UC Irvine UC Irvine Previously Published Works Title Quantifying renewable groundwater stress with GRACE. Permalink https://escholarship.org/uc/item/2t59q0k8 Journal Water resources research, 51(7) ISSN 0043-1397 Authors Richey, Alexandra S Thomas, Brian F Lo, Min-Hui et al. Publication Date 2015-07-01 DOI 10.1002/2015wr017349 Peer reviewed eScholarship.org Powered by the California Digital Library University of California PUBLICATIONS Water Resources Research RESEARCH ARTICLE Quantifying renewable groundwater stress with GRACE 10.1002/2015WR017349 AlexandraS.Richey1,BrianF.Thomas2,Min-HuiLo3,JohnT.Reager2,JamesS.Famiglietti1,2,4, Special Section: KatalynVoss5,SeanSwenson6,andMatthewRodell7 The50thAnniversaryofWater ResourcesResearch 1DepartmentofCivilandEnvironmentalEngineering,UniversityofCalifornia,Irvine,California,USA,2NASAJetPropulsion Laboratory,CaliforniaInstituteofTechnology,Pasadena,California,USA,3DepartmentofAtmosphericSciences,National TaiwanUniversity,Taipei,Taiwan,4DepartmentofEarthSystemScience,UniversityofCalifornia,Irvine,California,USA, KeyPoints: 5DepartmentofGeography,UniversityofCalifornia,SantaBarbara,California,USA,6ClimateandGlobalDynamics (cid:2)Renewablegroundwaterstressis quantifiedintheworld’slargest Division,NationalCenterforAtmosphericResearch,Boulder,Colorado,USA,7HydrologicSciencesLaboratory,NASA aquifers GoddardSpaceFlightCenter,Greenbelt,Maryland,USA (cid:2)Characteristicstressregimesare definedtodeterminetheseverityof stress Abstract Groundwaterisanincreasinglyimportantwatersupplysourceglobally.Understandingthe (cid:2)Overstressedaquifersaremainlyin rangelandbiomeswithsome amountofgroundwaterusedversusthevolumeavailableiscrucialtoevaluatefuturewateravailability.We croplands presentagroundwaterstressassessmenttoquantifytherelationshipbetweengroundwateruseandavail- abilityintheworld’s37largestaquifersystems.Wequantifystressaccordingtoaratioofgroundwateruse Correspondenceto: toavailability,whichwecalltheRenewableGroundwaterStressratio.Theimpactofquantifyingground- J.S.Famiglietti, waterusebasedonnationallyreportedgroundwaterwithdrawalstatisticsiscomparedtoanovelapproach [email protected] toquantifyusebasedonremotesensingobservationsfromtheGravityRecoveryandClimateExperiment (GRACE)satellitemission.Fourcharacteristicstressregimesaredefined:Overstressed,VariableStress, Citation: Human-dominatedStress,andUnstressed.Theregimesareafunctionofthesignofuse(positiveornega- Richey,A.S.,B.F.Thomas,M.-H.Lo, J.T.Reager,J.S.Famiglietti,K.Voss, tive)andthesignofgroundwateravailability,definedasmeanannualrecharge.Theabilitytomitigateand S.Swenson,andM.Rodell(2015), adapttostressedconditions,whereuseexceedssustainablewateravailability,isafunctionofeconomic Quantifyingrenewablegroundwater capacityandlandusepatterns.Therefore,wequalitativelyexploretherelationshipbetweenstressand stresswithGRACE,WaterResour.Res., 51,5217–5238,doi:10.1002/ anthropogenicbiomes.Wefindthatestimatesofgroundwaterstressbasedonwithdrawalstatisticsare 2015WR017349. unabletocapturetherangeofcharacteristicstressregimes,especiallyinregionsdominatedbysparsely populatedbiometypeswithlimitedcropland.GRACE-basedestimatesofuseandstresscanholistically Received7APR2015 quantifytheimpactofgroundwateruseonstress,resultinginbothgreatermagnitudesofstressandmore Accepted29MAY2015 variabilityofstressbetweenregions. Acceptedarticleonline16JUN2015 Publishedonline14JUL2015 1.Introduction Freshwaterisafundamentalresourcefornaturalecosystemsandhumanlivelihoods,andaccesstoitiscon- sidered a universal human right [United Nations Committee on Economic, Social and Cultural Rights, 2003]. Waterresourcesareunderpressuretomeetfuturedemandsduetopopulationgrowthandclimatechange, bothofwhichmayalterthespatialandtemporaldistributionoffreshwateravailabilityglobally[Do€ll,2009; Kundzewicz et al., 2008; Kundzewicz and Do€ll, 2009; Famiglietti, 2014]. As the distribution of freshwater changes, the global population without access to potable water will likely increase [Alcamo et al., 2007; Kundzewiczetal.,2008].Itiscriticaltounderstandhowhumanandnaturaldynamicsareimpactingavailable waterresourcestodeterminelevelsofsustainableuseandtoensureadequateaccesstofreshwater. Surfacewateristheprincipalfreshwatersupplyappropriatedtomeethumanwaterdemandglobally,butthe importanceofgroundwaterisincreasingassurfacesuppliesbecomelessreliableandpredictable[Kundzewicz VC2015TheAuthors. andDo€ll,2009]andgroundwaterisincreasinglyrelieduponduringtimesofdroughtasaresilientwatersup- Thisisanopenaccessarticleunderthe ply source [Famiglietti, 2014]. Groundwater is currently the primary source of freshwater for approximately termsoftheCreativeCommons twobillionpeople[Alley,2006;KundzewiczandDo€ll,2009].Despiteitsimportance,knowledgeonthestateof Attribution-NonCommercial-NoDerivs large groundwater systems is limited as compared to surface water [Foster and Chilton, 2003; Famiglietti, License,whichpermitsuseand distributioninanymedium,provided 2014],largelybecausethecostandcomplexityofmonitoringlargeaquifersystemsisoftenprohibitive. theoriginalworkisproperlycited,the The United States government has identified water stress as a potential driver of regional insecurity that useisnon-commercialandno cancontributetoregionalunrest[IntelligenceCommunityAssessment(ICA),2012].Waterstressanalysespro- modificationsoradaptationsare made. videaframeworktounderstandthedynamicsbetweenhumanandnaturalsystemsbydirectlycomparing RICHEYETAL. QUANTIFYINGRENEWABLEGROUNDWATERSTRESSWITHGRACE 5217 Water Resources Research 10.1002/2015WR017349 water availability to human water use. There are three main approaches to quantify physical water stress [Rijsberman,2006]:(1)aper-capitawateravailabilityratio[Falkenmark,1989],(2)acomparisonbetweenuse andavailabilityeitherasthedifferencebetweenthetwo[Wadaetal.,2010,2011;vanBeeketal.,2011]oras theratio[Alcamoetal.,1997;Vo€ro€smartyetal.,2000;OkiandKanae,2006;Do€ll,2009],and(3)theevaluation of the socio-economic and physical factors that impact stress [Sullivan et al., 2003]. This study defines renewable groundwater stress (RGS) following the second approach as the ratio of groundwater use to groundwateravailabilityinequation(1)[Alcamoetal.,1997]. use RGS5 (1) availability The simplicity of equation (1) provides a proverbial ‘‘two edge sword.’’ On one hand, renewable ground- waterstresscanbecalculatedwithestimatesoftwovariables.Ontheother,inconsistentassumptionsand differingestimatesanddefinitionsofuseandavailabilityresultinvariablecalculationsofrenewablestress. Previousstudiesdefinedwateruseaswaterwithdrawalsandquantifiedusewithnationalwithdrawalstatis- tics in which a single value represents per-capita water use for an entire country [e.g., Vo€ro€smarty et al., 2000], thus assuming water is used homogenously within a country. The statistics represent groundwater withdrawalsbutdonotaccountfortheimpactofwithdrawalsonthestateofthesystem.Additionally,the definitionofavailabilityhasfocusedontherenewablefluxesofthedynamicwatercycle[UNWorldWater AssessmentProgram(WWAP),2003],includingriverrunoffandgroundwaterrecharge[Lvovich,1979;Falken- marketal.,1989;Posteletal.,1996;Shiklomanov,2000;WWAP,2003;ZeksterandEverett,2004].Onlyrecently havestressstudiesevolvedfromimplicitlyincludinggroundwaterasbaseflowinmodeledrunoff[Alcamo etal.,1997;Vo€ro€smartyetal.,2000;OkiandKanae,2006],toexplicitlyquantifyingstresswithgroundwater withdrawalstatistics,modeledrecharge[Do€ll,2009;Wadaetal.,2010],andnonrenewablegroundwateruse fromcompiledwithdrawalstatistics[Wadaetal.,2011;vanBeeketal.,2011]. Theserecentadvancesingroundwaterstressanalysishaveimprovedourglobalunderstandingofground- water availability to meet current water demands. However, groundwater withdrawal statistics are often outdatedandmeasuredbyinconsistentmethodsbetweengeopoliticalboundaries[ShiklomanovandPen- kova,2003;Alley,2006].Thus,theacquisitionofaccuratewaterusedatarepresentsamajorchallengeand an impediment to accurate estimates of water stress and associated security threats. Remote sensing has been shown to greatly improve estimates of groundwater depletion [Colesanti et al., 2003; Schmidt and Bu€rgmann,2003;Lanarietal.,2004;Rodelletal.,2009;Famigliettietal.,2011;Vossetal.,2013;Castleetal., 2014], specifically, with the Gravity Recovery and Climate Experiment (GRACE) satellite mission from the NationalAeronauticsSpaceAdministration(NASA)[Tapleyetal.,2004]. Thisstudyestimatesgroundwaterstress fromequation(1)andassesses thevariabilityinstressthatresults from different definitions of groundwater use. In this study, groundwater availability is defined as ground- waterrecharge. Weassess groundwaterusewith groundwater withdrawalstatistics,Q inequation(2), and thenredefineuseasthetrendinsubsurfacestorageanomaliesusingremotesensingapproaches,dGW/dtin equation (2). Equation (2) represents the water balance in a system with groundwater withdrawals, Q, asintroducedbyBredehoeftandYoung[1970].Theequationshowsthatwhenpumpingoccurs,thereisan increase in recharge (DR ) from its natural state (R ) and/or a decrease in discharge (DD ) from its natural 0 0 0 state(D )[Theis,1940].Lohman[1972]defined(DR -DD )ascapture.Ifequilibriumhasbeenreachedsuch 0 0 0 thatcapturebalancesQthendGW/dt,thechangeingroundwaterstorage,iszero.However,storagelosswill occur while Q exceeds capture and an increase in storage will occur where capture exceeds Q. The time scalesrequiredtoreachequilibrium,especiallyforlargeaquifersystems,canbeuptohundredsofyears[Bre- dehoeftandYoung,1970]andwellbeyondourstudyperiodofJanuary2003toDecember2013. dGW ðR 1DR Þ2ðD 1DD Þ2Q5 (2) 0 0 0 0 dt Groundwater sustainability, defined as the continued development of groundwater resources such that negativeenvironmental,societal,oreconomicimpactsdonotoccur,requiresabalanceofwithdrawalsand replenishmentovertime [Alley et al., 1999].Therefore, a stress studyis inherently a sustainabilitystudy to understandthebalancebetweensupplyanddemand.SimplydefiningQasameasureofuseindependent fromthe remainingcomponentsof equation(2)cannot fully characterize theimpact ofQ on thestateof thesystemandtherefore,itssustainability.Instead,weusethetrendinsubsurfacestorageanomaliesover RICHEYETAL. QUANTIFYINGRENEWABLEGROUNDWATERSTRESSWITHGRACE 5218 Water Resources Research 10.1002/2015WR017349 Figure1.StudyaquifersbycontinentbasedontheWHYMAPdelineationsoftheworld’sLargeAquiferSystems[WHYMAPandMargat, 2008].Thenumberrepresentstheaquiferidentificationnumberforeachaquifersystem.Theworld’slargestlakesandreservoirsarebased ontheGlobalLakeandWetlandDatabaseLevel-1lakesandreservoirs[LehnerandDo€ll,2004]. ourstudyperiodtoquantifydGW/dtinequation(2)toholisticallyaccountforwithdrawals,capture,andchanges inR andD duetonaturalfactorssuchasdrought.Forexample,anegativetrendindGW/dtindicatestherate 0 0 ofwithdrawals,representedasanegativevalueofQ,isgreaterthantherateofcapture,(DR -DD).Anegative 0 0 trend in dGW/dt can also indicate that D exceeds R during the study period due to natural variability (i.e., 0 0 drought). By categorizing characteristic stress regimes (Section 2.1) we can holistically assess the impact of ground- wateruseonthestateofanaquifersystem.Understandingtheimpactofdepletionongroundwaterstor- age is crucial for quantifying groundwater stress in a way that accounts for an aquifer’s response to withdrawals and natural climate variability. Our results illustrate that stress will not occur in every region where withdrawals exceed recharge, as is implied when groundwater withdrawal statistics are used to defineuse.Instead,wefindthatstressoccursinthesystemswherewithdrawalsexceedcapturesuchthat storagelossoccurs. 2.DataandMethods Renewable groundwater stress (RGS) is computed for the 37 largest global aquifer systems in the World- wideHydrogeologicalMappingandAssessmentProgram(WHYMAP)[WHYMAPandMargat,2008](Figure1 andTable1)forastudyperiodofJanuary2003toDecember2013.WHYMAPwascreatedin2000asajoint projectbetweentheUnitedNationsEducational,Scientific,andCulturalOrganization(UNESCO),theCom- mission for the Geological Map of the World (CGMW), the International Association of Hydro-geologists (IAH),theInternationalAtomicEnergyAgency(IAEA)andtheGermanFederalInstituteforGeosciencesand NaturalResources(BGR).TheWHYMAPnetworkservesasacentralrepositoryandhubforglobalground- water data, information, and mapping with a goal of assisting regional, national, and international efforts towardsustainablegroundwatermanagement.Assuch,theWHYMAPnetworkcontainsthebestavailable globalaquiferinformation.Wedefineourstudyareaasthe37‘‘LargeAquiferSystemsoftheWorld’’[WHY- MAP and Margat, 2008]. These systems represent the international consensus on the boundaries of the world’smostproductivegroundwatersystemsthatcontainthemajorityoftheworld’saccessible ground- watersupply[Margat,2007;MargatandvanderGun,2013].Additionally,theareaofeachoftheseaquifer systemsisconsistentwiththespatialresolutionrequiredbyGRACEobservations(Section2.2.2). First,weintroducecharacteristicstressregimesthatdefinefourtypesofstressthatcanoccurbasedonthe sign of water use and availability (Section 2.1). Two methods to quantify use, the numerator presented in equation(1),areintroducedbasedonspatiallydistributedwithdrawalstatistics(Section2.2.1)andthetrend inGRACE-basedsubsurfacestorageanomalies(Section2.2.2).Modeledgroundwaterrechargeisintroduced RICHEYETAL. QUANTIFYINGRENEWABLEGROUNDWATERSTRESSWITHGRACE 5219 Water Resources Research 10.1002/2015WR017349 as the definition of groundwater availability Table1.StudyAquifersWiththeAquiferIdentificationNumber (Section 2.3), the denominator in equation (1). AquiferID AquiferName The RGS ratio is computed based on equation 1 NubianAquiferSystem(NAS) (1) (Section 2.4). Finally, anthropogenic biomes 2 NorthwesternSaharaAquiferSystem(NWSAS) 3 Murzuk-DjadoBasin areintroduced(Section2.5)toanalyzetheland- 4 Taoudeni-TanezrouftBasin use patterns that influence different stress 5 Senegalo-MauritanianBasin regimesandseveritylevels.Simplificationsand 6 Iullemeden-IrhazerAquiferSystem 7 LakeChadBasin assumptions are made in our approach that 8 SuddBasin(UmmRuwabaAquifer) allow for a consistent method of assessment 9 Ogaden-JubaBasin across 37 diverse aquifer systems. We utilize 10 CongoBasin 11 UpperKalahari-Cuvelai-UpperZambeziBasin remote sensing observations, described in Sec- 12 LowerKalahari-StamprietBasin tion2.2.2,andmodeloutputsincethequantity 13 KarooBasin and quality of available in situ observations in 14 NorthernGreatPlainsAquifer 15 Cambro-OrdovicianAquiferSystem thestudyaquifersishighlyvariable. 16 CalifornianCentralValleyAquiferSystem 17 OgallalaAquifer(HighPlains) 2.1.CharacteristicStressRegimes 18 AtlanticandGulfCoastalPlainsAquifer The Renewable Groundwater Stress (RGS) ratio 19 AmazonBasin 20 MaranhaoBasin ofgroundwaterusetogroundwateravailability 21 GuaraniAquiferSystem isusedtodefinegroundwaterstress,according 22 ArabianAquiferSystem to equation (1) [Alcamo et al., 1997]. Water 23 IndusBasin 24 Ganges-BrahmaputraBasin stressindicatorsfollowingtheU.N.waterstress 25 WestSiberianBasin scale (Table 2) [UN/WMO/SEI, 1997] are based 26 TungussBasin on traditional approaches where use in equa- 27 Angara-LenaBasin 28 YakutBasin tion(1)isnegativeandavailabilityestimatesas 29 NorthChinaAquiferSystem annual recharge in equation (1) are positive. 30 Song-LiaoBasin Stress regimes, however, can theoretically 31 TarimBasin 32 ParisBasin exhibit four end-member behaviors similar to 33 RussianPlatformBasins those of Weiskel et al. [2007] (Figure 2): 34 NorthCaucasusBasin Unstressed, Variable Stress, Human-dominated 35 PechoraBasin 36 GreatArtesianBasin Variable Stress and Overstressed. These end 37 CanningBasin members encompass the spectrum of out- comes given positive (gaining) or negative (depleting) estimates of use and positive (recharging)ornegative(discharging)estimatesofannualrecharge.Thus,quitesimply,theratioinequation (1)representsthepercentofrechargethatisusedtomeetwaterdemands. IntheOverstressedcase,theRGSratioispositivesincebothrechargeandusearenegative.Thiscase,result- ingfromacombinationoflargewithdrawalsandnegativerecharge,impliesgroundwaterminingoractive depletion.Inshallowaquifers,negativeornegligiblerechargeislargelydrivenbygroundwatersupported evapotranspiration,especiallyinsummermonthsandduringdryperiods[YehandEltahir,2005a,b;Yehand Famiglietti,2009;Szilagyietal.,2013;Koiralaetal.,2014].Scanlonetal.[2003]foundthatinsemiaridtoarid regions,thevadosezoneisonlyinfluencedbysurfaceclimateforcingstoadepthofabout3m.Capillary rise, which we term negative recharge, beneath this depth is the dominant subsurface moisture flux [Coudrain-Ribstein et al., 1998; Walvoord et al., 2002; De Vries and Simmers, 2002; Scanlon et al., 2003; Walvoord and Scanlon, 2004]. Aquifer systems undergoing Overstressed conditions may trigger or exacer- batelandsubsidence[GallowayandRiley,1999;Bawdenetal.,2001;KonikowandKendy,2005],ecosystem habitat destruction [Stromberg et al., 1996; Gleeson et al., 2012] and aquifer compaction Table2.UnitedNationsRenewableStressScalea [Gallowayetal.,1998;KonikowandKendy,2005] StressRatio StressLevel that limit future aquifer productivity and 0–0.1 Low rechargepotential. 0.1–0.2 Moderate 0.2–0.4 High The Variable Stress case follows the criticality >0.4 Extreme ratio of previous stress studies [Alcamo et al., aThestressratiorepresentsthedimensionlessRenewable 1997;Vo€ro€smartyetal.,2000],whereuseisneg- GroundwaterStressRatiousedinthisstudy. ative(withdrawals)andrechargeisenteringthe RICHEYETAL. QUANTIFYINGRENEWABLEGROUNDWATERSTRESSWITHGRACE 5220 Water Resources Research 10.1002/2015WR017349 Figure2.Characteristicstressregimesthatencompassthepossiblebehaviorofstressgivenpositive(gaining)ornegative(extracting/depleting)usebehaviorandpositive(recharging) ornegative(capillaryfluxes)groundwateravailability.Theschematicsrepresentintegratedbehavioracrossanaquifersystem. system, resulting in a negative RGS ratio. There are four levels of Variable Stress according to the United Nations(Table2).Consideraratiolessthanone.Therateofuseislessthanthenaturalrechargerate;how- ever, small perturbations to the system can result in negative environmental impacts, for example, by decreasing base flow and ultimately drying streams, marshes, and springs [Sophocleous, 1997; Bredehoeft, 1997;Faunt,2009].Aratiowithanabsolutevaluegreaterthanonerepresentsuseratesthatexceednatural recharge rates and increases the rate of capture. This condition can create the potential for water quality impactsifrechargeisinducedfromcontaminatedsources[Theis,1940]. Both the statistics-based method and the GRACE-based method to estimate use can result in the Over- stressed and Variable Stress cases. Only the GRACE-based estimate can quantify the remaining Human- dominatedVariableStressandUnstressedcases.Inthesecases,thestudyaquifershavepositivetrendsin subsurface storageanomaliesandaretherefore‘‘gaining.’’WeconsidertheHuman-Dominatedcaseto be theresultofapositivetrendfromGRACEandnegativerecharge.Naturalbehaviorofthesesystemswould be a loss of groundwater through capillary flux to the root zone [Coudrain-Ribstein et al., 1998; Walvoord etal.,2002;DeVriesandSimmers,2002;Scanlonetal.,2003;WalvoordandScanlon,2004;Loetal.,2008]or RICHEYETAL. QUANTIFYINGRENEWABLEGROUNDWATERSTRESSWITHGRACE 5221 Water Resources Research 10.1002/2015WR017349 bydirectevapotranspiration[YehandEltahir,2005a,b;YehandFamiglietti,2009;Szilagyietal.,2013;Koirala et al., 2014]. A combination of induced capture and human practices may be contributing to the gaining trend in groundwater storage, for example, from artificial recharge using surface water diversions in irri- gated areas. The Unstressed case has a positive trend in groundwater storage anomalies and positive recharge.Thiscaseisonlyconsideredunstressedfromawaterquantityperspective.Inducedcapturemay drawadditionalrechargefromsourcesthatcouldnegativelyimpactwaterquality. 2.2.WaterUse 2.2.1.CompiledWithdrawalStatistics WefollowmethodssimilartoVo€ro€smartyetal.[2000]andWadaetal.[2010]tospatiallydistributeavailable groundwater withdrawal statistics into the study aquifers, representing Q (equation (2)). First, we compile national groundwater withdrawal statistics from multiple sources in cubic kilometers per year [FAO, 2003; IGRAC,2004;MargatandvanderGun,2013].Thestatisticsrepresentgroundwaterwithdrawalsacrossallsec- tors of water use (agriculture, domestic, industrial) and provide percentages of groundwater use for each sector.Weusethesepercentagestodeterminetherateofagricultural,domestic,andindustrialwithdrawals asafunctionofthenationalwithdrawalrate.Themajorityofthesepercentagesarebasedsolelyonsectoral withdrawals as a function of total groundwater withdrawals, although percentages based on total with- drawalsareusedwhengroundwaterpercentagesareunavailable. Nationallevelagriculturalstatisticsaredistributedspatiallybasedonthe0.5830.58gridded‘‘WaterWith- drawals for Irrigation’’ data set [GWSP Digital Water Atlas, 2008a], which provides the theoretical water demand for irrigated crops as a function of climate. The single national agricultural statistic is distributed basedonthepercentofnationalirrigationdemandineachgridcellbyassuminggroundwaterwithdrawals occursincloseproximityto whereitis neededto meetdemand[Wadaetal.,2010].Similarly, thesumof nationaldomesticandindustrialwithdrawalstatisticsisdistributedbygriddedpopulationdensity,following Vo€ro€smarty et al. [2000], based on the 0.58 x 0.58 gridded ‘‘Population (Total)’’ [GWSP Digital Water Atlas, 2008b]dataset.Theresultingspatiallydistributedagricultural,domestic,andindustrialwithdrawalratesare summed within each grid cell and scaled up to 18 x 18 spatial resolution, to match the resolution of the remote sensing observations. Basin-averaged groundwater withdrawals are computed for the 37 study aquifersasthestatistics-basedestimateofuse. 2.2.2.GRACEObservations RemotesensingobservationsfromtheGravityRecoveryandClimateExperiment(GRACE)satellitemission [Tapleyetal.,2004]areusedtoquantifyanovelestimateofgroundwateruse,dGW/dtinequation(2).The GRACEsatellites,ajointmissionbetweentheNationalAeronauticsandSpaceAdministration(NASA)inthe United States and the Deutsche Forschungsanstalt fu€r Luft und Raumfahrt (DLR) in Germany, measure monthlychangesintotalterrestrialwaterstoragebyconvertingobservedgravityanomaliesintochanges ofequivalentwaterheight[RodellandFamiglietti,1999;Syedetal.,2008;Ramillienetal.,2008]. TheCenterforSpaceResearchattheUniversityofTexasatAustinprovidedthe132monthsofGRACEgrav- itycoefficientsfromRelease-05datausedinthisstudy.Gravityanomaliesforthistimeperiod(January2003 to December 2013) underwent processing to obtain an estimate of the average terrestrial water storage anomaliesforeachofthe37studyaquifers[SwensonandWahr,2002;Wahretal.,2006;SwensonandWahr, 2006]. Aquifer-specific scaling factors were used to account for the lost signal power from truncating the gravity coefficients (at degree and order 60) and filtering for unbiased estimates of mass change in each aquifersystem[VelicognaandWahr,2006]. DS 5DðSW1SWE1SM1GWÞ (3) N1A N1A DSUB 5DS 2DðSW1SWEÞ (4) N1A N1A N Thetotalwaterstoragechangescanbepartitionedintocomponentsresultingfromnaturalchange(N)or anthropogenicchange(A)accordingtoequation(3)whereSisthetotalterrestrialwaterstorageanomalies fromGRACE,SWissurfacewater,SWEissnowwaterequivalent,SMissoilmoisture,andGWisgroundwater. IndividualstoragecomponentscanbeisolatedfromthetotalGRACEsignalwithsupplementaldatasetsto represent the remaining storage terms [Rodell and Famiglietti, 2002; Swenson et al., 2006; Yeh et al., 2006; Strassberg et al., 2007, 2009; Rodell et al., 2004b, 2007, 2009; Swenson et al., 2008; Famiglietti et al., 2011; RICHEYETAL. QUANTIFYINGRENEWABLEGROUNDWATERSTRESSWITHGRACE 5222 Water Resources Research 10.1002/2015WR017349 Scanlonetal.,2012;Castleetal.,2014].Weisolatesubsurfaceanomalies(SUB)ascombinedanomaliesinsoil moisture(SM)andgroundwater(GW)inequation(4). Modeloutputorinsituobservationsarerequiredtoisolatechangesinastoragecomponentfromthetotal GRACE terrestrial water storage anomalies. We use monthly output from three models within the NASA Global Land Data Assimilation System (GLDAS) modeling system including Noah [Chen et al., 1996; Koren etal.,1999],VariableInfiltrationCapacity(VIC)[Liangetal.,1994],andCommunityLandModel2.0(CLM2.0) [Daietal.,2003]tocomputemonthlymeangriddedoutputat18x18spatialresolutionforcanopysurface water (CAN) and SWE. Surface water storage in lakes, reservoirs, and river channels is not included in the GLDAS modeling system [Rodell et al., 2004a]. We estimate SW as the sum of CAN from the three-model GLDASensembleandroutedsurfacewaterdischarges(RIV)fromofflineoutputfromCLM4.0[Olesonetal., 2010].TheCLM4.0modelrunisdescribedinSection2.3.Themodel-basedstorageanomaliesofSWEand SW are subtracted from the GRACE storage anomalies to estimate monthly GRACE-derived subsurface anomaliesforeachaquifer. Errorinthesubsurfaceanomaliesiscomputedaccordingtoequation(5)foreachmonth(i),assuminginde- pendencebetweencomponenterrors.Aquiferspecificsatellitemeasurementandleakageerrorfromproc- essingthegravityanomaliesiscomputedfollowingWahretal.[2006]toestimateerrorinthetotalGRACE signal.VarianceofSWEandCANwasdeterminedusingthethree-modelensemble,whichweassumerepre- sentstheuncertaintyinducedbytheestimateerrorandmodelstructuralerror.TheU.S.GeologicalSurvey errorsforhydrologicmeasurementsrangefromexcellent(5%error)tofair(15%error)[U.S.GeologicalGeo- logicalSurvey(USGS),2014];therefore,forourevaluation,weassumemeasurementerrorof50%inrouted discharge to represent a conservative uncertainty in GRACE subsurface variability. It is the assumed the errors in equation (5) are independent. Area-weighted basin averages of SWE and SW are computed for each of the study aquifers to account for latitudinal differences in gridded area. The temporal mean is removedfromthebasinaveragestocomputeanomaliesinSWEandSW. qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi r 5 r2 1r2 1r2 1r2 (5) DSUB;i S;i SWE;i CAN;i RIV;i Wearguethattheanthropogenicimpactsontotalwaterstorageanomaliesinthestudyaquifersaredomi- natedbysubsurfacevariations,particularlyfromgroundwater,astheseaquiferscontainthemajorityofpro- ductive and available supply for groundwater use [Margat and van der Gun, 2013]. Therefore, anthropogenicchangesinsurfacewaterandsnowwaterarenegligibleatthestudy’sspatialscale.Natural waterstocksorbuiltinfrastructurearenecessarytocapturewatersuppliesforhumanuse[Vo€ro€smartyetal., 2000], for example, lakes or reservoirs, particularly for surface water and snow meltwater. However, only 0.5% of the study aquifers’ land area is overlain with lakes and reservoirs larger than 50 km2 [Richey and Famiglietti, 2012], which is significantly smaller than the 18 spatial resolution of this study. We therefore assumenegligibleanthropogenicinfluencesofsurfacewaterandsnowinthestudyaquifersascompared togroundwater. 1 Y5b 1b wx1E where w5 (6) i 0 1 i i i i r2 DSUB;i Themajorityofsoilwaterstoragetrendsarenotsignificantglobally[SheffieldandWood,2008;Dorigoetal., 2012].Therefore,weuseaconservativeestimateofgroundwatertrendsbyattributingobservedsubsurface trendssolelytogroundwaterstorage.Weconsiderthegroundwatertrendtoberepresentativeofthenet fluxofwaterstorageresultingfromgroundwateruse(DGW ),includingtheaquiferresponsetopumping N1A aspredictedbyTheis[1940],andnaturalclimaticvariability.Annualtrendmagnitudes,DGW ,wereesti- trend matedusingtheweightedregressioninequation(6)toquantifythechangeingroundwaterstoragefrom equation(2).Theweights,w,areafunctionofthevarianceinthemonthlyestimatesofsubsurfacestorage i anomalies. Aquifers with a negative coefficient were considered to be depleting in aquifer storage while positive coefficients were considered to be recharging systems. Here we evaluate only the magnitude of trendswithoutregardtotrendsignificance. 2.3.WaterAvailability:GroundwaterRecharge Renewablegroundwateravailabilityisdefinedasmeanannualgroundwaterrecharge,followingDo€ll[2009] andWadaetal.[2010].Themajorityoflandsurfaceparameterizationsdonothaveanexplicitrepresentation RICHEYETAL. QUANTIFYINGRENEWABLEGROUNDWATERSTRESSWITHGRACE 5223 Water Resources Research 10.1002/2015WR017349 of groundwater and are therefore unable to capture both positive and negative recharge fluxes [Yeh and Famiglietti,2009].Instead,groundwaterrechargeisfrequentlyestimatedasmodeldrainagefromthebottom ofasoilcolumn[e.g.,Rodelletal.,2004a]orastheresidualofprecipitationandevapotranspiration[e.g.,Weis- keletal.,2007].Theseapproachesassumethefluxisalwayspositive(downward)andthataveragerechargeis approximately equal to base flow. These assumptions are not always true, particularly in semiarid and arid regions where capillary fluxes can be the dominant subsurface flux as opposed to downward recharge [DeVriesandSimmers,2002].Assumingrechargeisalwayspositivemayfalselyrepresentthelevelofstressin aregion. DirectmodeloutputfromtheCommunityLandModelversion4.0[Olesonetal.,2010]isusedtoestimate naturalrecharge, R ,in equation (2). CLM4.0 is thelandsurface model usedwithin theCommunity Earth 0 SystemModel(CESM)[Olesonetal.,2010].CLM4.0isoneofthefewlandsurfacemodelsthatincludesan unconfinedaquiferlayercoupledtothebottomsoillayerandisthereforeabletocapturebothpositiveand negative recharge. Recharge is computed as the vertical flux between the aquifer and bottom soil layer, such that positive recharge flows downward as gravity drainage and negative recharge flows upward by capillaryfluxes[Olesonetal.,2008;Loetal.,2008]. CLM 4.0 was run in an offline simulation driven by atmospheric forcing data including precipitation, near surfaceairtemperature,solarradiation,specifichumidity,windspeed,andairpressure.Threehourlyforcing datafromGLDASVersion-1[Rodelletal.,2004a]wereusedtodrivethemodelata1htimestep,whichis theninterpolatedtomonthlymodeloutput.Themodelwasrunat0.98x1.258spatialresolutionandlinearly interpolated to 18 x 18. Basin averaged recharge is computed for each study aquifer as an area-weighted averageacrossallgridcells.Themeanannualrechargeiscomputedfromthemonthlyvaluesforeachstudy aquiferforourstudyperiodofJanuary2003toDecember2013.ThespatialdistributionofmodeledCLM4.0 recharge results are comparable to previous modeled recharge estimates using the PCR-GLOBWB global hydrologicalmodel[Do€ll,2009;Wadaetal.,2010]. 2.4.GroundwaterStress 2.4.1.RenewableStress:CriticalityRatio Following the traditional water stress approach [Alcamo et al., 1997; UN/WMO/SEI, 1997; Vo€ro€smarty et al., 2000; Oki and Kanae, 2006; Do€ll, 2009], we define Renewable Groundwater Stress (RGS) as the ratio of groundwaterusetorenewablegroundwateravailabilityinequation(1).Thisdimensionlessratiorepresents thepercentofrenewablewaterbeingusedtomeethumanwaterdemand. Mean annual recharge, R , from Section 2.3 is used to calculate renewable groundwater availability. It has 0 been repeatedly cited that recharge cannot be used to define renewable available groundwater and that onlyapercentofrecharge(lessthanorequaltotherateofcapture)canbeconsideredavailableforsustain- ableuse[Bredehoeft,1997;Sophocleous,1997;Bredehoeft,2002;Zhou,2009].Thus,thisstudyusessimulated recharge to represent the maximum available natural renewable groundwater and is therefore the most optimisticestimateofavailablesuppliesandresultingstress.Additionally,systemswithnegativemodeled meanannualrechargeareconsideredtolackrenewablesupplies.Inthiscase,thereisnorechargeavailable toreplenishthesystemandthelevelofstressisdeterminedbythemagnitudeofusealone. Groundwater use is quantified by groundwater withdrawal statistics, Q , in equation (7), as described in stat Section2.2.1andthetrendinGRACE-derivedsubsurfaceanomaliesinequation(8),DGW ,asdescribed trend inSection2.2.2,toassessthedifferenceinstressbetweentheestimationschemes. Q RGS 5 stat (7) stat R 0 DGW RGS 5 trend (8) GRACE R 0 2.5.ApproximatingAnthropogenicInfluences Weintroduceanadditionaldatasettobetterunderstandthedrivingfactorsbehinddifferinglevelsofuse andstress.Theworldmapofanthropogenicbiomes[EllisandRamankutty,2008],isusedtodeterminethe dominantlandusetypebyaccountingforbothlanduse/landcovertypesandthedegreetowhicharegion is inhabited. There are six broad characteristic biome types including Dense Settlements, Villages, RICHEYETAL. QUANTIFYINGRENEWABLEGROUNDWATERSTRESSWITHGRACE 5224 Water Resources Research 10.1002/2015WR017349 Figure3.Anthropogenicbiometypeswithinthestudyaquifers.Biometypesaregriddedat0.08338spatialresolutionfromEllisand Ramankutty[2008]. Croplands,Rangeland,Forested,andWildlands,withatotalof21subcategorieswithinthesetypes.Thesub- categoriesbreakdowntheanthropogenicbiometypesintodifferentlevelsofremoteandpopulatedareas that are dominated by rain or irrigated area (Figure 3). The six most dominant anthropogenic biome typesareassignedforeachstudyaquiferbasedonthepercentofaquiferareacoveredbyeachbiometype (TableA1inAppendixA). 3.Results 3.1.GroundwaterUse:StatisticsandGRACE AcomparisonbetweenGRACE-depletionmethods(Figure4)andstatistics-basedmethods(Figure5)showhow theGRACE-basedapproachincorporatestemporalvariationsinuseoverthestudyperiodwhereasthestatistics approach quantifies use as a static value in time. Figure 4 illustrates the GRACE-depletion method that uses model output to isolate groundwater storage changes from the GRACE observations of total terrestrial water storage anomalies. The figure presents the time series components of the water budget for the Ganges- Brahmaputra Basin (Aquifer #24, ‘‘Ganges’’). By comparing the modeled storage anomalies to the GRACE- derived groundwater anomalies, it is clear that changes in groundwater storage are dominating the GRACE observationsofdecliningterrestrialwaterstorage.Figure5presentsthestatistics-basedmethodtoestimateuse asgroundwaterwithdrawalstatisticsthatarespatiallydistributedbypopulationdensityandtheoreticalwater withdrawals for irrigation. The influence of geopolitical boundaries on the method is clear as national level groundwater withdrawals can differ between neighboring countries. In the United States, the national with- drawalrateis111.7cubickilometersperyear(km3/yr)versusCanada’swithdrawalrateof1.87km3/yr[Margat andvanderGun,2013].Table3summarizestheratesofusebasedonGRACEandthestatistics. Figure6illustratesthebasin-averagesofgroundwater useas determinedbythegroundwaterwithdrawal statistics (Figure 6a) and the GRACE-derived trend in groundwater storage anomalies (Figure 6b) within eachstudyaquifer.ThedifferencesbetweenFigure6aandFigure6bresultsolelyfromthedefinitionofuse inequation(1).InFigure6a,usestatisticsareconsistentlynegativeandthusdonotrepresentthefullvari- ability in stress regimes as illustrated in Figure 2. The GRACE-derived trend captures the dynamics of groundwaterusebyintegratingthehumanandnaturalimpactsofuseongroundwaterstorage,including changesinrechargeanddischargeregimesandwatermanagementpractices.Asaresultoftheintegrated storagechanges,aquiferscanhaveeitherapositiveornegativetrendingroundwaterstorageanomaliesas observed from GRACE. There are 16 study aquifers that have positive subsurface trends from GRACE- deriveduseand21thatarenegative. There are five aquifers with negative rates of use where the statistics-based withdrawal rate exceeds the GRACE-based estimates. These include the Ganges, the Indus Basin (Aquifer #23, ‘‘Indus’’), the Californian RICHEYETAL. QUANTIFYINGRENEWABLEGROUNDWATERSTRESSWITHGRACE 5225
Description: