ebook img

Quantitative Arithmetic of Projective Varieties PDF

168 Pages·2009·1.99 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Quantitative Arithmetic of Projective Varieties

Progress in Mathematics Volume 277 Series Editors H. Bass J. Oesterlé A. Weinstein Timothy D. Browning Quantitative Arithmetic of Projective Varieties Birkhäuser Basel · Boston · Berlin Author: Timothy D. Browning School of Mathematics University of Bristol Bristol BS8 1TW United Kingdom e-mail: [email protected] 2000 Mathematics Subject Classification: 11D45, 11G35, 11D72, 11E76, 11P55, 14G05, 14G10, 14G25 Library of Congress Control Number: 2009934090 Bibliographic information published by Die Deutsche Bibliothek. Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at http://dnb.ddb.de ISBN 978-3-0346-0128-3 Birkhäuser Verlag AG, Basel · Boston · Berlin This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use whatsoever, permission from the copyright owner must be obtained. © 2009 Birkhäuser Verlag AG Basel · Boston · Berlin P.O. Box 133, CH-4010 Basel, Switzerland Part of Springer Science+Business Media Printed on acid-free paper produced from chlorine-free pulp. TCF ∞ Printed in Germany ISBN 978-3-0346-0128-3 e-ISBN 978-3-0346-0129-0 9 8 7 6 5 4 3 2 1 www.birkhauser.ch Ferran Sunyer i Balaguer (1912–1967) was a self- taught Catalan mathematician who, in spite of a seriousphysicaldisability,wasveryactiveinresearch in classical mathematical analysis, an area in which he acquired international recognition. His heirs cre- ated the Fundacio´ Ferran Sunyer i Balaguer inside theInstitutd’EstudisCatalanstohonorthememory of Ferran Sunyer i Balaguer and to promote mathe- matical research. Each year, the Fundacio´ Ferran Sunyer i Balaguer and the Institut d’Estudis Catalans award an in- ternational researchprize for a mathematical mono- graphofexpositorynature.Theprize-winningmono- graphsarepublishedinthisseries.Detailsaboutthe prizeandtheFundacio´FerranSunyeriBalaguercan be found at http://www.crm.es/FSBPrize/ffsb.htm This book has been awarded the Ferran Sunyer i Balaguer 2009 prize. The members of the scientific commitee of the 2009 prize were: Hyman Bass University of Michigan Nu´ria Fagella Universitat de Barcelona Joan Verdera Universitat Auto`noma de Barcelona Alan Weinstein University of California at Berkeley Ferran Sunyer i Balaguer Prize winners since 1998: 1999 Patrick Dehornoy Braids and Self-Distributivity, PM 192 2000 Juan-Pablo Ortega and Tudor Ratiu Hamiltonian Singular Reduction, PM 222 2001 Martin Golubitsky and Ian Stewart The Symmetry Perspective, PM 200 2002 Andr´e Unterberger Automorphic Pseudodifferential Analysis and Higher Level Weyl Calculi, PM 209 Alexander Lubotzky and Dan Segal Subgroup Growth, PM 212 2003 Fuensanta Andreu-Vaillo, Vincent Caselles and Jos´e M. Mazo´n Parabolic Quasilinear Equations Minimizing Linear Growth Functionals, PM 223 2004 Guy David Singular Sets of Minimizers for the Mumford-Shah Functional, PM 233 2005 Antonio Ambrosetti and Andrea Malchiodi Perturbation Methods and Semilinear Elliptic Problems on Rn, PM 240 Jos´e Seade On the Topology of Isolated Singularities in Analytic Spaces, PM 241 2006 Xiaonan Ma and George Marinescu Holomorphic Morse Inequalities and Bergman Kernels, PM 254 2007 Rosa Miro´-Roig Determinantal Ideals, PM 264 2008 Luis Barreira Dimension and Recurrence in Hyperbolic Dynamics, PM 272 To my wife Sinead Contents Preface xiii 1 Introduction 1 1.1 A naive heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 The basic counting function . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Influence of analytic number theory . . . . . . . . . . . . . . . . . 8 1.3.1 Paucity results . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3.2 Waring’s problem. . . . . . . . . . . . . . . . . . . . . . . . 10 1.3.3 Vinogradov’s mean value theorem . . . . . . . . . . . . . . 11 1.3.4 Small solutions . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.3.5 Divisor problems . . . . . . . . . . . . . . . . . . . . . . . . 14 Exercises for Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2 The Manin conjectures 17 2.1 Divisors on varieties . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1.1 The Picard group. . . . . . . . . . . . . . . . . . . . . . . . 18 2.1.2 The canonical divisor . . . . . . . . . . . . . . . . . . . . . 19 2.1.3 The intersection form . . . . . . . . . . . . . . . . . . . . . 19 2.1.4 Cubic surfaces . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 The conjectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3 Degree 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.1 Non-singular surfaces . . . . . . . . . . . . . . . . . . . . . 24 2.3.2 Singular surfaces . . . . . . . . . . . . . . . . . . . . . . . . 27 2.4 Degree 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.4.1 Non-singular surfaces . . . . . . . . . . . . . . . . . . . . . 33 2.4.2 Singular surfaces . . . . . . . . . . . . . . . . . . . . . . . . 37 2.5 Degree (cid:2)5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.6 Universal torsors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Exercises for Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 x Contents 3 The dimension growth conjecture 47 3.1 Linear spaces on hypersurfaces . . . . . . . . . . . . . . . . . . . . 49 3.2 Dimension growth for hypersurfaces . . . . . . . . . . . . . . . . . 52 3.3 Exponential sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.3.1 Singular X . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.3.2 Non-singular X . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.4 Covering with linear spaces . . . . . . . . . . . . . . . . . . . . . . 59 Exercises for Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4 Uniform bounds for curves and surfaces 63 4.1 The determinant method . . . . . . . . . . . . . . . . . . . . . . . 70 4.2 The geometry of numbers . . . . . . . . . . . . . . . . . . . . . . . 72 4.3 General plane curves . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.4 Diagonal plane curves . . . . . . . . . . . . . . . . . . . . . . . . . 79 Exercises for Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5 A del Pezzo surface of degree 6 83 1 5.1 Passage to the universal torsor . . . . . . . . . . . . . . . . . . . . 84 5.2 The asymptotic formula . . . . . . . . . . . . . . . . . . . . . . . . 88 5.3 Perron’s formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Exercises for Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6 D del Pezzo surface of degree 3 99 4 6.1 Passage to the universal torsor . . . . . . . . . . . . . . . . . . . . 100 6.2 A crude upper bound . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.3 A better upper bound . . . . . . . . . . . . . . . . . . . . . . . . . 105 Exercises for Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 7 Siegel’s lemma and non-singular surfaces 113 7.1 Dual variety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 7.2 Non-singular del Pezzo surfaces of degree 3 . . . . . . . . . . . . . 116 7.3 Non-singular del Pezzo surfaces of degree 4 . . . . . . . . . . . . . 118 Exercises for Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 8 The Hardy–Littlewood circle method 123 8.1 Major arcs and minor arcs . . . . . . . . . . . . . . . . . . . . . . . 125 8.2 Quartic hypersurfaces . . . . . . . . . . . . . . . . . . . . . . . . . 128 8.2.1 The minor arcs . . . . . . . . . . . . . . . . . . . . . . . . . 129 8.2.2 The major arcs . . . . . . . . . . . . . . . . . . . . . . . . . 134 8.2.3 Improving Birch’s argument . . . . . . . . . . . . . . . . . . 136 8.3 Diagonal cubic surfaces . . . . . . . . . . . . . . . . . . . . . . . . 137 8.3.1 The lines on a diagonal cubic surface . . . . . . . . . . . . . 138 8.3.2 Cubic characters and Jacobi sums . . . . . . . . . . . . . . 140 8.3.3 The heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Description:
From the reviews:“The book under review considers the distribution of integral or rational points of bounded height on (projective) algebraic varieties. … well-written and well-organized. … Introductory material is discussed when appropriate, motivation and context are provided when necessary,
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.