ebook img

Quantifying Snow Cover Distribution in Semiarid Regions Combining Satellite and Terrestrial ... PDF

17 Pages·2017·5.57 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Quantifying Snow Cover Distribution in Semiarid Regions Combining Satellite and Terrestrial ...

remote sensing Article Quantifying Snow Cover Distribution in Semiarid Regions Combining Satellite and Terrestrial Imagery RafaelPimentel1,2,*,JavierHerrero1andMaríaJoséPolo1 1 FluvialDynamicsandHydrologyResearchGroup,AndalusianInstituteforEarthSystemResearch, UniversityofCórdoba,CampusRabanales,EdificioLeonardodaVinci,ÁreadeIngenieríaHidráulica, 14017Córdoba,Spain;[email protected](J.H.);[email protected](M.J.P.) 2 HydrologyResearchUnit,SwedishMeteorologicalandHydrologicalInstitute,Folkborgsvägen17, 60176Norrköping,Sweden * Correspondence:[email protected] Received:29August2017;Accepted:22September2017;Published:26September2017 Abstract: Mediterraneanmountainousregionsconstituteaclimatechangehotspotwheresnowplays acrucialroleinwaterresources. Thecharacteristicsnow-patcheddistributionovertheseareasmakes spatialresolutionthelimitingfactorforitscorrectrepresentation. Thisworkassessestheestimation ofsnowcoverareaandthecontributionofthepatchyareastotheseasonalandannualregimeof the snow in a semiarid mountainous range, the Sierra Nevada Mountains in southern Spain, by meansofLandsatimagerycombinedwithterrestrialphotography(TP).Twomethodologieswere tested: (1)differenceindexestoproducebinarymaps;and(2)spectralmixtureanalysis(SMA)to obtainfractionalmaps; theirresultswerevalidatedfrom“ground-truth”databymeansofTPin asmallmonitoredcontrolarea. Bothmethodsprovidedsatisfactoryresultswhenthesnowcover wasabove85%ofthestudyarea;belowthisthreshold,theuseofspectralmixtureanalysisisclearly recommended. Mixed pixels can reach up to 40% of the area during wet and cold years, their importancebeinglargerasaltitudeincreases,provingtheusefulnessofTPforassessingtheaccuracy ofremotedatasources. Mixedpixelsidentificationallowsfordeterminingthemorevulnerableareas facingpotentialchangesofthesnowregimeduetoglobalwarmingandclimatevariability. Keywords: snow;semiaridregions;terrestrialphotography;LandsatTMandETM+ 1. Introduction In general, snowmelt-dominant regions are located in latitudes greater than 45◦ (North and South). Intenseeffortstostudysnowdynamicshavebeendevelopedovertheseareas, inwhicha continuousanddeepsnowpackcanbeusuallyfoundthroughoutlargeareas. However,therearemany mountainousregionslocatedinlowerandwarmerlatitudes,whicharehighlydependentofsnow waterresourcesforagricultureandwatersupply,despitesnowoccurrencebeingnon-uniformand highlytimingduringthecoldseason. Overtheseareas,climatechangeeffectsarelikelytobemore noticeableand,thus,theyconstituteanaturallaboratoryfortheirearlydetectionandevaluation[1,2]. Thisisthecaseofsemiaridmountainousregions,wherehighlevelofincomesolarradiation,mild winters,andtorrentialprecipitationregimesareusualintrinsicfeaturesoftheirclimate[3,4];water scarcityanddroughtperiodsarefoundtobecurrentlyincreasing,asmanyauthorshavestated[5–7]. Intheseregions,snowdoesnotfollowasingleandsomehowcontinuousaccumulation-snowmeltcycle, morecommonlyfoundincolderregions,beingthespringseasonrepresentativeofasignificantinflow ofmeltingwatertothesurfaceandgroundwaterbodies. Atypicalsemiaridsnowpackexhibitsavery strongspatiotemporalvariability,andveryoftenundergoesdifferentaccumulation-snowmeltcycles duringthecoldseasoninagivenyear. Theablationprocessusuallyresultsinpatcheddistributionof snowaroundlocalsingularities,suchasrocks,vegetationbunches,depressions,amongothers[8–10]. RemoteSens.2017,9,995;doi:10.3390/rs9100995 www.mdpi.com/journal/remotesensing RemoteSens.2017,9,995 2of17 These snow patches evolve into a mosaic-type spatial pattern with alternating snow-covered and snow-free areas, whose size ranges between one to dozens of square meters. Their local spatial evolutionisgovernedbytwomaindrivers: microscalepatterns(~1m)conditionedbytheinteraction betweenthesnowandthemicro-topography[8]andmedium-sizedpatterns(~100m)highlyinfluenced bywind,andterraincurvature[11]. Inrecentdecades,remotesensinghasbeenprovidingdistributedinformationaboutthesnowpack all over the world and it is the major method for monitoring snow at medium–large scales, complementingthetraditionalinsitufieldsurveysandgroundautomaticmeasurementstocover largeareas. Snowcoverfraction(SCF),snowalbedo(SA),andsnowwaterequivalent(SWE)arethe mostcommonvariablesmeasuredbyusingbothopticalandradarremotesensingimagery,based, respectively, on the highly different brightness temperature between the visible and near-infrared regions[12–15]andonthesignalattenuationduetothewaterpresentinthesnowpack[16,17]. Among them,SCFisthemostusuallytargetedinformationfromwhichfurthervariablesarethenderived, especiallyindistributedmodelingofthesnowprocesses[18,19]. Within the great amount of remote sensing information (e.g., NOAA, daily images with 1km×1kmcellsize;MODIS,dailyimageswith500×500mcellsize;LandsatThematicMapper, 16-dayimageswith30m×30mcellsize),theselectionofthedatasetiscloselyrelatedtothescaleofthe targetedprocesses.Spatialresolutionisthelimitingfactorforthedetectionofsnowinsemiaridregions, sincetheextremelychangingconditionsfavoraparticularlysnowdistribution,whichusuallyappears asmedium-to-smallsizedpatches[20,21]. Hence,thosedatasetswithahigherspatialresolution,such asLandsatThematicMapper(TM)andEnhancedThematicMapper(ETM+)data,arerecommendedin thesestudies[22–24],since,forexample,MODISsnowproducts,witha500×500mspatialresolution, arenotcapabletocapturethesignificantsub-griddistributioncurrentlyfound. Anotheralternative forthestudyofthesnowextensionoverthesechangeableareasistheuseofterrestrialphotography (TP),thatis,imagestakenfromtheEarthsurfaceandwhosespatialandtemporalresolutioncanbe adaptedtothestudyproblem[8,9,18,25,26]. Despitetheadvantagesofthistechnique,easyadaptation tothetemporalandspatialresolutionofthestudiedprocessesundermonitoring,itsuseoverlargeand abruptmountainousareasislimitedsince,ononehand,agreatnumberofimageswouldberequired, and,ontheotherhand,thereissomelackofinformationassociatedwiththenon-visibleareas,which canbesignificantinsomecases. However, the combination of both data sources may overcome their individual scale-related limitations provided that a long-time series is available. For this, the high-resolution TP images overagivenareacanbeassumedastheground-truthinformationassociatedtothesnowcoverarea distribution,againstwhichsnowdetectionalgorithmstobeappliedtothelowerresolutionsatellite images,suchasLandsatTMandETM+. The traditional classification algorithms for snow detection are based on normalized indexes whichprovideabinaryclassificationassnowandno-snowpixelsthroughoutthestudyarea[15,27]; this simple classification may result in large error in heterogeneous and transitional areas within the snow-dominated domain [14]. Alternatively, the spectral mixture analysis (SMA) approach providesfractionofsnowcoverwithineachpixelandthus,constitutesastepforwardtocharacterize heterogeneousandpatchysnowareasinsemiaridregions. Thismethodrequiresanexternaldataset, withhigherspatialresolution,tocalibrateandvalidatethealgorithmsused. In[28]calculatedsnow coverfractionvaluesfromMODIS(500×500m2)usingLandsatscenes(30×30m2)ascalibrationand validationdatasetinSierraNevada(USA),RockyMountains,highplainsofColoradoandHimalaya, andobtainedameanrelativeerrorintheanalyzedscenesof5%,rangingfrom1%to13%.Nevertheless, thesignificantpatchsizescalesofthesnowdistributioninMediterraneanregionsrequiretheuseof Landsatimageryasprimarysourcewhentheevolutionofthispatchysnowpackisthetargetedgoal onthemidandlongterm. Thisworkassessestheestimationofsnowcoverareainsemiaridregionsduringdifferentstages inthesnowseasonbymeansofLandsatimageryandthecontributionofthepatchyareasinthese RemoteSens.2017,9,995 3of17 regionstotheseasonalandannualregimeofthesnow. Forthis,a14-yearseriesofsnowcovermaps (30×30m)wasobtainedfromLandsatimageryintheSierraNevadaMountainsinsouthernSpain. Remote Sens. 2017, 9, 995 3 of 17 Two methodologies were tested for the estimation of the SCF: (1) the use of difference indexes to obtainbinarymaps(coveredandnon-coveredpixels);and(2)aspectralmixtureanalysismodelto (30 × 30 m) was obtained from Landsat imagery in the Sierra Nevada Mountains in southern Spain. calcuTlawteo fmraectthioondaollosgnioesw wceorve etresmteadp fso(rf rthacet ieosntimofatcioonv eorfa gtheei nSCsiFd:e (1e)a cthhep uisxee lo).f Tdhifefepreenrcfeo rimndaenxcees otof both methoobdtoalino gbiiensairsy amssaepsss (ecdovbeyremd eaannds noofnS-cCoFvemreadp psi(x1e0ls×); a1n0dm (2)) oab stpaeincterdal fmroimxtuTreP ainnaalyssmis amllomdeol ntoit ored contrcoallcaurelaatei nfrtahcetiosntuadl synsoiwte .cover maps (fraction of coverage inside each pixel). The performance of both methodologies is assessed by means of SCF maps (10 × 10 m) obtained from TP in a small 2. StumdoynSitoitreeda ncodnAtrovla ailraeab line tDhea tsatudy site. ThisstudyiscarriedoutinSierraNevadaMountains,SouthernSpain(Figure1A,B).Theyarea 2. Study Site and Available Data linearmountainrangeof90-kmlength,thatrunningparalleltothecoastlineofMediterraneanSea, This study is carried out in Sierra Nevada Mountains, Southern Spain (Figure 1A,B). They are a wheretheAlpineandMediterraneanclimateconditionscanbefoundinjusta40-kmdistance. Strong linear mountain range of 90-km length, that running parallel to the coastline of Mediterranean Sea, altitudinalgradientswithmarkeddifferencesbetweenthesouth(directlyaffectedtothesea)andthe where the Alpine and Mediterranean climate conditions can be found in just a 40-km distance. Strong northfacesarefoundinthearea. Itshighsummitsmakesnowthemainfactorthatconditionsmost altitudinal gradients with marked differences between the south (directly affected to the sea) and the ofthenohrythd rfoacloesg iacrael faonudnde icno ltohge iacraelap. Irtos cheisgshe ssuomvmerittsh meaakree as.nTowhe thpea rmtiaciunl faarctcohra trhaactt ceorinsdtiictisonms amkoesSt ierra Nevaodf athae rhiycdhrorelosgeircvaol airndo feceonldogeimcailc pwroicledslsiefse osvpeerc tihees .arIetai.s Tchoen psairdtiecrueldar tchhearmacotesrtisitmicps omratkaen tSiceerrnat erof biodiNveervsaitdya ian rtihceh wreessetrevronirM oef deintderermanice wanildreligfeio snp,ewciietsh. oItv iesr c2o1n0s0iddeirfefde rtehnet mvaossct uimlarpoprltaanntt tcaexnaterre coof rded, accoubniotdinivgefrosirtyn eina rtlhye3 w0%estoefrnth Mevedaistceurrlaanreflano rraegoifotnh, eweintht iroeveIbr e2r1i0a0n dPieffneirnesnut lvaa[s2c9u,l3a0r ].plTahnet traexgai onis recorded, accounting for nearly 30% of the vascular flora of the entire Iberian Peninsula [29,30]. The alsoenvironmentallyprotected,thehighestelevationsoftherangeweredeclaredapartofaUNESCO region is also environmentally protected, the highest elevations of the range were declared a part of BiosphereReservein1986,aNaturalParkin1989,andaNationalParkin1999. a UNESCO Biosphere Reserve in 1986, a Natural Park in 1989, and a National Park in 1999. Figure 1. (A) Location of Sierra Nevada Mountain in Spain; (B) Sierra Nevada Mountain range, limits Figure1.(A)LocationofSierraNevadaMountaininSpain;(B)SierraNevadaMountainrange,limits of the Natural and National Parks (dark and light blue respectively) and 1500 m a.s.l. elevation line oftheNaturalandNationalParks(darkandlightbluerespectively)and1500ma.s.l.elevationline (black line); (C) Location of the control area monitored by terrestrial photography at Durcal hillside. (blackline);(C)LocationofthecontrolareamonitoredbyterrestrialphotographyatDurcalhillside. The snow usually appears above 2000 m a.s.l. during winter and spring even though the Tsnhoewsmnoewlt usesausaolnly gaepnpereaalrlys albasotvs efr2o0m00 Ampari.ls .tlo. dJuurnien. gTwhein ttyepriacnaldlys pmriilndg Meveednittehrroaungeahnt hweisnnteorws melt produce several snowmelt cycles before the final melting phase, which distributes the snow in seasongenerallylastsfromApriltoJune. ThetypicallymildMediterraneanwintersproduceseveral patches over the terrain. Precipitation is heterogeneously distributed over the area because of the snowmeltcyclesbeforethefinalmeltingphase,whichdistributesthesnowinpatchesovertheterrain. steep orography, with a high annual variability (400–1500 mm). The average temperature during the Precipitationisheterogeneouslydistributedovertheareabecauseofthesteeporography,withahigh snow season can range from −5 °C to 5 °C, reaching values as low as −20 °C at certain times and annualvariability(400–1500mm). Theaveragetemperatureduringthesnowseasoncanrangefrom location during winter [31]. Table 1 shows some statistical descriptors of the most relevant −5◦Cto5◦C,reachingvaluesaslowas−20◦Catcertaintimesandlocationduringwinter[31].Table1 meteorological variables on an annual basis. showssomestatisticaldescriptorsofthemostrelevantmeteorologicalvariablesonanannualbasis. Table 1. Mean and standard deviation, in brackets, of the main meteorological variables in Sierra TableN1e.vaMdae aMnoaunndtaisntsa fnrdomar d20d09e vtoia 2t0io13n,, cianlcublraatcekde otvs,ero bfotthhe somuathin anmde nteoortrho lfoacgeisc aalndv aforira lbolwes airneaSs ierra Neva(dbealoMwo 2u0n0t0a min as.sfr.lo.)m an2d0 h0i9ghto ar2e0a1s3 (,acbaolvceu 2la00te0d mo av.se.rl.)b. othsouthandnorthfacesandforlowareas (below2000ma.s.l.)andhighareas(Parbeocivpeita2t0io0n0 ma.sT.le.m).perature Radiation Wind Speed Facing Elevation (mm) (°C) (MJ m‒2day‒1) (ms‒1) High areas Pre7c8i3p.3it (a3t5i.o8n) Tem7p.8e (r6a.t9u) re R1a1d.1ia (t1i.o1)n Wi8n.2d (S0.p5)e ed SFoauctihn fgace ElLeovwat aiorenas 50(m3.7m (1)4.8) 14(◦.8C ()7.4) (MJ9m.5- 2(1d.5a) y-1) 3(.m2 (s1-.14)) High areas - 6.8 (5.6) 10.9 (0.3) 5.1 (2.2) North face Highareas 783.3(35.8) 7.8(6.9) 11.1(1.1) 8.2(0.5) Southface Low areas 526.7 (116.3) 9.7 (4.5) 9.4 (1.2) 2.4 (1.3) Lowareas 503.7(14.8) 14.8(7.4) 9.5(1.5) 3.2(1.4) For this study, a total number of 132 Landsat TM and ETM+ scenes (temporal resolution of 16 days; spatial resolutHioignh oafr e3a0s × 30 m) wer-e selected dur6i.n8g(5 t.6h)e period (1200.090(–0.230)13) from t5h.1e( a2.v2a)ilable Northface Lowareas 526.7(116.3) 9.7(4.5) 9.4(1.2) 2.4(1.3) cloud-free scenes (Table 2) to obtain 30 × 30 m snow cover maps of the study area by two different RemoteSens.2017,9,995 4of17 For this study, a total number of 132 Landsat TM and ETM+ scenes (temporal resolution of 1R6emdoatey Sse;nssp. 2a0t1ia7,l 9r,e 9s9o5l u tionof30×30m)wereselectedduringtheperiod(2000–2013)fromtheava4i loafb 1l7e cloud-freescenes(Table2)toobtain30×30msnowcovermapsofthestudyareabytwodifferent aallggoorriitthhmmss.. AAddddiittiioonnaallllyy,, tthhee aavvaaiillaabbllee ddaaiillyy sseerriieess ooff TTPP ttaakkeenn wwiitthh aa ccoonnvveennttiioonnaall ddiiggiittaall ccaammeerraa ffrroomm 22000099 ttoo 22001133 ccoovveerriinngg aann aapppprrooxxiimmaatteellyy 22--kkmm22 ccoonnttrrooll aarreeaa,, llooccaatteedd iinn tthhee wweesstteerrnn ppaarrtt ooff SSiieerrrraa NNeevvaaddaa MMoouunnttaaiinnss ((FFiigguurree 11CC)) wweerree uusseedd ttoo eexxttrraacctt aa ssuubb--sseett ooff iimmaaggeess oonn tthhee sseelleecctteedd LLaannddssaatt ddaatteess (Figure 2) from which validation of the resulting snow cover maps. This control area comprises a flat (Figure2)fromwhichvalidationoftheresultingsnowcovermaps. Thiscontrolareacomprisesaflat hillslope facing west with altitudes ranging from 1900 to 3011 m a.s.l. (the Caballo peak). hillslopefacingwestwithaltitudesrangingfrom1900to3011ma.s.l. (theCaballopeak). TTaabbllee2 2..S Snnoowwc coovveerra arereaac acalcluculalateteddf rforommL Lananddsasat-tb-bininaaryry( A(ABIN)),, LLaannddssaatt--ffrraaccttiioonnaall ((AAFRAC) )aanndd TTPP BIN FRAC ((AATP)),, aanndd aabbssoolluuttee aanndd rreellaattiivvee eerrrroorr aassssoocciiaatteedd ttoo eeaacchh LLaannddssaatt mmaapp aanndd ddaattee aatt tthhee 22--kkmm22 vvaalildidaattioionn TP ccoonnttrrooll aarreeaa.. DateDate A((cid:1775)BkIm(cid:1776)N(cid:1783)(cid:1788)2) (cid:1775)(k(cid:1780)Am(cid:1792)F(cid:1775)2R(cid:1777)) AC(k(cid:1775)m(cid:1794)(cid:1790)2) AT((cid:1775)P(cid:1776)((cid:1783)(cid:1788)km−(2A(cid:1775)) (cid:1794)B(cid:1790)IN) −(A(cid:1775)T(cid:1776)P(cid:1783)(cid:1788)(cid:1775))−(cid:1794)(cid:1790)((cid:1775)A(cid:1794)B(cid:1790)IN)− AT(P(cid:1775))(cid:1780)(cid:1792)((cid:1775)k(cid:1777)m−(2A)(cid:1775) F(cid:1794)R(cid:1790)A) C−((cid:1775)A(cid:1780)T(cid:1792)(cid:1775)P(cid:1775)(cid:1777))(cid:1794)−(cid:1790)((cid:1775)A(cid:1794)F(cid:1790)RA)C −ATP) 4 May 2009 (km1.920) 1.(8k8m 2) 1.71 (km2) 0.19 (km2) 0.111 ATP 0.17 (km2) 0.099 ATP 4M2a9y J2u0n0e9 2009 1.09.006 0.014. 88 0.04 1.71 0.02 0.19 0.500 0.111 0.00 0.17 0.000 0.099 29Ju1n5 eM2a0y0 92010 0.10.690 1.808. 04 1.67 0.04 0.23 0.02 0.138 0.500 0.21 0.00 0.126 0.000 15M3a1y M2a0y1 02010 1.19.058 1.315. 88 1.24 1.67 0.34 0.23 0.274 0.138 0.11 0.21 0.089 0.126 31M8a yJu2n0e1 20010 1.15.803 0.810. 35 0.82 1.24 0.21 0.34 0.256 0.274 −0.02 0.11 −0.024 0.089 8Ju1n8e J2u0l1y0 2010 1.00.304 0.002. 80 0.02 0.82 0.02 0.21 1.000 0.256 0.00 −0.02 0.000 −0.024 189 JDuelyce2m01b0er 2010 0.10.464 1.303. 02 1.45 0.02 0.19 0.02 0.131 1.000 −0.12 0.00 −0.083 0.000 9December2010 1.64 1.33 1.45 0.19 0.131 −0.12 −0.083 10 January 2011 1.86 1.83 1.83 0.03 0.016 0.00 0.000 10January2011 1.86 1.83 1.83 0.03 0.016 0.00 0.000 3 February 2011 1.79 1.75 1.83 −0.04 −0.022 −0.08 −0.044 3February2011 1.79 1.75 1.83 −0.04 −0.022 −0.08 −0.044 31 March 2011 1.90 1.90 1.83 0.07 0.038 0.07 0.038 31March2011 1.90 1.90 1.83 0.07 0.038 0.07 0.038 8 April 2011 1.88 1.81 1.81 0.07 0.039 0.00 0.000 8April2011 1.88 1.81 1.81 0.07 0.039 0.00 0.000 10M1a0y M2a0y1 12011 1.16.767 1.013. 03 1.45 1.45 0.22 0.22 0.152 0.152 −0.42 −0.42 −0.290 −0.290 19Ju1n9 eJu2n0e1 12011 0.01.717 0.100. 10 0.17 0.17 0.00 0.00 0.000 0.000 −0.07 −0.07 −0.412 −0.412 12M1a2y M2a0y1 22012 1.13.131 1.011. 01 0.91 0.91 0.40 0.40 0.440 0.440 0.10 0.10 0.110 0.110 7Jan7u Jaarnyua2r0y1 32013 1.18.383 1.619. 69 1.83 1.83 0.00 0.00 0.000 0.000 −0.14 −0.14 −0.077 −0.077 24F2e4b rFueabrryu2ar0y1 32013 1.18.383 1.811. 81 1.83 1.83 0.00 0.00 0.000 0.000 −0.02 −0.02 −0.011 −0.011 13A1p3r Ailp2r0i1l 32013 1.19.090 1.818. 88 1.83 1.83 0.07 0.07 0.038 0.038 0.05 0.05 0.027 0.027 31M3a1y M2a0y1 32013 1.17.373 1.416. 46 1.08 1.08 0.65 0.65 0.602 0.602 0.38 0.38 0.352 0.352 16Ju1n6 eJu2n0e1 32013 0.07.474 0.406. 46 0.36 0.36 0.38 0.38 1.056 1.056 0.10 0.10 0.278 0.278 18Ju1l8y J2u0ly1 32013 0.00.202 0.002. 02 0.00 0.00 0.02 0.02 0.02 0.02 Figure 2. Landsat scenes, TM (grey dots) and ETM+ (black crosses) analyzed throughout the study Figure2. Landsatscenes,TM(greydots)andETM+(blackcrosses)analyzedthroughoutthestudy period 2000–2013 over Sierra Nevada Mountain. Available Terrestrial Photography (TP) used as period 2000–2013 over Sierra Nevada Mountain. Available Terrestrial Photography (TP) used as validation dataset (red dots) over the control area throughout the validation period (2009–2013). validationdataset(reddots)overthecontrolareathroughoutthevalidationperiod(2009–2013). 3. Methods 3. Methods Binary and fractional snow cover maps were derived, respectively, from (1) normalized Binaryandfractionalsnowcovermapswerederived,respectively,from(1)normalizeddifference difference indexes analysis and (2) spectral mixture analysis for each one of the selected Landsat indexesanalysisand(2)spectralmixtureanalysisforeachoneoftheselectedLandsatscenesshowed scenes showed in Figure 2. These images were pre-processed following the standard methods used inFigure2. Theseimageswerepre-processedfollowingthestandardmethodsusedinthisareaby in this area by Pimentel et al. (2012) [24]. Pimenteletal. (2012)[24]. 3.1. Landsat Pre-Processing The different stages in this pre-processing include a radiometric calibration, and atmospheric, saturation and topographic corrections. Angular correction is not applied since the surface is RemoteSens.2017,9,995 5of17 3.1. LandsatPre-Processing Thedifferentstagesinthispre-processingincludearadiometriccalibration,andatmospheric, saturation and topographic corrections. Angular correction is not applied since the surface is consideredLambertian. AlthoughinrealitysnowsurfaceisnotLambertian,thisassumptiondoesnot introducesignificanterrorswhentheremotesensorsarenadirviewingwithafixeddirection. Thisis thecaseofTMandETM+sensor,whicharenadirviewingandhaveanfixedincident,approximately 30◦,beingtheanisotropycoefficientcloseto1[32–34]. The radiometric coefficients summarized in [35] were applied for the radiometric calibration. TheatmosphericcorrectionwasperformedbytheDarkObjectSubtraction(DOS)methodusedin manysimilaranalyses[36,37]. ThismethodretrievesthesurfacereflectancebyassumingaLambertian surfaceandcloudlessatmosphericconditions,anditconsidersallthescatteringeffectsinthescenetobe thesameasthoseofablackbodypresentinthescene[38];thedarkobjectisselectedfromtheminimum radiancevalueofthehistogrammadeupfromatleasta200-pixelsub-setinthescene[39]thatmust excludethosepixelsshadowedbytheterrainroughness. Moreover,fixedvaluesforthedownwelling transmittanceparametersoftheatmosphereforeachbandareadopted[40],beingboththeupwelling atmospherictransmittanceandthediffuseirradianceneglected. DOS-basedmethodsconstituteagood alternativetothemorecomplexRadiativeTransferenceCodes(RTCs)whentheatmosphericoptical propertiesthattheyrequirearenotfullyavailableorhaveaquestionablequality[41]. SeveralbandsofLandsatscenesareradiometric-saturatedduetotheradiometricconfiguration ofthesensors. Snowconstitutesatmosta5%oftheanalyzedLandsatscenesandthus,thesensors arenotspecificallycalibratedforsnow,whateverthemainlanduseis. Thissaturationisespecially relevantduringthewinter,whenthehighestdifferencesbetweenthesnowandtherestoflandcovers inthescenearefound. Tocorrectthissaturation,amultivariablecorrelationanalysisbetweenbandsis employedtorecoverthesnowsaturatedpixels[42]. AC-correctionalgorithm[43]bymeansofalandcoverseparation[44]wasappliedastopographic correctiontoremovetheeffectsoftheterrainroughnessontheimage. Again,theLambertiansurface assumptionallowstheobtainingofalinearfitbetweentheilluminationangleandthedifferentbands reflectance. Additionally,thediffuseirradianceistakenintoaccountbyasemi-empiricalestimation oftheCfactor. Inordertoconsiderthemultiplereflectivepropertiesofthedifferentsoilcovers,the pixelsareclassifiedasbaresoilorvegetatedareasbyusingtheNormalizedDifferenceVegetation Index(NDVI). 3.2. SnowCoverMaps 3.2.1. BinarySnowCoverMaps Thealgorithmforderivingbinarysnowcovermapsisbasedonthephysicalpropertiesofasnow coverthroughouttheelectromagneticspectrum. Snowhasverydifferentextremevaluesinthevisible (highreflectance)andinfraredregions(lowreflectance),sothataNormalizedDifferenceSnowIndex (NDSI)hasbeendefinedforeachpixeloverathresholdaltitude(linkedtotheminimumheightin whichsnowcanbefound)bycomparingtheindividualelectromagneticresponsesinthesetworegions ofagivenpixel[45]. ForLandsatTMandETM+scenes,thespectralbandsthatcorrespondwiththese tworegionsareband2(0.52–0.60µm)andband5(1.55–1.75µm). Theindexisdefinedasfollows: band2−band5 NDSI= (1) band2+band5 The discrimination between covered and non-covered pixels is done based on two threshold values: NDSI>0.15andband1>0.06(0.45–0.52µm),adoptedtodetectsnowundertheparticular characteristicsofsnowinMediterraneanregions[46]. RemoteSens.2017,9,995 6of17 3.2.2. FractionalSnowCoverMapsfromSpectralMixtureAnalysis Thisalternativealgorithmprovidesanestimatedvalueofthesnowcoverfraction(SCF)ineach pixel,basedontheassumptionoftheglobalreflectanceofamixedpixel(apixelmadeupofdifferent typesofsurfaces)beingalinearcombinationoftheindividualreflectancevaluesofthesurfacespresent inthepixel(endmembers). Thus,thisendmembers-spectralmixtureanalysis(SMA)[21,47]expresses Remote Sens. 2017, 9, 995 6 of 17 thereflectanceineachpixelafterthepre-processing,asthelinearcombinationofthereflectancevalues fromeacphresspenetc itnr athlee npdixmel e(emndbmeremgibveersn). bTyhuEsq, uthaist ieonndm(2e)m, bers-spectral mixture analysis (SMA) [21,47] expresses the reflectance in each pixel after the pre-processing, as the linear combination of the reflectance values from each spectral endmember gNiven by Equation (2), ∑ NDSIRS,λ = (cid:2898)FiRλ,i+ελ (2) NDSIR =(cid:3533)i F R +ε (2) (cid:2903),(cid:2971) (cid:2919) (cid:2971),(cid:2919) (cid:2971) (cid:2919) whereFiisthefractionoftheareaofendmemberiinagivenpixel;Rλ,iisthereflectanceofendmemberi where F is the fraction of the area of endmember i in a given pixel; R is the reflectance of atwavelengthλ(cid:2919)obtainedafterthepre-processingsteps;Nisthenumbero(cid:2971)f,(cid:2919)spectralendmemberstaken endmember i at wavelength λ obtained after the pre-processing steps; N is the number of spectral intoaccoeundnmt;eamnbderεsλ taiksetnh ientroe saicdcouuanlte; rarnodr εat itsh theew reasvideuleanl egrtrhorλ ata tshseo wciaavteeldentgotht hλe afsitsoocfiattheed Nto tehned fimt embers (cid:2971) consideroefd thien Nth eenadnmaelmysbiesr.s Tcohnesmideertehdo idn rtheeq uaniraelyss,ifsi.r Tsth,et omestehloedct rtehqeuisriegs,n fiifriscta, tnot seenledctm theem sbigenrisficinantth estudy areaandenodbmtaeimnbtheresi rini nthdei vsitduudya lasrpeae catnrdu mob,taainnd thseeicro innddi,vtiodusaoll vspeetchtreumF, vaanldu esescfoonrd,e atoc hsoplvixe etlhien Fth escene. i (cid:2919) Thrveaeluseigs nfoifri ecaacnht peinxdelm ine tmheb secresnwe. ereidentifiedinthestudyarea:(a)puresnow,(b)vegetation(brush Three significant endmembers were identified in the study area: (a) pure snow, (b) vegetation creepingvegetation)and(c)rocks(predominantly,phyllites). Theirspectrumswereobtainedfroma (brush creeping vegetation) and (c) rocks (predominantly, phyllites). Their spectrums were obtained digitalspectrallibrary(http://speclab.cr.usgs.gov/)(Figure3). Theleast-squaresfittoF issolvedin from a digital spectral library (http://speclab.cr.usgs.gov/) (Figure 3). The least-squares fit to iF is (cid:2919) eachpixseollwveidth ina eraecfhle pctixivele wNitehw at orneflmecetitvheo Nde.wTthoen rmeseuthltosdf. rTohme rtheseuSltMs fAromgo thbee ySMonAd gtoh ebedyiosncrdi mthien ationof snow,sindcisecriitmailnloawtiosni dofe nsntiofwic,a stiinocne oitf amlloixwesd idpeinxteilfsica(wtiohne nof tmheixyedo cpciuxrelas n(wdhwenh ethreeyt hoecycuar raenldo cwahteedre) andthe studyofththeye iarrceo lnotcraitbedu)t iaonnd ttoheth setusdnyo wof cthoevire rcoanrteraibiuntiothne tos ttuhde ysnsoitwe oconvderi fafererae nint ttihme estsucdayl essit.e on different time scales. Figure3F.i(gAur)eE 3v. o(Alu)t iEovnolouftitohne oafv tehrea gaevdersangeodw scnoovwe rcofrvaecr tfiroanctiinonS iienr rSaieNrrae vNaedvaadMa oMuonutanitnaianb aobvoeveth teheth reshold altitudetohfre1s0h0o0ldm alttihturdoeu gofh 1o0u0t0 tmhe thsrtouudgyhopuetr tihoed s(t2u0d0y0 p–e2r0io1d3 )(2f0r0o0m–20b1o3t)h frboimn abroyth( gbrienyaryd o(gtsre)ya dnodtsf)r actional and fractional (black crosses) algorithms, and (B) the associated standard deviation values, together (blackcrosses)algorithms,and(B)theassociatedstandarddeviationvalues,togetherwiththeirdifference. with their difference. 3.2.3. Sn3o.2w.3.C Sonovwer CMovaepr sMVaaplsi dVaaltiidoantion TheresTuhltes rfersoumlts fbroomth bsontho wsnocwov ceorverre rtertireivevaallm meetthhooddss frformom LaLnadnsadt sTaMt TanMd EaTnMd+E wTeMre+ vawlideraetevd alidated using the 10-m snow cover maps estimated from TP over the control area (Figure 1C) selected in the usingthe10-msnowcovermapsestimatedfromTPoverthecontrolarea(Figure1C)selectedinthe study area. studyarea. RemoteSens.2017,9,995 7of17 HighResolutionSnowCoverMapsfromTerrestrialPhotography Snow cover maps from TP are usually obtained in a two-step process [9]: (a) georeferencing and (b) snow detection. The first one is achieved following some basic principles of computing design[48,49]withthesupportofaDigitalElevationModel(DEM)ofthetargetarea. Theresultisa functionthatrelatesthetwo-dimensionalelements(pixels)inthephotowiththethree-dimensional elements(points,centersofeachcell)intheDEM[26]. Thesecondstepinvolvesanunsupervised k-meansalgorithmthatdistinguishesbetweencoveredandnon-coveredpixels. Thefinalresultisa snowcovermapstimeserieswiththesamespatialresolutionoftheDEMandthetemporalresolution oftheTPacquisitionprocess. TPimagescanbeapowerfuldatasourcethatiseasilyadaptedtothe temporalandspatialresolutionofthestudiedprocessesundermonitoring. PerformanceIndicatorsoftheSnowCoverMapAlgorithms Virtual fractional 30 × 30 m2 snow maps are obtained from the binary 10 × 10 m2 snow maps resulting from the TP analysis, and they are used as “ground truth” to test the 30 × 30 m2 snowcovermapsobtainedfromLandsatanalysisbybothalgorithms,binaryandspectralmixture approaches. Thedifferentmetricsemployedtoevaluatetheperformanceofeachmethod[28]aregiven byEquations(3)–(6). Firstly,metricstotestthecorrectlocationofthepixelsareused: RP precision= (3) RP+WP RP recall= (4) RP+WN RP+WN accuracy= (5) RP+RN+WP+WN whereRPrepresentsthenumberofrightpositives(snowinbothTPandLandsatpixels);RNrepresents thenumberofrightnegatives(nosnowinbothTPandLandsatpixels);WPrepresentsthenumber ofwrongpositives(snowintheLandsatpixelandno-snowintheTPpixel);andWNrepresentsthe numberofwrongnegatives(no-snowintheLandsatPixelandsnowintheterrestrialpixel). Finally,theRootMeanSquareError(RMSE)isalsoprovidedintheanalysisoftheSMA: (cid:118) RMSE= (cid:117)(cid:117)(cid:116)1 ∑N[SCFTP(j)−SCFLandsat(j)]2 (6) N j=1 All these metrics are calculated for the area in each Landsat image associated to the mask calculatedusingTPoverthecontrolarea(Figure1C). 4. Results ThissectionshowstheSCFevolutioninthestudyareaduringthestudyperiodusingbothbinary andfractionalanalysis. TheresultsofthevalidationofbothmethodologiesusingTPatthecontrol areaarealsodescribed. 4.1. SnowCoverMapSeriesfromLandsatAnalysis Figure3showstheaverage(Figure3A)andstandarddeviation(Figure3B)oftheSCFduringthe studyperiodinthestudyarea(altitudesabove1500m). SCFaverageandstandarddeviationfollow parallel trends for both methodologies, with mean values of 0.13 m2 m−2 and 0.11 m2 m−2 for the averageSCF,and0.20m2m−2and0.23m2m−2forthestandarddeviation,forthebinaryandfractional approaches,respectively. Ageneraloverestimationofthebinarymethodcanbeobserved,beinghigher duringtheaccumulationphases,especiallyforheavysnowfalleventsthataffectareaswheresnowin notusuallyfound,whichreachesareaswherethesnowisnotusuallypresent(e.g.,12January2003and RemoteSens.2017,9,995 8of17 Remote Sens. 2017, 9, 995 8 of 17 6MarJcahnu2a0r0y5 2w00i3t handdi f6f eMreanrcche s20b0e5t wweitehn dbifofethremnceetsh boedtwoleoegni beostahb mouetth0o.d1omlo2gimes− a2b)o.uTth 0e.1t mhr2e msh−2o).l dThvea lues usedttohrdesishcorlidm vinalauteest uhseepdr teos deniscceriomfisnnaotew thwe eprreesoebntcaei noef dsnionwth weesroeu otbhtearinnefda cine tinhet hsoeustthuedrny faarceea in[4 t6h]e, with study area [46] ,with higher altitude predominance; this very likely overestimates the presence of higheraltitudepredominance;thisverylikelyoverestimatesthepresenceofsnowonthewholedomain snow on the whole domain of Sierra Nevada. These differences are smaller during the melting ofSierraNevada. Thesedifferencesaresmallerduringthemeltingperiods,inwhichtheaverageSCF periods, in which the average SCF seems to be more equally represented by both methodologies. seemstobemoreequallyrepresentedbybothmethodologies. Nevertheless,thestandarddeviation Nevertheless, the standard deviation over these periods (Figure 3B) shows a variable value, with a overtheseperiods(Figure3B)showsavariablevalue,withageneraloverestimationofthebinarymaps, general overestimation of the binary maps, with a mean difference of 0.04 m2 m−2. Despite the with a mean difference of 0.04 m2 m−2. Despite the observed overestimation, both methodologies observed overestimation, both methodologies produce similar average values during the study produpceerisoidm tihlaatr satevmer afrgoemv dailfufeersendtu srpinatgiatlh deissttruibduytiopnesr,i owdhothsea tmsetaenm afnrdo mstadnidfaferdre dnetvsipataiotina lvdaliustersi baruet ions, whossehmoweann ina nFidgusrtae n4d. a rddeviationvaluesareshowninFigure4. FigurFeig4u.rDe i4s.t rDibisutrtiibountioofn tohfe thmee maneaann adndst astnadndaradrdd deevviiaattiioonn ooff tthhee SSCCFF (m(m2 2mm−2)− o2v)eor vtheer tshtuedsyt uardeya area durindgutrhinegs tthued sytupdeyr ipoedri2o0d0 200–0200–12301u3s uinsignga ab bininaarryy aanndd aa ffrraaccttiioonnaal lalaglogroitrhitmh.m . The local mean SCF value shows similar spatial patterns from both methodologies. In general, ThelocalmeanSCFvalueshowssimilarspatialpatternsfrombothmethodologies. Ingeneral, fractional maps present lower SCF values, being the higher differences between both approached fractional maps present lower SCF values, being the higher differences between both approached found at the higher elevations located in the southwestern area, and at the lower elevations in the foundnoartththeaestheirgnh aerreae; ltehvea btiinoanrsy lmoceathteoddoilnogtyh eressouultsth inw eexscteesrsn snaorewa ,ina tnhde samttahlle vlaollweyesr. Oelne voantei ohnansdi,n the northtehaes ftierrsnt zaorneea ;retphreesbeinntasr aynm areetah wodhoerloe gthyer sensouwlt spienrseisxtecnesces issn hoiwghienr; tchoenssemquaellnvtlayl,l leoynsg.eOr mneolntiengh and, thefircsytclzeos ntaekree pplraecsee anntds tahneraer iesa aw hihgehreer tphreobsanboilwityp oefr oscisctuernrecnecies ohf imghixeerd; cpoixnesles q(puiexneltsl yc,olmonpogseerdm bye lting cyclessntoawke anpdla ncoe sannodw)t.h Oenre thise oathheigr hhaenrdp, rtohbe asebciolintyd zoofnoec ccounrsrteitnuctees oafndm aixreead wphiexreel sth(ep sinxoewls icso vmerpy osed sporadic and associated to heavy snowfalls, which enhances the presence of mixed pixels, too. The bysnowandnosnow). Ontheotherhand,thesecondzoneconstitutesandareawherethesnowis local standard deviation distribution for the study period confirm this hypothesis, and shows a high verysporadicandassociatedtoheavysnowfalls,whichenhancesthepresenceofmixedpixels,too. spatial variability for the fractional method; it also provides a clear elevation fringe where the Thelocalstandarddeviationdistributionforthestudyperiodconfirmthishypothesis,andshowsa appearance of mixed pixels dominates the distribution of the snow in this mountainous range. highspatialvariabilityforthefractionalmethod;italsoprovidesaclearelevationfringewherethe appea4r.2a.n Scneowof Cmovixere Mdappi xVeallsiddatoiomn ifnroamte Tsetrhreestdriiaslt rPihboutotgioranphoyf thesnowinthismountainousrange. Landsat SCF maps were validated from the analysis of terrestrial pictures (assumed as “ground 4.2. SnowCoverMapValidationfromTerrestrialPhotography truth”) obtained over a control area (Figure 1C) during 2009–2013, following the method described Lina nSdecstaiotnS C3.F Fmigaupres 5wAe rsehovwalsi dtharteeed dfrifofmeretnhte eaxnamalpylseiss ooff ttheer rSeCstFr imalappisc toubrteasin(eads sfuromme dthae sth“rgereo und truth”m)eothbotadisn (ebdinoavrye ranadc ofrnatcrtoiolnaarle aalg(oFriigthumres,1 aCn)dd tuerrriensgtr2ia0l 0p9i–ct2u0r1e3) ,fofor lrleopwreinsegnttahteivme settahgoeds odfe tshcer ibed in Secstnioown s3e.asFoing:u croem5pAletseh sonwows tchorveeer, dbiefgfeinrnenintge oxfa tmhep slepsrinogf tmheeltSinCgF, amnda pensdo obft athine emdefltrionmg ctyhcele.t hree The improvement in the snow cover detection is clearly observed from the left to the right of the methods(binaryandfractionalalgorithms, andterrestrialpicture)forrepresentativestagesofthe figure (binary-fractional-TP), being the TP capable of capturing small patched patterns, which are snowseason: completesnowcover,beginningofthespringmelting,andendofthemeltingcycle. The commonly found in these mountain regions. Figure 5A also shows the loss of accuracy of the binary improvementinthesnowcoverdetectionisclearlyobservedfromthelefttotherightofthefigure (binar y-fractional-TP),beingtheTPcapableofcapturingsmallpatchedpatterns,whicharecommonly foundinthesemountainregions. Figure5Aalsoshowsthelossofaccuracyofthebinarymethodas themeltingperiodevolves. Threespatialdistributionmetricsarecalculatedtonumericallyvalidate Remote Sens. 2017, 9, 995 9 of 17 RemoteSens.2017,9,995 9of17 method as the melting period evolves. Three spatial distribution metrics are calculated to numerically validate the performance of the Landsat maps using as “ground truth” TP maps: precision, recall and theperformanceoftheLandsatmapsusingas“groundtruth”TPmaps: precision,recallandaccuracy accuracy (Figure 5B). (Figure5B). FFiigguurree5 5.. ((AA)) SSeelleecctteedd eexxaammpplleess ooff ddiiffffeerreenntts sttaaggeessd duurrininggt thhees snnoowws seeaassoonn::a accccuummuullaattiioonn——ccoommpplleettee ccoovveerr ((1100 JJaannuuaarryy 22001111)),, bbeeggiinnnniinngg oof fththee spsprirningg mmeletlintign g(1(61 6JuJnuen 2e021031) 3a)nadn ednden odf othfet hmeemltienlgti n(2g9 (J2u9nJeu n20e0290),0 9u)s,inugsi nthget LheanLdasnadt s(abtin(barinya arnyda nfrdacftriaocntaiol)n mal)etmhoedthoolodgoileosg aiensda TnPd aTtP thate tchoenctroonlt arorelaa.r e(Ba.) (EBv)oElvuotilounti oonf othfeth tehtrheere memeteritcrsic s(p(rperceicsiisoino,n r,erceaclall laanndd aaccccuurraaccyy)) uusseedd dduurriinngg tthhee vvaalliiddaattiioonn ppeerrioiodd ((22000099––22001133)) ffoorr bbootthh mmeetthhooddoollooggiieess ((rriigghhtt));; ddiissttrriibbuuttiioonn ffuunnccttiioonn ((bbooxxpplloott,, tthhee cceennttrraall lliinnee aanndd tthhee uuppppeerr aanndd lloowweerr eeddggeess ooff tthhee bbooxxr reepprreesseennttt thheem meeddiaiann,,7 755tthha anndd2 255ththp peerrcceennttilielessr reessppeeccttiviveellyy;; tthhee bbllaacckk wwhhiisskkeerrss eexxtteenndd ttoo tthhee eexxttrreemmee vvaalluueess ccoonnssiiddeerreedd iinn tthhee aannaallyyssiiss;; aanndd tthhee rreedd ccrroosssseess aarree tthhee oouuttlliieerrss))o offe eaacchhm meettrricicf foorre eaacchhm meeththoodd( l(eleftf)t.). PPrreecciissiioonn ddeessccrriibbeess tthhee ffrraaccttiioonn ooff ppoossiittiivvee ssnnooww mmaappppiinngg rreessuullttss ppiixxeellss tthhaatt ttrruullyy iiddeennttiififieedd ssnnooww)),, tthhaatt iiss,, tthhee rraattiioo bbeettwweeeenn tthhee ppiixxeellss ddeetteecctteedd aass ssnnooww iinn LLaannddssaatt aanndd tthhee ssnnooww ppiixxeellss iinn TTPP.. DDuurriinngg tthhee ssttuuddyy ppeerriioodd,, iittss vvaalluueess rraannggee ffrroomm 00..1155 ttoo 11,, wwiitthh aa mmeeaann vvaalluuee ooff 00..7755,, ffoorr tthhee bbiinnaarryy mmaappss,, aanndd ffrroomm 00 ttoo 11,, wwiitthh aa mmeeaann vvaaluluee oof f0.07.97,9 f,ofro trhteh ferafrcaticotinoanl amlampasp. Ss.imSiimlaril parrepcriesicoisni ovnalvuaelsu aerse obtained using both methodologies during the winter period, which is a slightly higher for the fractional maps. There is not a clear behavior of this metric during the melting period. Remote Sens. 2017, 9, 995 10 of 17 RemoteSens.2017,9,995 10of17 Recall describes the fraction of snow in all the scene that is identified by each method, that is, what fraction of the pixels detected as snow in TP are also detected by Landsat. It ranges from 0 to 1, warietho ba tmaineaend vuasliuneg obfo 0th.79m, efothr othdeo lboigniaersyd muraipnsg, athned wfrionmte r0.p1e5r tioo d1,, wwhitihc ha imsaeasnli gvhaltulye hoifg 0h.e8r6,f oinr tthhee cfraascet ioofn athlem farpacst.iTonhaerl emisapnos.t Raeccleaallr vbaelhuaevsi oarreo fatghaiisnm heitgrhicerd udruinrigngth tehme ewltiinntgerp, ebruiot di.n this case the fractiRonecaal lmldaepssc srhiboewsst hbeetftrearc mtioentriocf psrnaocwticianllayl lint haell socfe tnhee tdhaatteiss. i dentifiedbyeachmethod,thatis, whatFfirnaacltliyo,n acocfutrhaecyp irxeeplrsedseentetcs taeldl tahses pnioxwelsi ncoTrPreactrley aidlseondtiefiteedct, ewdhbayteLvaenr dthsea ts.itIutaratinogne iss f(rsonmow0 otor 1n,ow-sintohwa)m; seoa, nthvisa lmueetorifc0 a.7ls9o, ftoakretsh einbtoin aacrcyomunatp tsh,ea nnod-sfrnoomw 0p.i1x5eltso. 1A,cwcuitrhacaym raenagnevs aflruoemo 0f.055.8 t6o, i1n, wthiethc aas emoefatnh eoff r0a.c8t5i,o fnoarl tmhea pbsi.nRareyc amllavpasl,u aensda rferoamga i0n.8h tiog h1e, rwdiuthri na gmtheaenw oifn t0e.9r,6b, ufotri nththe ifsracactsieonthael mfraacptsio. nFaralcmtiaopnsals hmoawpss beexthteibrimt ae tcrliecapr rbaectttiecra lalycciunraalclyo tfhtahne dbianteasr.y maps, not only during winter but also dFuinrainllgy ,tahcec murealctyinrge ppreersioendtss. aTlhlitsh ies ppiaxretliscucolarrrleyc trleyleidveanntti fiine dre,gwiohnaste wvehretrhe ethsiet upaetrisoinstiesn(csen oofw thoer snnoo-swnpoawck); isso n,toht icsomnteitnruicoaulss,o atnadk edsififnetroenatc csonuonwt athcceunmou-slnaotiwonp/mixeelltsi.ngA cccyuclreasc yocrcaunrg desurfirnogm a0 g.5i5vetno 1se,awsoitnh. ameanof0.85,forthebinarymaps,andfrom0.8to1,withameanof0.96,forthefractional mapsF.igFurarcet i6o snhaolwmsa pthsee exvhoibluittiaocnl eoafr tbheet taevrearaccguer SaCcyF tvhaalnueb ionvaerry tmhea pcos,nntrootlo anrleya dfruormin gthwe iLnatenrdbsuatt malsaopsd aunrdin gthteh veamlidealttiinogn pTePr idoadtsa.seTt,h tiosgiesthpearr twiciuthla rtlhye raeslseovcainatteidn dreisgpioernssiown hgerraepthh. eLpanerdssiastte bnicnearoyf athned sfnraocwtiponacakl misanpos tpcroensetinntu goloubs,ala RndMdSEif fvearelunetss onfo 0w.1a2c mcu2 mmu−2l aatniodn 0/.0m9e mlti2n mg−2c,y rcelsepseoccticvuerlyd, udruinrignga tghive esntusdeya spoenr.iod. Table 2 shows the absolute and relative error values for each Landsat map and date. GFiegnuerreal6lys,h tohwe sfrtahcetieovnoallu mtioenthoofdt hreesauvletsr ahgaevSeC aF lovwaleure eorvreorr tthheanco tnhter oblianraeray,f rboemintgh ethLisa nmdosraet rmelaepvsanant dfotrh senvoawli dcoavtieorn aTrePad laotwaseert ,thtoagne 8th5%er owf itthhet hceonatsrsoolc aiaretead. Tdhisep leartsei omnegltrianpgh s.taLgaensd osbattabinin athrye wanodrsftr arcetpiorensaelnmtaatpiosnp, raess eenxtpgelcotebdal, wRMhaStEevvearl uaelgsoorfit0h.1m2 ims 2semle−c2teadn; dho0w.09evme2r, mth−e2 b,irnesapryec atpivperlyo,adchu rcianng pthreodstuucdey lapregrei oodv.eTraebstliem2asthioonws sotfh tehea bssnoolwut ecoavnedr,r ewlahtiicvhe iesr nroort vfoauluneds wfoirthe atchhe Lfraancdtisoantaml mapetahnoddd. ate. FFiigguurree 66.. EEvvoolluuttiioonn ooff SSCCFF oovveerr tthhee ccoonnttrrooll aarreeaa tthhrroouugghhoouutt tthhee vvaalliiddaattiioonn ppeerriioodd ((22000099––22001133)) ((rriigghhtt)).. DDiissppeerrssiioonn ggrraapphh ccoommppaarriinngg tthhee eevvaalluuaatteedd SSCCFF oobbttaaiinneedd ffrroomm LLaannddssaatt wwiitthh tthhee vvaalliiddaattiioonn ddaattaasseett oobbttaaiinneedd ccaallccuullaatteedd uussiinngg TTPP ((lleefftt)).. 4.3. Snow Cover Evolution from SMA Snow Maps Generally, the fractional method results have a lower error than the binary, being this more relevAancctofordrisnngo two cthoev eprreavreioaulso wreesrutlhtsa, nth8e5 %SMoAf tmheetchoondtr oplroavreida.esT ah ebelattteerm spelattiinagl rsetapgreesseonbtatatiionnt hoef twhoe rssntorewp rthesreonutgahtioount, tahsee sxtpuedcyte adr,ewa.h Matoerveeorvaelrg, otrhieth qmuiicsks cehleacntegdes; hino wtheev senr,otwhepabcinka ursyuaapllpyr fooaucnhdc ainn tphreosdeu lcaetiltaurdgeeso avreer aedsteiqmuaattieolnys roefptrheesesnntoewd bcyo vtehre, wrehsuiclhtinisgn motixfeodu npdixwelist,h wthiteh far arcetailoinstaicl meveothluotdio.n of the snow captured by the sequence of fractional maps. 4.3. SnowCoverEvolutionfromSMASnowMaps Figure 7 represents the evolution of the average SCF for different elevation bands over the Sierra NevaAdcac omrdouinngtationtohuesp rraenvgioeu ussriensgu lftrsa,ctthieonSaMl Amampest.h Tohdep rreolvaitdioenssahbipet tbeertwspeaetnia lSrCeFp raensedn etaletivoantioofnt haet tshneo wstutdhryo aurgehao cuatnt bhee astsusedsyseadre, ab.oMtho lroecoavlleyr, atnhde qguloibckalclyh,a fnrgoems itnhetshee rsensouwltsp.a Bceklouwsu 1a7ll5y0f mou an.ds.li.n, stnhoeswe vlaetriytu rdaereslayr aepapdreoqauchaetesl aynr eapvreersaegnet SeCdFb vyatlhuee roefs 0u.5lt;i nbegtwmeixeend 17p5ix0–el2s2,5w0 imth aa.sr.le.a, SliCstFic veavluoelus tairoen hoigfhtheer bsnuot wnecvaeprt ureraecdhb tyheth ceosmeqpuleetnec ceoovfefrr aocft tiohne aalrmeaa. p2s2.50 m a.s.l. is estimated as the threshold elevation for wFhiigcuhr eSC7Fre epqruesael notrs vtheerye vcloolsuet itoon 1o afrteh efoauvnedra egveeSrCy Fyfeoarr,d wiffiethre snntoewle vpaetrisoinstbeannced sinocvreerasthinegS wieritrha aNlteivtuaddea; mthoeu inntfaliuneonucse roafn gheiguhs isnlogpferas ctthioant aclomndaiptiso.nTsh tehree lsantoiown sahcicpubmetuwlaeteionnS CstFabainlidtye lienv tahteio hniagthtehset bstaunddys,a ersepaeccaianllbye wahsseens cseodm,pbloetthe cloocvaelrl yisa rnedacghleodb,a clalyn, afrlosom bteh oebseserrevseudl tfsr.oBme ltohwe r1e7s5u0ltsm, par.os.vl.i,nsgn tohwe SvMeryAr aapreplryoaapchp rtooa bche ecsaapnabalvee oraf gceapStCuFrivnagl utheeosfe 0lo.5c;abl ectownedeintio17n5s0. – 2250ma.s.l.,SCFvaluesarehigher butneverreachthecompletecoverofthearea. 2250ma.s.l. isestimatedasthethresholdelevation forwhichSCFequalorverycloseto1arefoundeveryyear,withsnowpersistenceincreasingwith altitude;theinfluenceofhighslopesthatconditionsthesnowaccumulationstabilityinthehighest bands,especiallywhencompletecoverisreached,canalsobeobservedfromtheresults,provingthe SMAapproachtobecapableofcapturingtheselocalconditions.

Description:
Fluvial Dynamics and Hydrology Research Group, Andalusian Institute for .. area and obtain their individual spectrum, and second, to solve the Fi
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.