain the principal alkaloids (1–10), an isolation procedure from this plant material was newlydevelopedinthisstudybymodifyingthepreviouslyreportedmethod[2]. Thus,driedflower budsofN.nuciferawereextractedwithmethanolunderrefluxtoobtainamethanolextract(9.22% from the dried material). The methanol extract was partitioned into a mixture of EtOAc and 3% aqueous tartaric acid (1:1, v/v) to furnish an acidic EtOAc-soluble fraction (2.88%) and an acidic aqueoussolution. ThepHoftheaqueoussolutionwasadjustedto9withsaturatedaqueousNa CO 2 3 andthenextractedwithCHCl toobtainaCHCl -solublefraction(0.97%). Theaqueouslayerwas 3 3 furtherextractedwithn-BuOHtoobtainann-BuOH-solublefraction(0.62%). AsshowninTable1, themethanolextractwasfoundtoinhibittheophylline-stimulatedmelanogenesis(IC =5.6µg/mL) 50 withoutcytotoxicity(cellviabilityinthe3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT)assay: 103.3˘7.1%)at100µg/mL.Throughbioassay-guidedseparation,theCHCl -soluble 3 fraction(IC =0.37µg/mL)wasfoundtobemoreactivethantheEtOAcn-BuOH-solublefractions 50 (IC =11.1and13.7µg/mL,respectively). 50 Table 1. Inhibitory effects of the methanol extract and its fractions from lotus flower on theophylline-stimulatedmelanogenesisandviabilityinB164A5cells. Treatmenta Inhibition(%) IC50 0µg/mL 3µg/mL 10µg/mL 30µg/mL 100µg/mL (µg/mL) 0.0˘1.3 28.3˘3.7 68.9˘3.1** 96.4˘3.1** 97.0˘3.3** MeOHext. 5.6 (100.0˘9.3) (110.9˘2.7) (124.2˘5.1) (126.5˘5.3) (103.3˘7.1) 0.0˘6.1 11.0˘1.7 51.5˘5.3** 83.0˘2.9** 100.9˘3.4** EtOAc-solublefraction 11.1 (100.0˘7.2) (99.3˘9.8) (106.8˘5.1) (110.9˘4.2) (118.3˘10.4) 0.0˘13.3 17.6˘7.0 35.9˘7.1 72.3˘4.7** 94.7˘3.5** n-BuOH-solublefraction 13.7 (100.0˘11.2) (104.6˘11.6) (104.9˘2.6) (114.8˘13.9) (104.3˘3.8) Inhibition(%) IC50 Treatment 0µg/mL 0.1µg/mL 0.3µg/mL 1µg/mL 3µg/mL (µg/mL) 0.0˘1.7 19.8˘6.8 35.6˘6.6** 79.2˘2.3** 107.2˘3.0** CHCl3-solublefraction (100.0˘3.5) (101.5˘6.1) (103.1˘6.1) (114.7˘4.6) (107.4˘9.5) 0.37 Eachvaluerepresentsthemean˘S.E.M.(n=4);asterisksdenotesignificantdifferencesfromthecontrolgroup, **p<0.01;aBioassay-guidedseparationstudywascarriedoutusingtheflowerbudsofN.nuciferaoriginating inThailand(NN-1). TheactiveCHCl -solublefractionwassubjectedtonormal-phasesilicagel,reversed-phaseODS 3 columnchromatography,andfinallyHPLCtofurnishnuciferine(1,0.1028%)[2,5,6],nornuciferine (2, 0.0821%) [2,5,6], N-methylasimilobine (3, 0.0094%) [2,7], asimilobine (4, 0.0345%) [2,6,8], pronuciferine(5,0.0195%)[2,9],armepavine(6,0.0170%)[2,10],norarmepavine(7,0.0616%)[10,11], Molecules2016,21,930 3of17 N-methylcoclaurine(8,0.0053%)[12],coclaurine(9,0.0042%)[10,13],andnorjuziphine(10,0003%)[14] (MMFoiolgelecucuurleeless 12 20)0.1166, ,2 211, ,9 93300 33 o of f1 177 FFFiigigguuurrreee 1 11.. .A AApppooorrrppphhhiininneee a aannnddd b bbeeennnzzzyyyllilisissoooqqquuuiininnooollilininneee a aallklkkaaallolooiididdsss (( 1(11–––111000)) )ff rfrrooommm ll oloottutuusss ffl lfoolowwweeerr.r. . 222..22.2.. .S SSiimimmuuulltlttaaannneeeooouuusss QQ Quuuaaannntttiitittaaatttiivivveee AA Annnaaallylyysssiissis oo off f11 1000 AA Allkklkaaallooloiiddidsss (( (111–––111000))) ii nnin LL Loootttuuusss FF Flloolowwweeerrrsss TTTooo pp prrrooovvviiddideee ss suuufffiffficciciieeiennnttt pp puuurrriittiytyy ff ofoorrr qq quuuaaannnttitittiataatttiivviveee aa annnaaallyylysssiissis,, ,tt thhheee hh hyyydddrrroooccchhhlloloorrriididdeeesss oo offf tt thhheeessseee a aallklkkaaallolooiididdsss ( ((111–––111000))) wwweeerrreee pp prrreeepppaaarrreeeddd b bbyyy r rreeepppooorrrttteeeddd m mmeeettthhhoooddd [ [[111000]]].. .A AAsss s sshhhooowwwnnn i niinn F FFigiigguuurrere e2 2,2 ,t, tytypyppiciciacala lL lLCLCC--MM-MSS Sc chchrhroormommaatatootgogrgraarmammss f sfoofror a ra sasttasatnandndadarraddr d ssoosloulultutioitoinon n mmmixixitxtuutrureer e uunundndederer r UUUVVV ((2(2626060 0 nnnmmm)) ) aaannnddd MMMSSS dddeeettteeeccctttiioioonnnsss bbbyyy eeelleleeccctttrrrooosssppprrraaayyy iioioonnniizizzaaatttiioioonnn (((EEESSSIII))) MMMSSS uuunnndddeeerrr ttthhheee p ppooosssiittitiivviveee m mmooodddeee d ddeeemmmooonnnssstttrrraaattteeeddd gggooooooddd b bbaaassseeelliilnnineee ssseeepppaaarrraaatttiioioonnn fffooorrr a aalllll lp ppeeeaaakkksss.. . EEEaaaccchhh pppeeeaaakkk wwwaaasss ooobbbssseeerrrvvveeeddd a aattt t tthhheee f ffooollllloloowwwiniinnggg r rreeetteteennnttitoiioonnn t titmiimmee ea anannddd q ququauasasismimimooloelelcecuculualalrar i roioinon np pepeaaekka (k ([[M(M[M + + H +H]]H+)+) ]( +(ttR)R: :(1 t1 R( (4:4313.1.(1 4m m3.i1nin,m ,m mi/nz/z, 2m299/6z6)),2 ,2 92 6( (3)3,99.25.5 (m 3m9ini.n5, ,m mm/z/izn 2 ,288m22)/),z ,3 32 ( 8(22299).7,.7 3m m(i2nin9, ,.m 7m/zm/z 2 i28n82,2)m), ,4 /4 z( (222181.3.23 )m ,m4inin(, 2,m 1m/.3z/z 2 m2668i8n)),, ,5 m5 ( (1/1z33.29.96 m 8m)i,nin5, ,m (m1/z/3z .3 93112m2)),i ,n6 6 ,( (1m166/.z9.9 m3 m1i2nin),, , m6m(/z/1z 63 .31914m4)), ,i7 n7 ,( (1m155/.z9.9 3m m14ini)n,, ,7m m(/1z/z5 3 .39000m0)),i ,n8 8 ,( m(99./9.z9 m 3m0i0nin),, ,m 8m/(z/9z .3 9300m00))i, n,9 9, ( m(88/.3z.3 3m m0i0ni)n,, ,9m m(/8z/z .23 28m866)i),n ,a ,anmndd/ z1 12008 ( 6(11)8,8.a8.8n m dmi1nin0, ,m (m1/8z/.z 82 28m866i)n)))., . TmTh/hzees2se8e 6 pp)e)e.aakTkshs wewseeerrpee e uaunknasamwmbebirgieguuuoonuuasslmyly b aiasgssusigiognunesedldy babysy s cicgoonmmepdpaabrriysisoconon m oofpf atthrhieseiorir n rreoetfteentnhttieoiionrn r tetimtimeneestsi o wwnititthihm tthehsooswsee i toohff atahuuotthsheeenontfticiac us sptpheeeccnimitmiceensnpss e[ [2c2i]m]. . ens[2]. FFFiigigguuurrreee 222.. . AAA ttytyypppiciiccaaal ll LLLCCC--M-MMSSS ccchhhrrrooommmaaattotoogggrrraaammm oooff f aaa sssttataannndddaaarrrddd sssooolluuluttitiooionnn mmmiixxixttuuturrreee ((ee(eaaaccchhh 111000 µ µµgg/g/m/mmLLL)) ) oooff f aaallkklkaaallooloiiddidsss (( 11(1–––111000))..) .(( a(aa)) )SS SIIMIMM cc chhhrrrooommmaaattotoogggrrraaammm (( pp(pooosssiittiiitvviveee EE ESSSII))I;;) ;(( bb(b)) )HH HPPPLLLCCC cc chhhrrrooommmaaattootogggrraraammm (( UU(UVVV:: :22 2666000 nn nmmm))..) . Molecules2016,21,930 4of17 Table2.Extractionefficientlyofalkaloids(1–10)fromlotusflower. Contents(mg/ginDryMaterial)a ExtractionMethod ExtractionYield(%) Total 1 2 3 4 5 6 7 8 9 10 Methanol,reflux 15.0 1.76(100) 1.75(100) 0.07(100) 0.63(100) 0.69(100) 0.83(100) 1.45(100) 5.73(100) 1.30(100) 0.75(100) 14.96(100) 50%Methanol,reflux 25.3 1.09(62) 1.35(77) 0.05(71) 0.50(79) 0.61(88) 0.78(94) 1.35(93) 3.79(66) 0.94(73) 0.56(75) 11.02(74) H2O,reflux 23.1 0.24(14) 0.35(20) n.d.b 0.21(33) 0.18(26) 0.38(45) 0.78(54) 2.57(45) 0.66(51) 0.29(38) 5.66(38) Methanol,sonication 9.6 0.88(50) 1.11(64) 0.03(44) 0.39(62) 0.33(48) 0.47(56) 0.97(67) 2.77(48) 0.70(54) 0.42(56) 8.07(54) 50%Methanol,sonication 22.0 0.98(56) 1.27(73) 0.04(58) 0.49(78) 0.47(69) 0.80(96) 1.38(95) 3.93(69) 0.97(75) 0.59(79) 10.92(73) H2O,sonication 19.3 0.14(8) 0.21(12) n.d.b 0.12(20) 0.08(11) 0.25(30) 0.53(37) 1.91(33) 0.48(37) 0.19(26) 3.91(26) ExtractionefficientlywastestedusingNN-1(lossofdrying10.33%);arelativevalue(%)againstthecontentobtainedbymethanolunderrefluxisgiveninparentheses;blessthanthe quantitationlimit. Table3.Linearities,detectionandquantitationlimits,andprecisionsforalkaloids(1–10)inlotusflower. Precisionc(RSD,%) Analyte RegressionEquationa CorrelationCoefficient DetectionLimitb(ng) QuantitationLimitb(ng) Intra-Day Inter-Day Nuciferine(1) y=7477635x´1302 0.9998 0.17 0.51 0.25 0.59 Nornuciferine(2) y=2698708x´10941 1.0000 0.71 2.16 0.79 0.43 N-Methylasimilobine(3) y=7054297x+243961 0.9996 0.32 0.99 1.36 1.40 Asimilobine(4) y=2076494x´36021 0.9999 0.70 2.13 0.63 0.57 Pronuciferine(5) y=3522995x+101328 0.9998 0.73 2.18 0.95 1.08 Armepavine(6) y=2076494x´36021 0.9999 0.32 0.97 0.68 1.10 Norarmepavine(7) y=1998354x´15296 0.9999 0.81 2.47 0.54 0.73 N-Methylcoclaurine(8) y=1595194x+53314 0.9999 0.90 2.71 0.59 0.86 Coclaurine(9) y=1878370x+16838 0.9999 0.44 1.33 0.98 0.39 Norjuziphine(10) y=1745634x+15240 1.0000 0.88 2.65 0.64 0.66 aIntheregressionequation,xistheconcentrationoftheanalytesolution(µg/mL),andyisthepeakareaoftheanalyte;bvaluesaretheamountoftheanalyteinjectedon-columnand cprecisionoftheanalyticalmethodweretestedusingthemethanolextractofNN-1(n=5). Molecules2016,21,930 5of17 Table4.Recoveriesforalkaloids(1–10)fromlotusflower. Recoverya(%) Add(µg/mL) 1 2 3 4 5 6 7 8 9 10 10 98.7˘0.6 101.4˘0.7 95.3˘1.0 99.0˘0.9 93.2˘0.7 98.5˘0.3 104.0˘0.7 94.7˘1.4 97.4˘0.2 97.4˘1.0 15 92.3˘0.4 101.7˘0.2 97.5˘0.7 101.8˘0.1 98.1˘0.5 102.2˘0.6 99.4˘1.1 99.8˘1.6 104.0˘0.2 100.2˘0.8 20 98.4˘0.1 105.8˘0.7 101.2˘0.8 102.0˘0.7 95.9˘0.8 105.1˘0.6 99.9˘0.9 96.3˘1.1 105.8˘0.3 95.3˘0.8 aTherecoveryratesweredeterminedbyaddinganalytesofthreedifferentconcentrations(10,15,and20µg/mL)tothesamplesolution;recoveriesspikedwiththemethanolextractof NN-1(each400µg/mL,n=3). Table5.Contentsofalkaloids(1–10)inthemethanolextractsfromlotusflower. Lossof Extraction Contents(mg/ginDryMaterial)a SampleNo. Part Dryinga(%) Yieldb(%) 1 2 3 4 5 6 7 8 9 10 Total NN-1 wholeflowers 10.3 15.0 1.76 1.75 0.07 0.63 0.69 0.83 1.45 5.73 1.30 0.75 14.96 NN-2 petals 8.6 16.6 1.99 2.41 0.07 1.22 0.62 1.02 1.74 5.85 1.60 0.52 17.04 NN-3 receptacles 10.0 8.6 0.06 0.07 n.d.c 0.01 0.01 0.01 0.01 0.20 0.04 n.d.c 0.41 NN-4 stamens 8.6 20.0 0.58 0.68 n.d.c 0.25 0.23 0.47 0.64 2.88 0.60 0.32 6.65 NN-5 wholeflowers 8.1 16.3 0.56 0.27 n.d.c 0.04 n.d.c 0.23 0.34 1.74 0.19 0.16 3.53 NN-6 petals 7.3 19.0 0.80 0.34 n.d.c n.d.c 0.01 0.36 0.52 3.14 0.32 0.27 5.76 NN-7 receptacles 9.2 7.4 0.27 0.53 n.d.c n.d.c 0.05 0.03 0.03 0.74 0.27 n.d.c 1.92 NN-8 stamens 7.9 15.5 0.01 n.d.c n.d.c n.d.c n.d.c n.d.c n.d.c 0.03 0.01 0.03 0.08 aEachpowderedsamplewasdriedat105˝Cfor8h;beachpowderedsamplewasextractedtwotimeswithmethanolunderrefluxfor120minandclessthanthequantitationlimit. Molecules2016,21,930 6of17 Prior to analysis, extraction conditions were examined to optimize the extracts1 quality in association with the contents of the alkaloids (1–10). The extraction efficacies were compared for threesolventsystems(methanol,50%aqueousmethanol,andwater)undertwodifferentconditions (refluxfor120minorsonicationfor30min,eachtwice). AsshowninTable2,“refluxinmethanol” affordedthehighestcontentsoftheactivealkaloids(1–10). Therefore,alltheanalyticalsampleswere preparedbyemployingthemethod“refluxinmethanolfor120min”. Some analytical parameters, such as linearity and limit of quantitation of the developed method,wereevaluatedasshowninTable3. Thecalibrationcurvewaslinearintherangestudied (0.5–50µg/mL)showingacorrelationcoefficient(R2)ofgreaterthan0.9996foreachconstituent.Linear regressionequationsoftheircalibrationcurvesforeachconstituentaredescribedinTable3,whereyis thepeakareaandxistheconcentrationoftheanalyte.Thedetectionandquantitationlimitswereestimated tobe0.17–0.90and0.51–2.65ng,respectively,indicatingsufficientsensitivityofthismethod.Therelative standarddeviation(RSD)valueswere0.25%–1.36%forintra-dayand0.39%–1.40%forinter-dayassays. AccuracywasdeterminedinrecoveryexperimentsusingthemethanolextractofNN-1. Asshownin Table4,recoveryratesof92.3%–105.8%wereobtained,withRSDvaluesoflowerthan1.6%. According to the protocol thus established, contents of the alkaloids (1–10) collected in two different regions (NN-1 in Thailand; NN-5 in Taiwan) were measured. The assay was found to bereproducible,precise,andreadilyapplicabletothequalityevaluationoflotusflower1sextracts. As shown in Table 5, N-methylcoclaurine (8, NN-1: 5.73 mg/g in dry material; NN-5: 2.88 mg/g) wastherichestconstituentamongthealkaloids(1–10). ThetotalalkaloidcontentintheThai(NN-1: 14.96 mg/g) and Taiwanese (NN-5: 3.53 mg/g) samples were quite different. However, a more extensivestudywouldberequiredtoconfirmthatthisresultwasduetodifferencesbetweenregions. Tocharacterizethedistributionofthealkaloids(1–10)intheflower, thewholeflowerparts(NN-1 andNN-5)wereseparatedintopetals(NN-2andNN-6),receptacles(NN-3andNN-7),andstamens (NN-4andNN-8);then,quantitativeanalysisofeachseparatedsamplewasperformed. Itwasfound thatthealkaloids(1–10)weremainlycontainedinthepetalpart.Furthermore,otherpartsofthelotus plant(e.g.,leaf(NN-9),fruit(NN-10and11),andembryoparts(NN-12),whichareusedfortraditional medicines)werealsoexamined.Itwasfoundthatthetotalalkaloidcontentoftheleaf(NN-9:1.20mg/g), fruit(NN-10andNN-11:eachlessthanthequantitationlimit),andembryoparts(NN-12:0.64mg/g)of N.nuciferawerelowerthanthoseoftheflowerbuds(NN-1andNN-5)(TableS1). 2.3. AmmoniumCarbamateSalt(211)FormationfromtheFreeAlkaloid(2) The gradual transformation of one of the alkaloids isolated in this study, nornuciferine (2), intoahighlypolarmaterial211wasobserved,when2wasexposedtotheatmosphereindeuterated chloroform (CDCl ) at room temperature. After three weeks of standing in CDCl , compound 211 3 3 was obtained as a main product (Figure 3). As summarized in Table 6, 1H- and 13C-NMR spectra of211 suggestedthattherearetwokindsofpartsderivedfromthenornuciferineframeworkinthe structure of 211. Thus, with respect to one of the nornuciferine parts, five carbons α and β to the nitrogenatomappearedaspairsignals[δ : 29.9/30.2(C-4),41.8/44.4(C-5),54.9/55.8(C-6a),33.9/35.9 C (C-7), 124.8/124.9 (C-11c)] in the 13C-NMR spectrum of 211. Additionally, a pair of signals, which correspondedtoanamidetypecarbonylcarbon,wasalsoobservedatδ 157.5and160.1. Thechemical C shiftofthesignalssuggestedthatthenitrogenatomof2wasfunctionalizedasacarbamateanionby theCO uptakefromtheatmosphere. Ontheotherhand,inthe1H-NMRspectrumof211 adownfield 2 shift owing to the ammonium ion formation was observed with respect to the signals due to C-51 methylene (at δ 3.24 and 3.87) and C-6a1 methine (at δ 4.29) protons of the other nornuciferine H H partsascomparedwiththoseof2[δ : 3.01and3.40(H -5),3.85(H-6a)]. Twobroadsinglets,which H 2 appeared at the highly-deshielded regions (δ 9.96 and 10.84), were due to acidic protons, which H alsosupporttheammoniumionstructuredepictedinFigure3. Theanticipatedstructureof21 was strongly supported by the IR spectrum, which showed N+–H and C=O stretching absorptions at 2720–2500and1721cm´1,respectively. Moreover,thepositiveionpartof211 wasdetectedasaNa Molecules2016,21,930 7of17 adductionsignalatm/z282.1483[M´C H NO ]+ (calcdforC H O ,282.1489)inthepositive 19 18 4 18 20 2 ESImode;however,asignalduetothecarbamategroupwasnotdetectedinthenegativeESImode. Fortunately,thenegativeionpartof211couldbeconfirmedasthecorrespondingmethylcarbamate 2a. Thus, 211 easily gave a 1:1 mixture of methyl carbamate 2a and original amine 2 by treatment withmethanolatroomtemperature(FigureS1). AsshowninTable6,compound2ashowedsimilar 13C-NMRspectroscopicpropertiestothoseof211 and/or2,exceptforasinglet(δ 52.6)duetothe C methylcarbonoftheNCO CH moiety,whichwasconfirmedbythecorrelationbetweenthesingletat 2 3 δ 3.76duetothemethylprotonsandasingletatδ 156.0duetocarbonylcarbonintheHMBCof2a. H C InthepositiveESIMSof2a,aquasimolecularionpeakwasobservedatm/z362.1361[M+Na]+(calced forC H NO Na,362.1363). 20 21 4 Table6.1H-(800MHz)and13C-(200MHz)NMRdatafor211,2a,andoriginalalkaloid2inCDCl . 3 211(anionpart) 211(cationpart) Position Position δH(JinHz) δC δH(JinHz) δC 1 146.0a 11 146.2a 2 152.5b 21 153.7b 3 6.69(s) 111.4 31 6.67(s) 111.4 3a 128.7 3a1 125.7 2.74(brd,ca.15) 2.95(dd,3.8,16.8) 4 29.9,30.2 41 25.5 2.98(brd,ca.15) 3.62(ddd,5.7,13.5,16.8) 3.20–3.35(m) 3.24(brddd-like,ca.13.5,13.5,13.5) 5 41.8,44.4 51 41.4 4.62(brd,ca.12.5) 3.87(brdd-like,ca.5.7,13.5) 6a 4.92(brd,ca.13) 54.9,55.8 6a1 4.29(brdd-like,ca.13.5,13.5) 53.0 2.86–2.90(m) 3.38(dd,13.5,13.5) 7 33.9,35.9 71 34.0 3.02–3.14(m) 3.45(dd,4.5,13.5) 7a 135.7 7a1 133.1 8 7.24–7.30(m) 128.0c 81 7.24–7.30(m) 128.3c 9 7.24–7.30(m) 127.4c 91 7.24–7.30(m) 128.2c 10 7.35(m) 127.3c 101 7.35(m) 127.8c 11 8.44(brs-like) 128.5c 111 8.41(d,7.9) 128.6c 11a 131.3 11a1 131.3 11b 127.5d 11b1 127.0d 124.8, 11c 11c1 121.4 124.9 1-OCH3 3.667e(s) 60.3f 11-OCH3 3.673e(s) 60.0f 2-OCH3 3.90g(s) 56.0h 21-OCH3 3.91g(s) 55.9h 157.5, 9.96(brddd-like,ca.13.5,13.5,13.5) N-COO 160.1 NH2 10.84(brd-like,ca.13.5) 2a 2 Position Position δH(JinHz) δC δH(JinHz) δC 1 145.7 1 145.3 2 152.1 2 152.2 3 6.67(s) 111.5 3 6.65(s) 111.8 3a 126.1 3a 128.5 2.65(brd,ca.15) 2.71(d,13.1) 4 30.3 4 28.9 2.88(m) 3.05(m) 3.00(brdd,ca.11,13) 3.01(m) 5 38.8 5 43.0 4.73(brd,ca.13) 3.40(brq,ca.6) 6a 4.46(brs) 51.4 6a 3.85(brdd,ca.5,14) 53.5 2.86(m) 2.77(t,13.8) 7 35.2 7 37.3 2.98(dd,12.8,15.8) 2.87(dd,4.6,13.8) 7a 136.8 7a 135.9 8 7.25(dd,1.6,7.8) 128.2 8 7.24(m) 127.8 9 7.27(brdd,ca.8,8) 127.5 9 7.21(ddd,1.1,7.1,7.1) 127.4 10 7.32(ddd,1.6,7.8,8.0) 126.9 10 7.30(m) 127.0 11 8.44(brd,ca.8) 128.3 11 8.39(brd,ca.8) 128.4 11a 131.7 11a 132.1 11b 127.6 11b 126.5 11c 129.7 11c 128.7 1-OCH3 3.66(s) 60.2 1-OCH3 3.67(s) 60.2 2-OCH3 3.90(s) 56.0 2-OCH3 3.88(s) 55.9 N-COO 156.0 N-CO2CH3 3.76(s) 52.6 a–hMaybeinterchangeable. Molecules2016,21,930 8of17 Molecules 2016, 21, 930 8 of 17 Molecules 2016, 21, 930 8 of 17 FigFuigreur3e. 3C. hCehmemicaiclatlr tarnasnfsofromrmaatitoionno offn noorrnnuucciiffeerriinnee ((22)) iinnttoo iittss aammmmoonniuiumm cacarbrbamamataet esaslat l(t2(′′2) 1a1)nadn tdo to methyl carbamate (2a). mFiegtuhryel 3c.a Crbhaemmaitceal( 2traa).nsformation of nornuciferine (2) into its ammonium carbamate salt (2′′) and to methyl carbamate (2a). It is well known that ammonia, primary amines, or secondary amines (A) absorb CO2 to Itiswellknownthatammonia,primaryamines,orsecondaryamines(A)absorbCO totransform transform into the corresponding carbamic acids (B), which easily react with the origina2l amines to intotIht eisc owrreelsl pkonnodwinng tchaartb aammimc aocniidas, (pBr)i,mwahryic hameainsielsy, roera cstewcointhdathrye oamriginineas l(aAm) inaebssotrobp CroOd2u ctoe produce stable carbamic acid ammonium salts and (C) as shown in Figure 4 [15–24]. Therefore, it is transform into the corresponding carbamic acids (B), which easily react with the original amines to stablecarbamicacidammoniumsaltsand(C)asshowninFigure4[15–24]. Therefore,itisreasonable reasonable to anticipate that the product 2′′ forms via an acid-base reaction between original amine tporoadnuticceip satateblteh acatrtbhaempirco adcuidct a2m11mfoornmiusmvi asaalnts aacnidd -(bCa)s easr esahcotwionn ibne Ftwigeuerne 4o r[i1g5i–n2a4l]a. mThineree2foarne,d ita ins 2 and an unstable carbamic acid (2′), which was obtained by the CO2 absorption reaction with the urenansstiotarnboalgebelcnea atrotbo aammn toiicfc i2ap.c aidte (t2h1a),t wthhei cphrowdauscto b2′t′a fionremdsb vyiath aenC aOci2d-abbassoer pretiaocntiorena bcetitowneweni tohritghiennali tarmogienne a2t oanmdo afn2 .unstable carbamic acid (2′), which was obtainedR 1by the CO2 absorption reaction with the nitrogen atom of 2. HN R1 R1NH CO2 R1N-CO2H HNR2 R1N-CO2– R1 RR1N2HA CO2 RR12N-CBO2H R2 RR21N-CCOH2–2+NR2R1 R1, R2R =2 H,A alkyl, aryl R2(unsBtable) R2 (stabCleH)2+NR 2 R1, R2 F= iHgu, arelk y4l., Tahryel report(eudn sretaabclteiv)ity of amines with CO2. (stable) 2.4. Effects of the Hydrochlorides of These Alkaloids (1–10) and 2a on Theophylline-Stimulated Melanogenesis FFiigguurree 44.. TThhee rreeppoorrtteedd rreeaaccttiivviittyy ooff aammiinneess wwiitthh CCOO2.. Inhibitory Activity 2 22..44.. EEffffeeTcctotss coolffa trthhifeey HH thyyedd rreoofccfhihcllaoocrryiidd oeessf oothff eTT hheeessstaee bAAlillskkhaaelloodiid dqssu ((a11n––t11i00ta))t aaivnnedd a22naaa oolynns TTishh oeeoof pp1hh0yy allllliiknnaeel--oSSittdiimms (uu1ll–aa1ttee0dd) aMMs eeall aaqnnuooaggleeinntyee ssiiss IInnhhciiobbniitttoorrroyyl AAfoccrtt iivvloiitttyyu s flower, correlations between the total alkaloid contents and the melanogenesis inhibitory activities of the corresponding extracts were examined. Previously, we have reported the TToo ccllaarriiffyy tthhee eefffificcaaccyy ooff tthhee eessttaabblliisshheedd qquuaannttiittaattiivvee aannaallyyssiiss ooff 1100 aallkkaallooiiddss ((11––1100)) aass aa qquuaalliittyy ccoonnmttrreoolalln ffooogrre nllooesttuiusss i nflfhlooiwbwiteeorrr,,y c coaocrrtrrieevlliaatitteiisoo nnossf fbbreeeettww neeueecnnif ettrhhineee tto(o1tt,aa lIlC aa5l0l kk=aa ll1oo5ii.dd8 cµcooMnn)tt,ee nnnottssrn aaunncdidfe rtthihneee mm(2e,e ll6aa2nn.9oo ggµeeMnne)e,ss iiss N-methylasimilobine (3, 14.5 µM), asimilobine (4, >100 µM), pronuciferine (5, 47.9 µM), and armepavine iinnhhiibbiittoorryy aaccttiivviittiieess ooff ththee cocorrrersepspoonnddiningg exetxrtarcatcst swwereer eexeaxmaimneinde. dP.rePvrieovuisolyu,s lwy,e whaevhea rveeporertpeodr ttehde (6, 25.6 µM) [2]. Since the hydrochlorides of these alkaloids (1–10), which were of higher purity and tmheesltaamnboielgiltaeynn eothsgaiesn n ietnhshoiissbei itnoorfh yit bhaietc otcirovyritrieeasscp tooivnf idtfiirenesge fnorfueecf irfaeelrkeianlneo uid(c1si,,f eIwCrie5nr0 ee= u (1s15e,d.8 I fCµo5rM0 t)h,= en so1tr5an.n8udcaµirfMder is)n,aemn (po2lr,e ns6u 2oc.f9i f tehµreMi n)e, (N2-,m62e.t9hyµlMas)i,mNil-ombienthe y(3la, s1i4m.5i lµoMbi)n, eas(i3m,1il4o.b5inµeM (4),, a>s1i0m0 iµloMbi)n, per(o4n,u>c1i0fe0rµinMe ()5,,p 4r7o.n9 uµcMife),r ianned( a5r,m47e.p9aµvMin)e, present quantitative analysis, the melanogenesis inhibitory activities of these hydrochloride salts were a(6n, d25a.r6m µeMpa) v[2in].e S(i6n,ce2 5t.h6e µhMyd)r[o2c]h.loSrinidcees tohfe thheysder oaclkhallooriiddse s(1o–f10th), ewsehiaclhk awloeirdes o(f1 h–1ig0h),erw phuicrhityw aenrde newly examined. It was found that aporphine alkaloids, nuciferine (1, IC50 = 7.1 µM) and nornuciferine ostfabhiilgithye rthpaun rtihtyosaen odf stthaeb icloitryretshpaonndthinogs efroefe tahlekaclooridress, pwoenrde inugsedfr efeora ltkhael ostiadnsd, awrder esaumspeldesf oorf tthhee (2, 3.9 µM), and benzylisoquinoline alkaloids, armepavine (6, 6.5 µM), norarmepavine (7, 7.5 µM), sptraensdenatr dqusaanmtiptalteisveo fanthaleyspisr,e tsheen tmqeulaannotigteantievseis ainnhaliybistiosr,yt haectimvietileasn oofg ethneessei shyindhriobcihtolorryidaec tsiavlittsi ewseoref N-methylcoclaurine (8, 6.5 µM), and coclaurine (9, 3.9 µM), were found to show relatively strong tnheewinselhyih beyixtdoarmroyi cnahceltdoiv.r iiIdtti eewss awasl ifttoshuwonuedtr enthonateat wbalpleyo creypxthoaitmnoexi niacel kedfa.fleoIctitdws saa, tns tufhoceiu feenfrdfiencteht i(av1te, aIcCpoon50rc =pe nh7t.i1rna eµtiMoanlk) (aaTlnoadibd lneso ,7rn)n.u uTcchiiffeeesrreii nnee ((12,, a3IlCk.9a5 l0µoiM=ds)7 , .w1aneµdreM bm)enaoznreyd lipnsoootqreunnuitn ctoihflaeinnrie n aaerlbk(u2at,lion3i .d9(sIC,µ a5M0r m=), e1ap7na4dv µibnMeen )(,z 6ya, l6ics.o5o mqµumMine)ro, clniianollreya arumlkseeapdloa imvdisen,leaa n(ro7m,g e7en.p5ea sµvisMi n)e, (N6-,mi6n.he5tihbµyiMtlocr)o, ucnlsaoeurdra iarnmse a e (pp8,oa sv6ii.tn5iv eeµ( Mc7o,)n7, t.r5aonµld M[ 2c5)o–,c2Nl7a-]um. rAienmteho yn(l9cg,o t3ch.le9am uµr, Mi2n ae),n (wd8, e96r s.e5h ofµowMuen)d,d ae sntopd escchioaoclwllya usrtrerilonanetigv( 9ea,lcy3ti .v9sittrµyoM,n g), winehwriebhiiftcoohur ysnh daocwttoievdsit himeoswo rwer ietthlhaaotniuv t4e 0nl yotitmsatbreosle ng gcryeiatnotehtroi bxthiitcao ner yftfheaacctt tsio vaf itta itrehuseb wuetfiifnteh. coPtuirvetevn icoooutnaslbcyel,e ntthcreya ttnoioattnoux r(iaTclalyebf-lofeec cc7tu)s.r raTinthgte hsee eaflfkaeapcltooirivpdehs icnwoen eacrleekn amltoraiodtri, eo4 n,5p-(odTtiaedbnelhte ytd7h)ra.ongT uaharedbsiusectiainnlek a((IIlCCo5i50d0 =s= 4 w.71e 7µr4Me µm) Misoor)le,a tape doc tfoermonmtmt Hhearocnrniasalcrlhybu ucuhtiisane od(bI lCimq5ue0el,a =hna1os7 gb4eeneµneMs i)s, ainchroiembpiotmortree rudcs i[ae2ld8ly ]a. usT soae tpdhoems bieteilvsatne o ocfgo oenuntrre osklin s[o2iwn5–hle2ibd7ig]t.eo A,r cmuosmoenpdgoa utshnaedmsp o2, s2ai ntaidnv ed9 c9ao rsneh ttrohowel em[2do5 es–ts2 pp7e]o.cteiAanmltl ymo snetglraontnhogegm eanc,et2isviasint yd, 9wshihnicohhwi bseihtdoorewss epwdei tchmiainoll ryteh sitsthr coalnna sg4s 0ao cftt inimvaitetusy r,agwlr epharitcoehdr ustchhtoasn.w ethdamt oofr eartuhbanut4in0. tPimreevsiogurselayt,e rthteh annattuhraatlloyf-oacrcuubruritning. Papreovrpiohuinsley a,ltkhaelonida,t 4u,r5a-dlliyd-eohcycudrrroignugadaipsocirnpeh (iInCe50 a=l k4a.7l oµidM,) 4is,5o-ldatiedde hfryodmro Hgourandscihscuicnheia (oIbCli5q0ue=, h4a.7s bµeMen) reported [28]. To the best of our knowledge, compounds 2 and 9 are the most potent melanogenesis inhibitors within this class of natural products. Molecules2016,21,930 9of17 isolatedfromHornschuchiaoblique,hasbeenreported[28]. Tothebestofourknowledge,compounds2 and9arethemostpotentmelanogenesisinhibitorswithinthisclassofnaturalproducts. Table7.Inhibitoryeffectsofthealkaloids(1–10)and2aontheophylline-stimulatedmelanogenesisand viabilityinB164A5cells. Treatment Inhibition(%) IC50 0µM 3µM 10µM 30µM 100µM (µM) (µg/mL)b Nuciferine¨HCl(1)a 0.0˘4.0 28.3˘4.2** 57.8˘2.3** 89.7˘1.7** 91.8˘2.6** 7.1 2.4 (100.0˘2.6) (112.1˘2.6) (112.1˘2.5) (100.9˘5.8) (45.9˘3.3#) Nornuciferine¨HCl(2)a 0.0˘3.4 44.6˘3.4** 70.6˘3.6** 94.3˘3.2** — 3.9 1.2 (100.0˘4.9) (99.5˘8.2) (93.9˘4.1) (70.6˘4.8#) (1.9˘0.1#) N-Methylasimilobine¨HCl(3)a (1000.0.0˘˘43.7.9) (936..36˘˘22..96) (1190.05.4˘˘2.34.0**) (6131.94.3˘˘5.92.4**) (8597..87˘˘21..13*#*) 43.1 13.7 Asimilobine¨HCl(4)a (1000.0.0˘˘85.1.7) (1966..25˘˘172.5.8) (3918..99˘˘21.02.0**) 8(776.2.6˘˘36.3.3*)* (13.7˘—2.2#) 11.3 3.4 Pronuciferine¨HCl(5)a 0.0˘10.7 23.1˘3.4 18.8˘1.2 37.2˘2.6** 88.4˘3.7** 47.1 16.3 (100.0˘4.5) (104.2˘3.4) (97.4˘0.7) (98.4˘1.8) (89.1˘9.4) Armepavine¨HCl(6)a 0.0˘6.0 33.9˘0.8** 58.5˘7.1** 81.8˘3.0** 97.4˘0.4** 6.5 3.4 (100.0˘2.5) (104.0˘3.3) (104.0˘7.7) (104.0˘7.2) (78.1˘2.0) Norarmepavine¨HCl(7)a (1000.0.0˘˘32.1.6) 3(826.6.4˘˘44.4.0*)* 5(831.5.2˘˘84.5.0*)* 8(813.6.3˘˘12.4.2*)* (9608..58˘˘11..24*#*) 7.5 2.5 N-Methylcoclaurine¨HCl(8)a 0.0˘5.4 38.6˘2.4** 55.7˘3.4** 74.7˘2.0** — 6.5 2.2 (100.0˘3.0) (97.1˘1.5) (92.8˘4.1) (96.4˘4.2) — Coclaurine¨HCl(9)a (1000.0.0˘˘22.9.9) 4(957.6.0˘˘77.7.7*)* 6(956.4.2˘˘25.5.0*)* 8(826.4.5˘˘37.5.7*)* (6583..01˘˘68..43*#*) 3.9 1.3 Norjuziphine¨HCl(10)a (1000.0.0˘˘55.4.3) (1988.5.9˘˘46.0.0*) 3(961.8.3˘˘44.5.9*)* 9(843.4.9˘˘28.0.3*)* (15076..00˘˘22..40#*)* 14.4 4.6 0.0˘7.3 13.1˘8.9 43.1˘7.8** 54.5˘4.3** — 2a 19.9 6.7 (100.0˘4.7) (109.8˘4.3) (127.5˘4.8) (129.1˘2.8) — Treatment Inhibition(%) IC50 0µM 30µM 100µM 300µM 1000µM (µM) (µg/mL) 0.0˘1.4 20.4˘0.5 38.1˘0.9** 61.5˘0.6** 83.7˘0.5** Arbutin[25–27] (100.0˘2.1) (82.4˘3.0) (78.1˘1.9) (79.8˘2.2) (53.1˘1.8#) 174 47.4 Eachvaluerepresentsthemean˘S.E.M.(n=4);asterisksdenotesignificantdifferencesfromthecontrolgroup, *p<0.05,**p<0.01;#cytotoxiceffectswereobserved,andvaluesinparenthesesindicatecellviability(%)in MTTassay;commercialarubutinwaspurchasedfromNakalaiTesqueInc.,(Kyoto,Japan);aeachalkaloidwas evaluatedbyitshydrochloridesalt;beachIC50valuewasconvertedtoµg/mLofcorrespondingfreealkaloid. 2.5. EffectsonMushroomTyrosinase Tocharacterizethemodeofactionofmelanogenesisinhibitoryactivitiesofthealkaloids,inhibitory effectson(i)enzymatictyrosinaseactivityand(ii)expressionsoftyrosinase-relatedproteins(TRPs) e.g.,tyrosinase,TRP-1,andTRP-2wereexamined. A copper-containing enzyme tyrosinase is a key enzyme in melanin biosynthesis involved in determining the color of skin and hair. It catalyzes oxidation of both L-tyrosine and L-DOPA, followinganotheroxidationof L-DOPAtodopaquinoneand,finally,oxidativepolymerizationvia several dopaquinone derivatives to yield melanin. Tyrosinase inhibitors are being clinically used forthetreatmentofseveraldermatologicaldisordersassociatedwithmelaninhyperpigmentation. Thetyrosinaseinhibitorkojicacidiscommonlyusedasanadditiveincosmeticsforskinwhitening and/ordepigmentation[25–27].AsshowninTable8,noneofthealkaloidsshowedinhibitoryactivities when using both L-tyrosine and L-DOPA as substrates. This suggests that tyrosinase inhibition is barelyinvolvedinthemechanismsofactionofthesemelanogenesisinhibitors. Molecules2016,21,930 10of17 Table8.Effectsonactivityoftyrosinasefrommushroom. Inhibition(%) Substrate:Treatment L-Tyrosine L-DOPA 0µM 10µM 100µM 0µM 10µM 100µM Nuciferine¨HCl(1)a 0.0˘3.2 6.5˘3.3 30.4˘1.9** 0.0˘2.9 4.4˘3.8 11.0˘3.4 Nornuciferine¨HCl(2)a 0.0˘2.6 1.0˘0.7 14.2˘1.5** 0.0˘3.1 15.4˘4.1 8.7˘4.1 N-Methylasimilobine¨HCl(3)a 0.0˘3.6 7.2˘7.3 0.8˘3.5 0.0˘1.5 2.3˘1.5 3.1˘3.9 Asimilobine¨HCl(4)a 0.0˘1.8 10.5˘2.5* 14.0˘1.2** 0.0˘3.3 3.2˘2.4 5.7˘3.0 Pronuciferine¨HCl(5)a 0.0˘5.3 ´0.4˘2.4 ´4.4˘8.1 0.0˘2.0 6.5˘2.0 5.3˘5.2 Armepavine¨HCl(6)a 0.0˘4.4 ´1.9˘0.9 40.2˘3.7** 0.0˘0.5 4.5˘0.8 2.9˘1.2 Norarmepavine¨HCl(7)a 0.0˘1.8 ´1.7˘1.5 23.3˘1.6** 0.0˘2.7 ´1.3˘1.4 1.5˘1.5 N-Methylcoclaurine¨HCl(8)a 0.0˘5.2 ´5.0˘5.7 15.3˘4.3 0.0˘2.3 6.1˘1.4 7.4˘0.8 Coclaurine¨HCl(9)a 0.0˘2.3 9.0˘0.7* 35.1˘1.7** 0.0˘2.5 ´4.9˘1.1 4.4˘1.1 Norjuziphine¨HCl(10)a 0.0˘2.5 5.1˘1.1 27.4˘3.0** 0.0˘2.0 1.8˘0.7 22.3˘3.6** 2a 0.0˘1.5 5.3˘1.7 2.9˘0.7 0.0˘2.7 3.2˘1.1 6.6˘2.3 Substrate:L-Tyrosine Inhibition(%) Treatment 0µM 10µM 30µM 100µM 300µM IC50(µM) Kojicacid[25–27] 0.0˘2.4 12.2˘3.3 46.4˘2.6** 66.5˘2.1** 96.8˘0.9** 43.6 Substrate:L-DOPA Inhibition(%) Treatment 0µM 10µM 30µM 100µM 300µM IC50(µM) Kojicacid[25–27] 0.0˘0.9 22.3˘2.1** 50.6˘0.6** 78.2˘0.7** 89.3˘0.3** 29.6 Eachvaluerepresentsthemean˘S.E.M.(n=4); asterisksdenotesignificantdifferencesfromthecontrol group,*p<0.05,**p<0.01;commercialkojicacidwaspurchasedfromNakalaiTesqueInc.,(Kyoto,Japan); aeachalkaloidwasevaluatedbyitshydrochloridesalt. 2.6. EffectsonExpressionofTyrosinase,TRP-1,andTRP-2 The TRP enzyme family (tyrosinase, TRP-1, and TRP-2) catalyze the major steps in melanin synthesis[25–27]. Toclarifythemechanismsofactionoftheseactiveconstituents,weexaminedthe effects of the principal alkaloids (1, 2, 6, 7, and 9) on expression of mRNAs for tyrosinase, TRP-1, andTRP-2inB16melanoma4A5cells. Exceptforcompound7,thesuppressiontendencyofmRNA expressionfortyrosinaseinthesealkaloidswasobservedaspresentedinTable9. Table9.Effectsof1,2,6,7,and9onexpressionoftyrosinase,TRP-1,andTRP-2mRNAinB164A5cells. TyrosinasemRNA/-actinmRNA Treatment 0µM 3µM 10µM Nuciferine¨HCl(1)a 1.00˘0.15 0.59˘0.03* 0.45˘0.05* Nornuciferine¨HCl(2)a 1.00˘0.19 0.76˘0.05 0.51˘0.10 Armepavine¨HCl(6)a 1.00˘0.14 0.86˘0.13 0.74˘0.02 Norarmepavine¨HCl(7)a 1.00˘0.24 0.81˘0.08 1.00˘0.11 Coclaurine¨HCl(9)a 1.00˘0.14 0.82˘0.21 0.52˘0.05 TRP-1mRNA/-actinmRNA Treatment 0µM 3µM 10µM Nuciferine¨HCl(1)a 1.00˘0.12 1.18˘0.17 1.18˘0.25 Nornuciferine¨HCl(2)a 1.00˘0.10 1.21˘0.18 1.15˘0.19 Armepavine¨HCl(6)a 1.00˘0.22 0.98˘0.32 0.83˘0.15 Norarmepavine¨HCl(7)a 1.00˘0.09 0.87˘0.22 1.03˘0.25 Coclaurine¨HCl(9)a 1.00˘0.24 0.51˘0.08 0.66˘0.13 TRP-2mRNA/-actinmRNA Treatment 0µM 3µM 10µM Nuciferine¨HCl(1)a 1.00˘0.16 1.33˘0.35 0.87˘0.16 Nornuciferine¨HCl(2)a 1.00˘0.12 0.92˘0.20 1.36˘0.09 Armepavine¨HCl(6)a 1.00˘0.05 1.07˘0.22 0.81˘0.22 Norarmepavine¨HCl(7)a 1.00˘0.18 0.80˘0.24 0.77˘0.14 Coclaurine¨HCl(9)a 1.00˘0.11 1.02˘0.22 1.07˘0.07 Eachvaluerepresentsthemean˘S.E.M.(n=3);asterisksdenotesignificantdifferencesfromthecontrolgroup, *p<0.05;aeachalkaloidwasevaluatedbyitshydrochloridesalt. 2.7. CorrelationbetweentheMelanogenesisInhibitoryActivityandTotalContentsofAlkaloids(1–10)inLotus FlowerExtracts The inhibitory effects of the methanol extracts of the lotus flowers (NN-1–8) on theophylline-stimulatedmelanogenesiswereexamined. Asaresult,theIC valuesweredetected 50

Description:
activity of the extracts of lotus flowers (the flower buds of Nelumbo nucifera), has been developed using liquid chromatography-mass Keywords: lotus flower; Nelumbo nucifera; melanogenesis inhibitor; nuciferine; nornuciferine; quantitative analysis The cells were harvested by incubation in
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.