Progress in Mathematics Volume 277 Series Editors H. Bass J. Oesterlé A. Weinstein Timothy D. Browning Quantitative Arithmetic of Projective Varieties Birkhäuser Basel · Boston · Berlin Author: Timothy D. Browning School of Mathematics University of Bristol Bristol BS8 1TW United Kingdom e-mail: [email protected] 2000 Mathematics Subject Classification: 11D45, 11G35, 11D72, 11E76, 11P55, 14G05, 14G10, 14G25 Library of Congress Control Number: 2009934090 Bibliographic information published by Die Deutsche Bibliothek. Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at http://dnb.ddb.de ISBN 978-3-0346-0128-3 Birkhäuser Verlag AG, Basel · Boston · Berlin This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use whatsoever, permission from the copyright owner must be obtained. © 2009 Birkhäuser Verlag AG Basel · Boston · Berlin P.O. Box 133, CH-4010 Basel, Switzerland Part of Springer Science+Business Media Printed on acid-free paper produced from chlorine-free pulp. TCF ∞ Printed in Germany ISBN 978-3-0346-0128-3 e-ISBN 978-3-0346-0129-0 9 8 7 6 5 4 3 2 1 www.birkhauser.ch Ferran Sunyer i Balaguer (1912–1967) was a self- taught Catalan mathematician who, in spite of a seriousphysicaldisability,wasveryactiveinresearch in classical mathematical analysis, an area in which he acquired international recognition. His heirs cre- ated the Fundacio´ Ferran Sunyer i Balaguer inside theInstitutd’EstudisCatalanstohonorthememory of Ferran Sunyer i Balaguer and to promote mathe- matical research. Each year, the Fundacio´ Ferran Sunyer i Balaguer and the Institut d’Estudis Catalans award an in- ternational researchprize for a mathematical mono- graphofexpositorynature.Theprize-winningmono- graphsarepublishedinthisseries.Detailsaboutthe prizeandtheFundacio´FerranSunyeriBalaguercan be found at http://www.crm.es/FSBPrize/ffsb.htm This book has been awarded the Ferran Sunyer i Balaguer 2009 prize. The members of the scientific commitee of the 2009 prize were: Hyman Bass University of Michigan Nu´ria Fagella Universitat de Barcelona Joan Verdera Universitat Auto`noma de Barcelona Alan Weinstein University of California at Berkeley Ferran Sunyer i Balaguer Prize winners since 1998: 1999 Patrick Dehornoy Braids and Self-Distributivity, PM 192 2000 Juan-Pablo Ortega and Tudor Ratiu Hamiltonian Singular Reduction, PM 222 2001 Martin Golubitsky and Ian Stewart The Symmetry Perspective, PM 200 2002 Andr´e Unterberger Automorphic Pseudodifferential Analysis and Higher Level Weyl Calculi, PM 209 Alexander Lubotzky and Dan Segal Subgroup Growth, PM 212 2003 Fuensanta Andreu-Vaillo, Vincent Caselles and Jos´e M. Mazo´n Parabolic Quasilinear Equations Minimizing Linear Growth Functionals, PM 223 2004 Guy David Singular Sets of Minimizers for the Mumford-Shah Functional, PM 233 2005 Antonio Ambrosetti and Andrea Malchiodi Perturbation Methods and Semilinear Elliptic Problems on Rn, PM 240 Jos´e Seade On the Topology of Isolated Singularities in Analytic Spaces, PM 241 2006 Xiaonan Ma and George Marinescu Holomorphic Morse Inequalities and Bergman Kernels, PM 254 2007 Rosa Miro´-Roig Determinantal Ideals, PM 264 2008 Luis Barreira Dimension and Recurrence in Hyperbolic Dynamics, PM 272 To my wife Sinead Contents Preface xiii 1 Introduction 1 1.1 A naive heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 The basic counting function . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Influence of analytic number theory . . . . . . . . . . . . . . . . . 8 1.3.1 Paucity results . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3.2 Waring’s problem. . . . . . . . . . . . . . . . . . . . . . . . 10 1.3.3 Vinogradov’s mean value theorem . . . . . . . . . . . . . . 11 1.3.4 Small solutions . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.3.5 Divisor problems . . . . . . . . . . . . . . . . . . . . . . . . 14 Exercises for Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2 The Manin conjectures 17 2.1 Divisors on varieties . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1.1 The Picard group. . . . . . . . . . . . . . . . . . . . . . . . 18 2.1.2 The canonical divisor . . . . . . . . . . . . . . . . . . . . . 19 2.1.3 The intersection form . . . . . . . . . . . . . . . . . . . . . 19 2.1.4 Cubic surfaces . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 The conjectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3 Degree 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.1 Non-singular surfaces . . . . . . . . . . . . . . . . . . . . . 24 2.3.2 Singular surfaces . . . . . . . . . . . . . . . . . . . . . . . . 27 2.4 Degree 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.4.1 Non-singular surfaces . . . . . . . . . . . . . . . . . . . . . 33 2.4.2 Singular surfaces . . . . . . . . . . . . . . . . . . . . . . . . 37 2.5 Degree (cid:2)5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.6 Universal torsors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Exercises for Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 x Contents 3 The dimension growth conjecture 47 3.1 Linear spaces on hypersurfaces . . . . . . . . . . . . . . . . . . . . 49 3.2 Dimension growth for hypersurfaces . . . . . . . . . . . . . . . . . 52 3.3 Exponential sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.3.1 Singular X . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.3.2 Non-singular X . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.4 Covering with linear spaces . . . . . . . . . . . . . . . . . . . . . . 59 Exercises for Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4 Uniform bounds for curves and surfaces 63 4.1 The determinant method . . . . . . . . . . . . . . . . . . . . . . . 70 4.2 The geometry of numbers . . . . . . . . . . . . . . . . . . . . . . . 72 4.3 General plane curves . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.4 Diagonal plane curves . . . . . . . . . . . . . . . . . . . . . . . . . 79 Exercises for Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5 A del Pezzo surface of degree 6 83 1 5.1 Passage to the universal torsor . . . . . . . . . . . . . . . . . . . . 84 5.2 The asymptotic formula . . . . . . . . . . . . . . . . . . . . . . . . 88 5.3 Perron’s formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Exercises for Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6 D del Pezzo surface of degree 3 99 4 6.1 Passage to the universal torsor . . . . . . . . . . . . . . . . . . . . 100 6.2 A crude upper bound . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.3 A better upper bound . . . . . . . . . . . . . . . . . . . . . . . . . 105 Exercises for Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 7 Siegel’s lemma and non-singular surfaces 113 7.1 Dual variety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 7.2 Non-singular del Pezzo surfaces of degree 3 . . . . . . . . . . . . . 116 7.3 Non-singular del Pezzo surfaces of degree 4 . . . . . . . . . . . . . 118 Exercises for Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 8 The Hardy–Littlewood circle method 123 8.1 Major arcs and minor arcs . . . . . . . . . . . . . . . . . . . . . . . 125 8.2 Quartic hypersurfaces . . . . . . . . . . . . . . . . . . . . . . . . . 128 8.2.1 The minor arcs . . . . . . . . . . . . . . . . . . . . . . . . . 129 8.2.2 The major arcs . . . . . . . . . . . . . . . . . . . . . . . . . 134 8.2.3 Improving Birch’s argument . . . . . . . . . . . . . . . . . . 136 8.3 Diagonal cubic surfaces . . . . . . . . . . . . . . . . . . . . . . . . 137 8.3.1 The lines on a diagonal cubic surface . . . . . . . . . . . . . 138 8.3.2 Cubic characters and Jacobi sums . . . . . . . . . . . . . . 140 8.3.3 The heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Description: