ebook img

Quantifying Mixing using Magnetic Resonance Imaging. PDF

0.94 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Quantifying Mixing using Magnetic Resonance Imaging.

JournalofVisualizedExperiments www.jove.com VideoArticle Quantifying Mixing using Magnetic Resonance Imaging EmilioJ. Tozzi1,KathrynL. McCarthy1,LoriA. Bacca2,WilliamH. Hartt2,MichaelJ. McCarthy1 1Dept.FoodScienceandTechnology,UniversityofCalifornia,Davis 2CorporateEngineeringandTechnologyLaboratory,Procter&GambleCompany Correspondenceto:[email protected] URL:http://www.jove.com/video/3493/ DOI:10.3791/3493 Keywords:Biophysics,Issue59,Magneticresonanceimaging,MRI,mixing,rheology,staticmixer,split-and-recombinemix, DatePublished:1/25/2012 Citation:Tozzi, E.J.,McCarthy, K.L.,Bacca, L.A.,Hartt, W.H.,McCarthy, M.J. QuantifyingMixingusingMagneticResonanceImaging.J.Vis.Exp. (59),e3493,DOI:10.3791/3493(2012). Abstract Mixingisaunitoperationthatcombinestwoormorecomponentsintoahomogeneousmixture.Thisworkinvolvesmixingtwoviscousliquid streamsusinganin-linestaticmixer.Themixerisasplit-and-recombinedesignthatemploysshearandextensionalflowtoincreasetheinterfacial contactbetweenthecomponents.Aprototypesplit-and-recombine(SAR)mixerwasconstructedbyaligningaseriesofthinlaser-cutPoly(methyl methacrylate)(PMMA)platesheldinplaceinaPVCpipe.MixinginthisdeviceisillustratedinthephotographinFig.1.Reddyewasaddedtoa portionofthetestfluidandusedastheminorcomponentbeingmixedintothemajor(undyed)component.Attheinletofthemixer,theinjected layeroftracerfluidissplitintotwolayersasitflowsthroughthemixingsection.Oneachsubsequentmixingsection,thenumberofhorizontal layersisduplicated.Ultimately,thesinglestreamofdyeisuniformlydispersedthroughoutthecrosssectionofthedevice. Usinganon-Newtoniantestfluidof0.2%Carbopolandadopedtracerfluidofsimilarcomposition,mixingintheunitisvisualizedusingmagnetic resonanceimaging(MRI).MRIisaverypowerfulexperimentalprobeofmolecularchemicalandphysicalenvironmentaswellassample structureonthelengthscalesfrommicronstocentimeters.Thissensitivityhasresultedinbroadapplicationofthesetechniquestocharacterize physical,chemicaland/orbiologicalpropertiesofmaterialsrangingfromhumanstofoodstoporousmedia1,2.Theequipmentandconditions usedherearesuitableforimagingliquidscontainingsubstantialamountsofNMRmobile1Hsuchasordinarywaterandorganicliquidsincluding oils.TraditionallyMRIhasutilizedsuperconductingmagnetswhicharenotsuitableforindustrialenvironmentsandnotportablewithina laboratory(Fig.2).Recentadvancesinmagnettechnologyhavepermittedtheconstructionoflargevolumeindustriallycompatiblemagnets suitableforimagingprocessflows.Here,MRIprovidesspatiallyresolvedcomponentconcentrationsatdifferentaxiallocationsduringthemixing process.Thisworkdocumentsreal-timemixingofhighlyviscousfluidsviadistributivemixingwithanapplicationtopersonalcareproducts. VideoLink Thevideocomponentofthisarticlecanbefoundathttp://www.jove.com/video/3493/ Protocol 1. Mixer design 1. UseaCADprogramtodesignthemixingsectionsofthestaticmixer. TheSARmixeriscomposedofanumberofdifferentplategeometries;thesegeometriesareshowninFig.3.Eachlaser-cutPoly(methyl methacrylate)(PMMA)plateis1.59mmthickandhasarectangularkeyatthebottomsothatitcanbealignedinaPVCpipewithanacrylicrod. Thegeometryissimilartothosedescribedin[3,4],exceptthatthewallsintheexpansionsandcontractionsareformedbyaseriesofdiscrete “staircase”stepsduetothealignmentofdiscreteplatesratherthansmoothdiagonalsurfaces.Althoughthematerialofconstructionhereis PMMAandPVC,opaquenon-metallicmixerscanbeconstructedaswell. 2. Aligntheindividualplatestodeveloptherepeatingunitsofthemixer.Positiontheplatestightlywithina1½inchSchedule40clearPVCpipe. 3. Fig.4illustratesthestaticmixerviewedfromtheside.Noticethattwofluidsenterattheleftsideofthefigure.Theminorcomponent,shown asthedarkregion,entersthroughthenozzle(PlateS,Fig.3)andformsastreamoftheminorcomponentinthe(colorless)major component.TherepeatingunitstartsafterPlateSatthefirstPlateCandextendsdownstreamthroughPlate48,whichisalsoaPlateC.In eachrepeatingunit,thetwofluidsflowinto8platesofopenchannel(PlateC).Thefluidisthenphysicallyseparatedintotwoverticalchannels byeightplatesofPlateI,followedbytheactualmixingsection.Themixingsectionisatotalof16plates,fromupstreamtodownstream: PlatesI,A,B,D,E,F,G,J,J,K,L,M,N,O,P,andH.Thefluidleavesthemixingsectionandflowsinto8platesofPlateH,inwhichfluidis physicallysplitintotwohorizontalchannels.The“H”sectionisfollowedby8platesofopenchannel(PlateC).Thispatternof48platesis repeated6timesinthemixer.TworepeatingunitsareillustratedinFig.4asPlates1-96. 2. Flow system with MR imaging system and a mixer 1. AssembleaflowsystemtopumpCarbopolsolutionthroughthein-linesplit-and-recombinestaticmixer.Beabletocontrolandrecordthe massflowrateofthetestfluids.Inaddition,incorporateapressuretransducerupstreamofthemixertomonitorpressure. Copyright©2012 CreativeCommonsAttributionLicense January2012| 59 |e3493|Page1of8 JournalofVisualizedExperiments www.jove.com 2. Positionthemixerinthemagnet(Fig.5).Themagnetispartofa1Teslapermanent-magnet-basedimagingspectrometer(AspectImaging, IndustrialAreaHevelModi'in,Shoham,Israel),with0.3T/mpeakgradientstrengthThedimensionsofthemagnetenclosureare700x700x 600mm. 3. DopepartoftheCarbopolsolutionwithmanganesechloride(MnCl2).Thiswillbetheminorcomponent.Themajorcomponentisundoped Carbopolsolution.Fig.6illustratesaschematicofflowsystem. 3. Characterization of the test fluid 1. Preparea0.2%w/wCarbopol(TheLubrizolCorporation)solutionbyslowlysiftingaweighedamountofpolymerintodeionizedwaterina stirredtank.Thispolymerfamilyofproductsisbasedoncrosslinkedacrylicacidchemistryandiswidelyusedinpersonalcareandhousehold productsasrheologicalmodifiers.Neutralizethecarbopolsolutionwitha50%NaOHsolutiontopH7;theneutralizationallowsthesolutionto achieveitsmaximumviscosityasthepolymerswellsinwatertoformagel.PrepareasecondcarbopolsolutioncontainingtheMRcontrast agentMnCl2toafinalconcentrationof0.040mM;thissolutionisreferredtoasthedopedtracerfluid. 2. Characterizetheflowbehavior,orrheology,ofthecarbopolsolutionswithaTAInstrumentsAR-G2rheometer(NewCastle,DE)witha standardCouettegeometry(14mmdiam.x42mmheight)atafluidtemperatureof25°C.Forshearviscosity,useasteadystateshear stresssweepfrom0.1500Painlogarithmicmodewith10points/decadeand5%tolerance.Methodsaredescribedin[5]. Inthiswork,therheologicalpropertiesofthetwosolutionswereindistinguishableandareillustratedinFig.7,datawerefittoapowerlawmodel andshowshearthinningbehavior. Characterizetheviscoelasticpropertiesofthe0.2%w/wcarbopolsolutionwithsmallamplitudeoscillatorytesting.Performthedynamictestingat afixedstressof1Pa,whichcorrespondstothelinearviscoelasticregion.Measurestrainoverafrequencysweepfrom628-0.63rad/s(100-0.10 Hz)inlogarithmicmodewith10points/decade. Thestorageandlossmoduli,G’andG”respectively,areshowninFig.8.ThecurvesarecharacteristicofagelsystemwithG’>G”andG’fairly constant[5].Valuesoftan(δ)=G”/G’increasefrom0.05atlowerfrequenciesto0.3−0.5athigherfrequency.Thecorrespondingphaselag(δ) followedthesametrend,withthelimitsbeingδ=0forHookeansolidsandδ=π/2forNewtonianfluids. 3. EvaluatetherelativecontributionofviscousforcestoinertialforcesduringflowusingtheReynoldsnumber.Sincethecrosssectionofeach platevaries,theaverageflowratethroughtheplateandtheReynoldsnumberiscalculatedandgiveninTable1. TheseReynoldsnumbervaluesaremuchlessthan1.0andcharacterizeflowsinwhichviscousforcesdominatetheinertialforces.Inother words,themixingisbylaminarstretchingandshearingratherthanturbulence. 4. MR data acquisition 1. Selectanappropriateradiofrequencycoil. Thisworkusesasolenoidwithfourturns,encasingacylindricalvolume60mmindiameterand60mmlong.ThiscoilcloselyfitsthePVCpipe andachievedagoodsignal-to-noiseratioofthesignal. 2. Runamulti-slicegradientechosequenceandacquireMRimages. Thispulsesequencewaschosensincethesignalintensityissensitivetomaterialspin-latticerelaxationtime.Therelativesignalintensity betweentwomaterialswithdifferentrelaxationtimesiscalculatedfromanequation.Thesignalintensitydifferences,totalacquisitiontimeforthe imagerelativetotheinfluenceofmoleculardiffusionduringtheimageacquisitionallneedtobeconsideredinselectingtheappropriate experimentalparameters.Additionally,theconcentrationofthecontrastagent(MnCl2)ischosensuchthatthesignalintensitychangesresulting fromcontrastagentconcentrationarelinear.TheadditionofMnCl2decreasesthespin-latticerelaxationtime(T1)ofthetestfluidfrom2.998s (undoped)to0.515s(doped).ThedopedCarbopolsolutionappearsbrighterthantheundopedCarbopolsolutionintheimagessincethe intensityishighlyweightedbythespinlatticerelaxationtime.Thepulsesequenceparametersareanechotime(TE)of2msandarepetitiontime (TR)of30ms;thefieldofview(FOV)is64mmper128encodingswhichyieldsanin-planespatialresolutionof0.5mm/voxel.Withthis multi-slicesequence,weacquire32crosssectionalslicesofthickness1.4mmperimagingslice. 5. Imaging the fluid 1. Pumpboththemajorandminorcomponentsthroughthemixeruntilsteadyflowisachieved.Therelativeflowrateofthemajorandminor componentsis10:1.Simultaneouslystopthepumpsandimagethefluidinthemixer.TheMRsequencedoesnotincludeflowcompensation; toavoidmotionartifacts,theimagingisperformedonquiescentliquid.Imagingtimeisontheorderof1-4minutes. 2. Repositionthemixerseveraltimestoimagecylindricalvolumesatdifferentaxiallocations. Inthisstudy,severalcylindricalvolumesofthemixerareimagedandcanbelocatedinFig.9.Thevolumeischosenbyslidingthemixertube axiallythroughthemagnet,untilthedesiredvolumeisinthesweetspotdefinedbythecenteroftheNMRcoilinthecenterofthemagnet. 3. AnalyzetheMRdatawithimageanalysisprocedurestodocumentthespatialdistributionofcomponentconcentrations.Therelationship betweennormalizedsignalintensity(x)andthefractionofdopedfluid(y)inthisstudyisy=1.419x-0.482(R2=0.99).Thisrelationshipis relevanttoanalyzethemixingprocess.ToillustratethepowerofflowvisualizationusingMRI,thefollowingresultsareselectedimagesat differentaxiallocations. 6. Representative Results Figure10illustratesimagesattheslitnozzle(injector)toshowthecrosssectionsasdopedandundopedenterthefirstrepeatingunit.These imagesalsoclearlyshowthedifferenceinsignalintensitybetween100%dopedfluidandundopedfluid. TheSARmixereffectivelyanduniformlysplitsflowasillustratedintheimagesoftheHPlatesdownstreamfromthe1st,2nd,and3rdmixing sections(Fig.11,firstrow).Thenumberofdopedfluid“stripes”doublethrougheachmixingsection.ThesecondrowofFig.11illustratesthe Copyright©2012 CreativeCommonsAttributionLicense January2012| 59 |e3493|Page2of8 JournalofVisualizedExperiments www.jove.com imageanalysisprocedurethatthresholdstheimagesto“1”s(stripes)and“0”s(everythingelse).Theseprocessedimagesclearlyillustratethe increaseofinterfacialareabetweenthedopedandundopedfluidsasthefluidsplitsandrecombines. SequentialimagesthroughthesecondmixingsectionareshowninFig.12.   Table1.Crosssectionalareaofeachplateandaveragevelocitythroughthecrosssection,withcorrespondingReynoldsnumber(Re);defined forapowerlawfluid(PL),usinganequivalentdiameter.   Figure1.Photographtoillustrateflowthroughasplit-and-recombinemixerusingCarbopoldyedredastheminorcomponentandundyed Carbopolsolutionasthemajorcomponent.   Figure2.2Teslasuperconductingmagnet;forsizereference,theconveyorismoving3avocadosintotheimagingregion. Copyright©2012 CreativeCommonsAttributionLicense January2012| 59 |e3493|Page3of8 JournalofVisualizedExperiments www.jove.com   Figure3.PlatetypesandletterdesignationsthatareusedtocreatearepeatingunitintheSARmixer.   Figure4.Schematicofthespilt-and-recombinemixer. Copyright©2012 CreativeCommonsAttributionLicense January2012| 59 |e3493|Page4of8 JournalofVisualizedExperiments www.jove.com   Figure5.1Teslapermanent-magnet-basedimagingspectrometer(AspectImaging).   Figure6.Schematicofflowsystem.   Figure7.Apparentviscosityofthe0.2%Carbopolsolution. Copyright©2012 CreativeCommonsAttributionLicense January2012| 59 |e3493|Page5of8 JournalofVisualizedExperiments www.jove.com   Figure8.Viscoelasticpropertiesofthe0.2%Carbopolsolution.   Figure9.RepeatingunitsoftheSARmixer.   Figure10.Twoimagesattheinjector:theupstreamsectionofthenozzlehasacircularcrosssectionforthedopedfluidwhichgradually becomesaslitattheentrancetothefirstrepeatingunitoftheSARmixer. Copyright©2012 CreativeCommonsAttributionLicense January2012| 59 |e3493|Page6of8 JournalofVisualizedExperiments www.jove.com   Figure11.Fluiddownstreamoffirst,second,andthirdmixingsections,illustratedatPlateH.   Figure12.Sequencesof16sequentialimagesthroughthesecondmixingsection.Pleaseclickheretoseealargerversionoffigure12. Discussion Magneticresonanceimagingisarapidandquantitativemethodforanalysisoffluidmixing.Themeasurementrequiresafewminutestomake andprovidesconcentrationoffluidasafunctionofpositioninthesplit-and-recombinemixer.Thistechniqueissuitableforapplicationtoawide rangeofmixingproblemsandgeometries[6-11].Limitationstothetechniquearethatanonmagneticmixermustbeconstructedandusedinthe MRIequipment,andatleastoneofthematerialsmustprovideasufficientsignalfordataacquisition.AsufficientsignalrequiresanNMRactive nucleiwithasufficientnumberdensity. MRIcanalsobeusedtoquantifymixingofsolidsandliquids,twoliquidswithsignificantlydifferentrheologicalpropertiesaswellasmixingin reactingsystems.ThemixingofsolidsintoaliquidwillyielddifferentimagesthanthoseoftheSARmixer.Inthemixingofsolidsthesolid componentsignaldecaysrapidlyandisnotimaged;hence,thesignalisfromtheliquidonlyandtheconcentrationofsolidisderivedfromthe signallosscomparedtopureliquidsignal. Copyright©2012 CreativeCommonsAttributionLicense January2012| 59 |e3493|Page7of8 JournalofVisualizedExperiments www.jove.com MRImixingimagesprovideanexcellenttestofcomputationalmixingexperiments.Theimagedataprovidesinsightontheimportanceoffluid rheologicalpropertiesanddeviationsfromidealconditions.InFig.12thedeviationsfromideallyuniformlayersoffluidareevident.Theimages obtainedthusprovidedetaileddatasetssuitablefordirectcomparisonwithnumericalpredictionsofcomplexflows. Disclosures AuthorM.McCarthyisaconsultanttoAspectImaging,Ltd.AuthorsL.BaccaandW.HarttareemployeesofProcter&Gamble,Co. Acknowledgements TheauthorswouldliketothankAspectImaging(IndustrialAreaHevelModi'in,Shoham,Israel)forthepulsesequencesusedinthestudy.This workwaspartiallyfundedbyanawardfromtheCenterforProcessAnalyticalChemistryoftheUniversityofWashington(Seattle,WA,USA),as wellasin-kindcontributionsandfinancialsupportfromProcterandGambleCompany. References 1. Callaghan,P.T.PrinciplesofNuclearMagneticResonanceMicroscopy.ClarendonPress,Oxford,(1991). 2. McCarthy,M.J.MagneticResonanceImaginginFoods.Chapman&Hall,NewYork,NY,(1994). 3. Sluijters,R.Mixer.UnitedStatesPatentNo.3182965(1965). 4. vanderHoeven,J.C.,Wimberger-Friedl,R.,&Meijer,H.E.H.Homogeneityofmultilayersproducedwithastaticmixer.Polymer.Eng.Sci.41 (1),32-42(2001). 5. Steffe,J.F.RheologicalMethodsinFoodProcessEngineering.2ndEd.FreemanPress,EastLansing,MI,(1996). 6. Lee,Y.,McCarthy,M.J.,&McCarthy,K.L.Extentofmixinginatwo-componentbatchsystemmeasuredusingMRI.J.Food.Eng.50(3), 167-174(2001). 7. McCarthy,K.L.,Lee,Y.,Green,J.,&McCarthy,M.JMagneticresonanceimagingasasensorsystemformultiphasemixing.AppliedMagnetic Resonance.22(2),213-222(2002). 8. Choi,Y.J.,McCarthy,M.J.,&McCarthy,K.L.MRIforprocessanalysis:Co-rotatingtwinscrewextruder.JournalofProcessAnalytical Chemistry.9(2),72-84(2004). 9. Rees,A.C.,Davidson,J.F.,Dennis,J.S.,Fennell,P.S.,Gladden,L.F.,Hayhurst,A.N.,Mantle,M.D.,Muller,C.R.,&Sederman,A.J.The natureoftheflowjustabovetheperforatedplatedistributorofagas-fluidisedbed,asimagedusingmagneticresonance.ChemicalEng.Sci. 61(18),6002-6015(2006). 10. Stevenson,R.,Harrison,S.T.L.,Mantle,M.D.,Sederman,A.J.,Moraczewski,T.L.,&Johns,M.L.Analysisofpartialsuspensioninstirred mixingcellsusingbothMRIandERT.Chem.Eng.Sci.65,1385-1393(2010). 11. Benson,M.J.,Elkins,C.J.,Mobley,P.D.,Alley,M.T.,&Eaton,J.K.Three-dimensionalconcentrationfieldmeasurementsinamixinglayer usingmagneticresonanceimaging.Exp.Fluids.49,43-55(2010). Copyright©2012 CreativeCommonsAttributionLicense January2012| 59 |e3493|Page8of8

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.