Quantifying Ice Wedge Volumes in the Canadian High Arctic by Michael Templeton Department of Geography McGill University Montreal, Quebec, Canada April 2017 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Master of Science © 2017 Michael Templeton Abstract: Ice wedges are prominent and precarious features in continuous permafrost environments. As the Arctic regions begin to warm, concern over the potential effects of ice wedge melt-out has become an immediate issue, receiving much attention in periglacial literature. This study estimates the volume of ice wedges over large areas of polar desert in the Canadian High Arctic (Eureka on Ellesmere Island (N80°01’, W85°43’) and at Expedition Fiord on Axel Heiberg Island (N79°23’, W90°59’)) through the use of high resolution imagery and the improved capabilities of Geographic Information Systems (GIS) tools. The approach used for this study is similar to that of one performed in Siberia and Alaska by Ulrich et al, (2014). Utilizing the Ulrich et al. technique, this study detected and mapped ice wedge polygons from satellite imagery using ArcGIS. The average width and depth of these ice wedges were obtained from a combination of field observation and data from previous studies at the same location. Furthermore, the assumptions used in the analysis of ice wedge volume have been tested, namely that trough width is representative of ice wedge width, and wedge ice content. Results indicate that the approach used by Ulrich et al, (2014) is transferrable to the Canadian High Arctic, and that ice wedge volumes range between 3 - 6.6% of the total volume of materials in the upper 6.5 meters. These findings confirm previous studies and their importance is made all the more evident by the dynamic nature of ice wedges where it could be argued that they are a key driver of thermokarst terrain. The expansive prevalence of ice wedges across arctic terrain highlights the importance and the need to improve our understanding of them, as subsidence from ice wedge melt-out could lead to large scale landscape change. ii Résumé: Les coins de glace sont des éléments proéminents et précaires dans les environnements continue de pergélisol. Au fur et à mesure que les régions arctiques commencent à se réchauffer, l'inquiétude suscitée par les effets potentiels de la dissolution du coin de la glace est devenue un problème immédiat et reçoit beaucoup d'attention dans la littérature périglaciaire. Cette étude estime le volume des coins de glace sur de vastes zones de désert polaire dans le Haut-Arctique canadien (près d'Eureka sur l'île d'Ellesmere (N80° 01', W85°43') et au fjord d'expédition sur l'île Axel Heiberg (N79°23', W90°59')) grâce à l'utilisation d'images à haute résolution et aux capacités améliorées des outils basés sur les systèmes d'information géographique (SIG). L'approche utilisée pour cette étude est semblable à celle d'une réalisée en Sibérie et en Alaska par Ulrich et al, (2014). Utilisant la méthodologie d’Ulrich et al., cette étude a détecté et cartographié des polygones de coins de glace à partir d'images satellites utilisant ArcGIS. La largeur et la profondeur moyennes de ces coins de glace ont été obtenues à partir d'une combinaison d'observation sur le terrain et de données d'études antérieures originaires du même endroit. Également, des hypothèses utilisées dans l'analyse du volume des coins de glace ont été testées, y compris une largeur de creux représentative de la largeur des coins de glace et aussi la composition de celles-ci. Les résultats indiquent que l'approche utilisée par Ulrich et al, (2014) est transférable au Haut-Arctique canadien et que dans les premiers 6,5 mètres le volume des coins de glace constitue entre 3 et 6,6% du volume total. Ces résultats confirment les études antérieures et leur importance est d'autant plus évidente par la nature dynamique des coins de glace où l'on pourrait soutenir qu'ils sont un moteur clé du terrain du thermokarst. La prévalence expansive des coins de glace sur le terrain de l'Arctique devrait mettre en évidence l'importance et la nécessité d'améliorer notre compréhension, car l'affaissement du sol par la fonte des glaces entraînerait un changement de paysage à grande échelle. iii Acknowledgements I owe many thanks to many different people without whom I would not have been able to complete my thesis. I would like to start by thanking my supervisor Dr. Wayne Pollard. None of this would have been possible if it were not for his vision of a potential working relationship before I even began. His guidance and inspiration from start to finish is something I could not have done without. Furthermore, I am grateful for the several weeks we spent in the field together, as there is no one more experienced or knowledgeable to learn from in the field. This experience is what allowed me to think critically, and discuss different ideas about my thesis which was an opportunity that I otherwise would not have had. I would like to thanks Claire Bernard-Grand’Maison for all of her help in the field. Without her help, the “toundra excavators” would have been just the “excavator” and it would have made digging all of those trenches impossibly boring. Also, her critical thinking and experience studying ice wedges was invaluable as having 2 heads to figure out a strategy is always better than one. I would also like to thanks Christopher Omelon for his guidance during my second and most important field season. His ideas and direction helped to alleviate the inevitable challenges of the field season. Thank you to Melissa Ward, my lab-mate and fellow student of Wayne, from whom I learned a lot about Arctic field work during my first field season. I want to thank her for showing me the ropes, and for her willingness to listen and offer advise on my logistical and scientific dilemmas in the office. Special thanks go to Dr. Sebastien Breau, who helped me through some difficult times and decisions, and ultimately put me on the right path to complete my thesis. iv I also want to thank my fiancée Natalie and my parents for their endless support throughout this process. At times things seemed difficult and it was for all of you that I managed to persevere. Thanks for your help and understanding as I left for the High Arctic on multiple occasions. I know that the timing was not ideal but I really appreciated the support. Natalie, I want to thank you for your editing ideas, and your endless support and encouragement. It was what kept me going and allowed me to complete this process. Many thanks for the logistical support provided by the Polar Continental Shelf Project (PCSP) and the McGill Arctic Research Station (MARS). Funding was provided by the Northern Scientific Training Program (NTSP) and by the Natural Sciences and Research Council (NSERC) (awarded to Wayne Pollard). Additionally, funding from the Graduate Research Enhancement Travel Award (GREAT) helped to offset travel expenses. v Table of Contents Abstract…………………………………………………………......……………………………..ii Résumé………………………………………………………………………………………..….iii Acknowledgements……………………………………………………………………………….iv Table of Contents…………………………………………………………………………………vi List of Figures……………………………………………………………………………………..x List of Tables……………………………………………………………………………………xiv Chapter 1: Introduction……………………………………………………………………………1 1.1 Scientific Rationale………………………………………………………………………...1 1.2 Research Objectives……………………………………………………………………......2 1.2.1 Hypotheses…………………………………………………………………………..3 1.2.2 Specific Objectives………………………………………………………………….4 Chapter 2: Background/ Literature Review……………………………………………………….5 2.1 Permafrost and Periglacial Environments………………………………………………….5 2.2 Ice Wedges and Ice Wedge Polygons…………………………………………………….10 2.3 Ice Wedge Volumes………………………………………………………………………17 Chapter 3: Study Area……………………………………………………………………………21 3.1 Introduction……………………………………………………………………………….21 3.2 Regional Setting…………………………………………………………………………..23 3.3 Regional Climate………………………………………………………………………….25 3.4 Permafrost and Ice Wedge Conditions……………………………………………………26 3.5 Study Sites………………………………………………………………………………...27 3.5.1 Abandoned Air Strip, Eureka, Ellesmere Island…………………………………...27 3.5.2 MARS-CARN Camp, Expedition Fiord, Axel Heiberg…………………………...28 3.5.3 Runway Site at McGill Arctic Research Station (MARS), Expedition Fiord……..29 3.5.4 Sloped Site, Expedition Fiord, Axel Heiberg……………………………………...29 3.5.5 Retrogressive Thaw Slumps, Eureka, Ellesmere Island…………………………...29 vi Chapter 4: Methodology…………………………………………………………………………31 4.1 Introduction……………………………………………………………………………….31 4.2 Site Selection and Field Methods…………………………………………………………31 4.2.1 Individual Wedge Selection and Excavation………………………………………33 4.2.2 Active Layer Monitoring…………………………………………………………..35 4.3 GIS Analysis……………………………………………………………………………...35 4.3.1 Pre-processing of Data……………………………………………………………..35 4.3.2 Manual Delineation………………………………………………………………...37 4.3.3 Thiessen Polygons…………………………………………………………………38 4.3.4 Wedge Ice Volume Calculation……………………………………………………39 Chapter 5: Results………………………………………………………………………………..41 5.1 Introduction……………………………………………………………………………….41 5.2 Active Layer Depths……………………………………………………………………...41 5.2.1 Eureka…………………………………………………………………………...…42 5.2.2 Expedition Fiord…………………………………………………………………...42 5.3 Ice Wedge Widths………………………………………………………………………...43 5.3.1 Ice Wedge Widths at Eureka……………………………………………………….44 5.3.2 Ice Wedge Widths at Expedition Fiord…………………………………………….50 5.4 Applicability of Methodology to Canadian High Arctic………………………………….53 5.4.1 Guessed Center vs. Center of Mass………………………………………………..53 5.4.2 Average Diameter of Polygons between Both Methods………….………………..54 5.4.3 Volume Comparison between Methods……….………………………….………..56 5.5 Ice Wedge Volumes……………………………………………………………………....57 5.5.1 Ice Wedge Volumes Using Couture & Pollard date………………………..……...57 5.5.1.1 Eureka Site (Abandoned Runway)……………………………………….58 5.5.1.2 Slump Site………………………………………………………………..59 5.5.1.3 Expedition Site (MARS-CARN Camp Site)……………………………..59 vii 5.5.2 Ice Wedge Volumes Using My Numbers…………………………………...……..59 5.5.2.1 Eureka Site (Abandoned Runway)……………………………………….60 5.5.2.2 Slump Site………………………………………………………………..61 5.5.2.3 Expedition Site (MARS-CARN Camp Site)……………………………..61 5.6 Preliminary Assumptions Testing………………………………………………………...61 5.6.1 Ice Wedge vs. Trough……………………………………………………………...61 5.6.2 Volumes Using Actual Widths on Satellite………………………………………..62 Chapter 6 – Discussion…………………………………………………………………………..64 6.1 Application of Methodology to the Canadian High Arctic…………………………….....65 6.1.1 Northern Siberia vs. Canadian High Arctic………………………………………..65 6.1.2 Replication of the Ulrich et al. (2014) Methodology……………………………....68 6.1.3 Change to the Methodology…………………………………………………….….68 6.1.4 Confirmation of Successful Application of Methodology……………………........70 6.2 Ice Wedge Volumes……………………………………………………………………....73 6.2.1 Previous Results from the Literature………………………………………………73 6.2.2 Ice Wedge Volumes using Field Data from Couture & Pollard data……..……….74 6.2.3 Ice Wedge Volumes using Field Data from this Study…………………………….75 6.3 Testing Assumptions of the Methodology of Ulrich et al. (2014)……………………......77 6.3.1 Ice Wedge Width = Ice Wedge Trough Width…………………………………….77 6.3.2 Ice Wedge Ice = 100% Pure Ice……………………………………………………78 6.3.3 Active Layer is Representative Across the Landscape…………………………….79 6.3.4 Average Wedge Size is Representative……………………………………………81 6.3.5 Width to Depth Ratio is Correct……………………………………………….…..82 6.4 Importance of Ice Wedges………………………………………………………………..82 6.4.1 Ice Wedges and Climate Change…………………………………………………..82 6.4.2 Landscape Degradation…………………………………………………………….83 6.4.3 Equivalent Ground Ice Thickness and Future Degradation……………………......84 6.5 Future Studies to Improve Accuracy……………………………………………………...85 viii Chapter 7: Conclusion………………………………………………..…………………………..87 7.1 Significance of this Research……………………….…………………………………….88 Chapter 8: References……………………………………………………………………………90 ix List of Figures Figure 2.1 Permafrost distribution map for the Northern Hemisphere that includes zones of continuous, discontinuous, sporadic and isolated permafrost (International Permafrost Association, 1998)…………………………………………………….6 Figure 2.2 Distribution of organic Carbon locked up in the soil in the Northern Hemisphere (Hugelius et al., 2013)…………………………………………………………......9 Figure 2.3 Carbon balance in tundra over time. Note the release of carbon once permafrost melts (AMAP, 2012)……………………………………………………………..10 Figure 2.4 Representation of the growth of an ice wedge according to contraction-crack theory by (Lachenbruch, 1963)…………………………………………………..11 Figure 2.5 Growth stages of an epigenetic ice wedge. 1 (youngest), 2 (intermediate), 3 (oldest) (Mackay, 1990)……………………………………………………….....12 Figure 2.6 Growth stages of a syngenetic ice wedge. 1 (youngest), 2 (intermediate), 3 (oldest) (Mackay, 1990)………………………………………………………….13 Figure 2.7 Growth states of an anti-syngenetic ice wedge. Stage 1 (youngest), 2 (intermediate), 3 (oldest). In an anti-syngenetic ice wedge the ice on the sides increases in age from top to bottom (Mackay, 1990)…………………………....14 Figure 2.8 Photo of a wide, deep surface trough with prominent upturned sediment ridges near Expedition Fiord…………………………………………………...……….15 Figure 2.9 Photo of an exposed ice wedge with a typical V-shape formation near Eureka on Ellesmere Island………………………………………………………………….17 Figure 2.10 Figure demonstrates the potential for subsidence with an increase in the active layer given extremely dry polar desert conditions (Pollard et al., 2015)………...18 Figure 3.1 Canadian Arctic Archipelago including the area of interest for this study – the Eureka Sound Lowlands (ESL) (Pollard et al., 2015)…………………………...22 Figure 3.2 Location map of Axel Heiberg with reference to study sites near Expedition Fiord and near Eureka on Ellesmere Island (Pollard et al., 1999)……………………...23 Figure 3.3 Map of the Fosheim Peninsula on Ellesmere Island with reference to the study area (Couture & Pollard, 1998)…………………………………………………..24 x
Description: