Quantitative Bioimaging Quantitative Bioimaging An Introduction to Biology, Instrumentation, Experiments, and Data Analysis for Scientists and Engineers Raimund J. Ober Centre for Cancer Immunology Faculty of Medicine University of Southampton Southampton, United Kingdom E. Sally Ward Centre for Cancer Immunology Faculty of Medicine University of Southampton Southampton, United Kingdom Jerry Chao Astero Technologies LLC College Station, Texas, United States First edition published 2020 by CRC Press 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742 and by CRC Press 2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN © 2021 Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, LLC Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact [email protected] Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. ISBN: 9781138598980 (hbk) ISBN: 9780429469893 (ebk) Typeset in Computer Modern font by KnowledgeWorks Global Ltd. Visit the eResources: www.routledge.com/9781138598980 To our families. Contents Preface xvii Acknowledgments xix I Introduction 1 Overview 3 1 Then and Now 5 2 Introduction to Two Problems in Cellular Biology 7 2.1 Antibody trafficking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Localization experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 Association experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 Dynamic studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.5 Iron transport, transferrin, and the transferrin receptor . . . . . . . . . 13 3 Basics of Microscopy Techniques 17 3.1 Optical microscopy for cell biology . . . . . . . . . . . . . . . . . . . . . 17 3.2 Transmitted light microscopy . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3 Fluorescence microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3.1 Fluorescence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3.2 Layout of an epifluorescence widefield microscope . . . . . . . . 21 3.4 Inverted versus upright microscope . . . . . . . . . . . . . . . . . . . . . 22 3.5 Components of commercial microscopes . . . . . . . . . . . . . . . . . . 23 3.5.1 Light sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.5.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.6 Fixed and live cell experiments . . . . . . . . . . . . . . . . . . . . . . . 27 3.7 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.8 A note regarding safety . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4 Introduction to Image Formation and Analysis 29 4.1 Image formation and point spread functions . . . . . . . . . . . . . . . . 29 4.2 Resolution: an elementary introduction . . . . . . . . . . . . . . . . . . . 31 4.3 Modeling and analyzing the data . . . . . . . . . . . . . . . . . . . . . . 34 Notes 37 Exercises 39 II Biology and Chemistry 41 Overview 43 vii viii Contents 5 From genes to proteins 45 5.1 Bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.2 DNA and genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.3 How are proteins made? . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.4 Structures of proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.5 Protein structure determination . . . . . . . . . . . . . . . . . . . . . . . 58 6 Antibodies 65 6.1 Structure of antibodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.2 Variable regions and binding activity . . . . . . . . . . . . . . . . . . . . 67 6.3 Constant regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.4 Antibody production for laboratory and clinical use . . . . . . . . . . . 71 6.4.1 The classical method: hybridoma technology . . . . . . . . . . . 71 6.5 Diagnostic techniques using antibody detection methods . . . . . . . . . 73 6.5.1 Enzyme-linked immunosorbent assay . . . . . . . . . . . . . . . 73 6.5.2 Surfaceplasmonresonanceforthequantitationoftheaffinityofan interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 7 Cloning of genes for protein expression 77 7.1 Features of expression constructs . . . . . . . . . . . . . . . . . . . . . . 77 7.2 Methods for generating expression plasmids . . . . . . . . . . . . . . . . 78 7.2.1 Restriction enzymes . . . . . . . . . . . . . . . . . . . . . . . . . 78 7.2.2 Polymerase chain reaction. . . . . . . . . . . . . . . . . . . . . . 79 7.2.3 Details of approaches for generating expression plasmids . . . . 79 7.2.4 Transfection of mammalian cells for expression . . . . . . . . . . 86 7.3 Antibody engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 7.3.1 Chimeric antibodies . . . . . . . . . . . . . . . . . . . . . . . . . 87 7.3.2 Humanized antibodies . . . . . . . . . . . . . . . . . . . . . . . . 88 7.3.3 Isolation of V regions . . . . . . . . . . . . . . . . . . . . . . . . 88 8 Principles of Fluorescence 91 8.1 Wave and particle description of light . . . . . . . . . . . . . . . . . . . 91 8.2 Jablonski diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 8.3 Stokes shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 8.4 Photobleaching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 8.5 Photophysical characterization of fluorophores . . . . . . . . . . . . . . 94 8.5.1 Quantum yield . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 8.5.2 Beer-Lambert law, effective absorption cross section and molar ex- tinction coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . 95 8.5.3 Brightness of a fluorophore . . . . . . . . . . . . . . . . . . . . . 96 8.6 Excitation and emission spectra . . . . . . . . . . . . . . . . . . . . . . . 96 8.7 Fluorophores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 8.7.1 Chemical fluorescent dyes . . . . . . . . . . . . . . . . . . . . . . 97 8.7.1.1 Labeling of proteins via cysteine or lysine residues . . . 98 8.7.1.2 Labelingofproteinswithfluorophore-conjugatedstrepta- vidin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 8.7.1.3 In situ labeling of proteins in cells using peptide tags . 100 8.7.2 Quantum dots . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 8.7.2.1 Labeling of proteins with quantum dots. . . . . . . . . 101 8.7.3 Fluorescent proteins . . . . . . . . . . . . . . . . . . . . . . . . . 102 8.7.4 Photoactivatable and photoswitchable fluorescent probes . . . . 105 Contents ix 8.7.5 Other labeling modalities . . . . . . . . . . . . . . . . . . . . . . 105 9 Cells 107 9.1 Cellular structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 9.2 Receptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 9.3 Typical biological systems . . . . . . . . . . . . . . . . . . . . . . . . . . 112 9.3.1 Subcellular trafficking of the Fc receptor, FcRn. . . . . . . . . . 112 9.3.2 Subcellular trafficking of the transferrin receptor . . . . . . . . . 112 9.4 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 9.4.1 Labeling of proteins in fixed cells . . . . . . . . . . . . . . . . . . 113 9.4.2 Sample preparation for typical fixed cell experiments . . . . . . 114 9.4.3 Sample preparation for typical live cell imaging experiments . . 115 Notes 121 Exercises 125 III Optics and Microscopy 127 Overview 129 10 Microscope Designs 131 10.1 Light path for widefield fluorescence microscopy . . . . . . . . . . . . . 131 10.1.1 Infinity-corrected light path. . . . . . . . . . . . . . . . . . . . . 131 10.2 Imaging in three dimensions . . . . . . . . . . . . . . . . . . . . . . . . . 132 10.2.1 Focus control and acquisition of z-stacks . . . . . . . . . . . . . 132 10.2.2 Multifocal plane microscopy . . . . . . . . . . . . . . . . . . . . 133 10.3 Imaging of multiple colors . . . . . . . . . . . . . . . . . . . . . . . . . . 133 10.4 Light path for confocal microscopy . . . . . . . . . . . . . . . . . . . . . 135 10.5 Two-photon excitation microscopy . . . . . . . . . . . . . . . . . . . . . 137 10.6 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 10.6.1 Numerical aperture and immersion medium . . . . . . . . . . . . 140 10.6.2 Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 10.6.3 Transmission efficiency . . . . . . . . . . . . . . . . . . . . . . . 141 10.7 Optical filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 10.7.1 Example: a filter set for a GFP-labeled protein . . . . . . . . . . 145 10.7.2 Imaging of multiple fluorophores . . . . . . . . . . . . . . . . . . 147 10.8 Transmitted light microscopy . . . . . . . . . . . . . . . . . . . . . . . . 151 11 Microscopy Experiments 155 11.1 Fixed cell experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 11.1.1 Localization of FcRn . . . . . . . . . . . . . . . . . . . . . . . . 155 11.1.2 Association experiments with FcRn, EEA1, LAMP1, and transfer- rin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 11.1.3 Pulse-chase verification of fate of mutated IgG . . . . . . . . . . 158 11.2 Imaging a 3D sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 11.2.1 Acquisition of z-stacks . . . . . . . . . . . . . . . . . . . . . . . . 160 11.2.2 Out-of-focus haze . . . . . . . . . . . . . . . . . . . . . . . . . . 160 11.3 Live cell experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 11.3.1 Example: FcRn-mediated IgG trafficking . . . . . . . . . . . . . 163 11.4 Total internal reflection fluorescence microscopy (TIRFM) . . . . . . . . 164 11.4.1 Objective-based total internal reflection fluorescence microscopy 164