ebook img

Quantification of the Lifecycle Greenhouse Gas Emissions from Nuclear Power Generation Systems PDF

13 Pages·2016·0.77 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Quantification of the Lifecycle Greenhouse Gas Emissions from Nuclear Power Generation Systems

energies Article Quantification of the Lifecycle Greenhouse Gas Emissions from Nuclear Power Generation Systems AkhilKadiyala1,RaghavaKommalapati1,2,*andZiaulHuque1,3 1 CenterforEnergy&EnvironmentalSustainability,PrairieViewA&MUniversity,PrairieView, TX77446,USA;[email protected](A.K.);[email protected](Z.H.) 2 DepartmentofCivil&EnvironmentalEngineering,PrairieViewA&MUniversity,PrairieView, TX77446,USA 3 DepartmentofMechanicalEngineering,PrairieViewA&MUniversity,PrairieView,TX77446,USA * Correspondence:[email protected];Tel.:+1-936-261-1660 AcademicEditor:PierreTrambouze Received:5July2016;Accepted:19October2016;Published:25October2016 Abstract: Thispaperstatisticallyquantifiesthelifecyclegreenhousegas(GHG)emissionsfromsix distinctreactor-based(boilingwaterreactor(BWR),pressurizedwaterreactor(PWR),lightwater reactor (LWR), heavy-water-moderated reactor (HWR), gas-cooled reactor (GCR), fast breeder reactor(FBR))nuclearpowergenerationsystemsbyfollowingatwo-stepapproachthatincluded (a)performingareviewofthelifecycleassessment(LCA)studiesonthereactor-basednuclearpower generationsystems;and(b)statisticallyevaluatingthelifecycleGHGemissions(expressedingrams ofcarbondioxideequivalentperkilowatthour,gCO e/kWh)foreachofthereactor-basednuclear 2 powergenerationsystemstoassesstheroleofdifferenttypesofnuclearreactorsinthereductionofthe lifecycleGHGemissions. Additionally,thisstudyquantifiedtheimpactsoffuelenrichmentmethods (centrifuge, gaseous diffusion) on GHG emissions. The mean lifecycle GHG emissions resulting fromtheuseofBWR(samplesize,N=15),PWR(N=21),LWR(N=7),HWR(N=3),GCR(N=1), andFBR(N=2)innuclearpowergenerationsystemsare14.52gCO e/kWh,11.87gCO e/kWh, 2 2 20.5gCO e/kWh,28.2gCO e/kWh,8.35gCO e/kWh,and6.26gCO e/kWh,respectively. TheFBR 2 2 2 2 nuclearpowergenerationsystemsproducedtheminimumlifecycleGHGs.Thecentrifugeenrichment methodproducedlowerGHGemissionsthanthegaseousdiffusionenrichmentmethod. Keywords: lifecycle assessment; greenhouse gas emissions; nuclear energy; power generation; reactors;enrichment 1. Introduction Nuclearenergymaybedefinedastheenergyharnessedfromcontrolledreactionswithinthe nucleiofatomsthatreleaseenergy. Typically,thecontrolledreactionsareperformedinsideanuclear reactorthatcomprisesofsevenmajorcomponents—fuel,moderator,controlrods,coolant,pressure vessel or pressure tubes, steam generator, and containment [1]. Uranium (in the form of uranium oxidefuelrods)isthemostwidelyusedfuelinnuclearreactors. Themoderatorisusedtoslowdown theneutronsthatarereleasedfromfissiontoenablemorefission. Water(ordinarywater)isthemost widelyusedmoderator. Alternatively,heavywater(10%denserthanordinarywaterwithaneutron moderatingratio80timeshigherthanordinarywater)andgraphitemayalsobeusedasmoderators. The control rods are neutron-absorbing materials that are inserted or withdrawn from the core to controltherateofreaction,ortohaltit. Thecontrolrodsaremadefromoneofthematerialssuch ascadmium,hafnium,andboron. Thecoolantisafluidthatcirculatesthroughthecoretotransfer heat. Wateristhemostwidelyusedcoolant. Apressurevesselisarobuststeelvesselthatcontains nuclearfuel,moderator,controlrods,andcoolant. Pressuretubesareaseriesoftubescontainingthe Energies2016,9,863;doi:10.3390/en9110863 www.mdpi.com/journal/energies Energies2016,9,863 2of13 fuelthroughwhichthecoolantiscirculatedandsurroundedbyamoderator. Thesteamgenerator isaheatexchangerthattransmitsthethermalenergygeneratedinthereactorcoretoproducesteam fortheturbinefromaworkingfluid. Thecontainmentisathickconcreteandsteelstructure,whichis designedtoprotectthereactorfromoutsideintrusionandtoprotectthepeopleoutsidefromtheeffects ofradiationincaseofanyseriousmalfunctionwithinthenuclearreactor. Thetotalelectricitygeneratedin2012acrosstheworldwasreportedtobe21.53trillionkilowatt hours(kWh)[2]. Nuclearenergyaccountedfor2.35trillionkWh(10.9%)oftheworld’stotalelectricity generatedin2012. Theprojectedworldelectricitygenerationfor2040is39trillionkWh(anincrease by81%from2012)[3]. Nuclearenergyhasbeenprojectedtoaccountfor5.5trillionkWh(14%)ofthe world’stotalelectricitygenerationin2040,withanannualincreaseof2.5%. Thesestatisticsindicate thatnuclearenergyhasavitalroletoplayinmeetingtheworld’senergydemand. Under such circumstances, one needs to statistically quantify the lifecycle greenhouse gas (GHG)emissionsresultingfromtheadoptionofdifferenttypesofnuclearpowergenerationsystems. Thelifecycleassessment(LCA)approachhelpsquantifythenetGHGemissionsresultingfromthe use of nuclear energy as a fuel. LCA is an analytical method that provides an assessment of the environmentalimpactsoftheconsideredproductsandtechnologiesfroma‘cradletograve’systems perspectiveutilizingthedetailedinputandoutputparametersthatoperatewithinthedesignated systemboundaries. ManystudiesanalyzedtheLCAofnuclearpowergenerationsystems[4–29]. Theuseofnuclear powergenerationsystemsacrosstheworldisbeingencouragedinviewoftheadvantagesthatnuclear energyservesasanalternativetotherapidlydepletingfossilfuels,accountsfortheintermittencyand theunpredictabilityissuesassociatedwiththerenewableenergysourcesbycontinuallygenerating power(approximately90%oftheannualtime),andhelpsimproveairqualityconsideringthatthey producenoGHGsoremissionsthatcausestheformationofacidrainorurbansmog[30].Theextensive useofnuclearpowergenerationsystemsisinhibitedbyissuessuchasthemanagementofnuclear waste,therecoveryofinvestmentcosts,andsecurityconcerns. ThemajorityofthenuclearLCApublicationstodateemphasizedthedeterminationofthelifecycle GHGemissionsfromselectnuclearpowergenerationsystems. Therewerelimitedstudies[31,32] thatanalyzedthelifecycleGHGemissionsacrossabroaderspectrumofnuclearpowergeneration systems. None of the earlier studies quantified the lifecycle GHG emissions and compared them acrossallthecurrentlyavailabledistinctnuclearreactor-basedandfuelenrichmentmethod-based power generation systems. This study aims to fill this knowledge gap by performing a review of theliteratureonallthecurrentlyavailablenuclearLCAstudies,followedbyastatisticalevaluation ofthelifecycleGHGemissionsfromthereviewednuclearpowergenerationsystemsindividually. The results from the statistical evaluation of the lifecycle GHG emissions will assist energy policy makersandenvironmentalprofessionalsinidentifyingandencouragingtheuseofenvironmentally friendlynuclearoptionstogeneratepowerwithminimalGHGemissions. PerformingtheLCAfor nuclearpowergenerationsystemswouldadditionallyprovidedetailsthatmaybeincorporatedinto makingacomparisonwiththeGHGsemittedfromotherpowergenerationtechnologies. 2. Methodology Areviewoftheliteratureshowedthatthenuclearpowergenerationsystemsmaybecategorized onthebasisofthetypeofnuclearreactor,whicharecharacterizedbythefueltype,themoderator type,andthecoolanttype. Thesixcommontypesofnuclearreactorsthatareemployedforpower generationacrosstheworldareasfollows[33]: • Boilingwaterreactor(BWR):BWRsareasingle-loopsystemthatmakessteamintheprimary circuititselfabovethereactorcore. BWRsgenerallyoperateusinguraniumdioxide(UO )asthe 2 fuelandwater(H O)asthemoderatoraswellasthecoolant. ThereactorcoreinaBWRcomprises 2 ofupto800fuelassembliesormore. ThefuelassembliesoftheBWRarecomprisedofa7×7to 10×10squarearrayoffuelpins,surroundedbyametalfuelchannelthatpreventthemovement Energies2016,9,863 3of13 ofsteam-watermixturebetweenthefuelassemblies,therebyensuringadequatecoolingofthefuel assemblies. Thefeedwater(pumpedintothesteelreactorvesselcontainingthecore)isconverted tosteamasaresultoftheheatgeneratedbyfissionchainreactionsoccurringwithinthefuelpins. Thereactivitycontrolisimplementedthroughacombinationofneutron-controllingfuelrods (madeofboroncarbide-filledpins)andcoolantflowadjustment. Thesteam-watermixturethat leavesfromthetopofthecoreentersthestageofmoistureseparationwherethewaterdroplets areremovedbeforethesteamisallowedtoenterthesteamline. Thesteamlinethendirectsthe steamtoturntheturbinegeneratortoproduceelectricity. • Pressurizedwaterreactor(PWR):PWRshavewaterinaprimarycooling/heattransfercircuitand generatesteaminasecondarycircuit. LikeBWRs,PWRsalsooperatewithUO asthefueland 2 H Oasthemoderatoraswellasthecoolant. ThereactorcoreinalargePWRcomprisesof150 2 to200fuelassemblies,ormore. ThefuelassembliesofthePWRarecomprisedofa14×14to 17×17squarearrayoffuelpinsorupto331hexagonalfuelpins. InthePWRs,thereisnometal fuelchannelasthesingle-phaseprimaryfluid(water)operatedbetterthantheBWR’sboiling coolant. Thewaterintheprimaryloopismaintainedasaliquidunderhighpressureandenters thesteelreactorvesselcontainingthecorethroughinletnozzles. Thewaterflowsdownward along the inner vessel wall and flows up through the fuel assemblies gathering heat energy, andexitsthroughtheoutletnozzleasaliquid. Theheatenergyfromtheprimaryloopisextracted by the steam generators (secondary circuit) that convert the water into steam. The reactivity controlisimplementedthroughneutron-controllingfuelrods(madeofboroncarbide-filledpins) andsolubleneutronpoisonboricacid. Thesteam-watermixturethatleavesfromthetopofthe secondarycircuitentersthestagesofmoistureseparation. Thesteamlinethendirectsthesteamto turntheturbinegeneratortoproduceelectricity. • Heavy-water-moderatedreactor(HWR):HWRsarealsoatwo-loopsystemlikePWRswiththe exceptionthatheavywater(inprimaryloop)transferstheheattowater(insecondaryloop)for generationofsteam. TheHWRsoperatewithUO asthefuelandheavywater/deuteriumoxide 2 (D O) as the moderator as well as the coolant. The Canadian Deuterium-Uranium (CANDU) 2 reactoristhesignaturerepresentativeofHWRs. Thepressurizedheavywater(PHW)CANDU alsocontainsatwo-loopsystem,likethePWRs,withtheprimaryPHWlooptransferringtheheat toaloopofordinarywaterforsteamproduction. Theprimaryfluid,i.e.,thePHWisdistributed among the pressure tubes that pass through a large Calandria vessel that contains a separate heavywatermoderator. Thecoolantiscollectedintwoseparateloops. Thefuelassembliesofthe HWRsarecomprisedofuraniumdioxidefuelpelletscladinzirconium. Thereactivitycontrolis accomplishedthroughonlinefueling(amachine-basedtechniquethatenableschangingthefuel ofanuclearreactor,whilethereactoriscritical)thatisrequiredtocompensateforlowreactivity inherentinnaturaluranium. Thesteam-watermixturethatleavesfromthetopofthesecondary circuitentersthestageofmoistureseparationforsegregationofsteam,whichispassedintothe steamlinetofinallyturntheturbinegeneratorforproducingelectricity. • Gas-cooledreactors(GCR):TheinitialversionofGCRsusednaturaluraniumasthefuel,graphite asthemoderator,andnatural-circulationairforcooling. SubsequentGCRsutilizedgraphiteas themoderatorincombinationwithnaturalorenricheduraniumasthefuel,andcarbondioxide (CO )orheliumasthecoolant. TheMagnoxreactorhavingatwoloopsystemwithCO asa 2 2 primarycoolant,gastowastestreamgenerators,andnaturaluraniumasthefuelisrepresentative oftheGCRs. ThedevelopmentofCO gas-cooledreactorsisinhibitedbythecoolantlimitations 2 suchasexcessivecorrosioninpipingandsteamgeneratorsunderhightemperatures. • Light-water-cooledgraphitemoderatedreactor(LWGR)/pressuretubegraphitereactor(PTGR): TheLWGR/PTGRusesgraphiteasanarrayofblockstoactasamoderatorincontrollingthe neutronsandcomprisesofadirectsteamcyclelikeBWRs. LiketheHWRs,theLWGR/PTGR reactorsalsohaveacomplexpressuretubedesignwithseparatecoolantandmoderatorinthecore. LWGRs/PTGRsoperatewithUO asthefuel,graphiteasthemoderator,andH Oasthecoolant. 2 2 Energies2016,9,863 4of13 Thesoviet-eraReaktorBolshoyMoshchnostiKanalnyy(RBMK)isrepresentativeofthePTGR. Thereareapproximately1900verticalpressuretubesthataccommodatemultiplefuelassemblies orcontrolrodsinaRBMKreactor. ThepressuretubesintheRBMKreactoraresurroundedbyan arrayoflong,square-shapedgraphiteblockssetsidebysidetoresembleacylindershapethat functionsasamoderator. IntheRBMKreactor,waterisintroducedfromthebottomofthecore and enters the pressure tubes. The water then boils due to the fission heat from the fuel pins. Thesteamisthendrawnoutforuseinoneofthetwosteamgenerators. Thepressuretubesand thepipingareenclosedwithinasteelreactorvessel. ThefuelassembliesoftheRBMKreactor includetwosub-assembliesof18zirconium-cladfuelpinsofenricheduranium. Thereactivity controlisaccomplishedthroughonlinefueling,asnotedinthecaseofHWRs. • Fastbreederreactor(FBR):FBRsworkontheprincipleofbreedingmorenewfuelthanthatis requiredfortheneutronchainreaction. FBRsgenerallyoperateusingUO orplutoniumdioxide 2 (PuO ) as the fuel, have no moderator, and use sodium (Na) as the coolant. The liquid metal 2 fastbreederreactor(LMFBR)representstheFBRandhasthreeloops(firsttwoloopswithNa, third loop with water) in the steam cycle. The intermediate loop isolates the first loop from comingincontactwiththethirdloop. TheprimaryloopNabecomesradioactivefromneutron absorptionandalsopicksupfission-productradionuclides.Whenthiscomesincontactwithwater, itcanleadtoprecipitationasanexothermicreactionandradioactivecontamination. Thefuelfor LMFBRcomprisesofmixed-oxide(MOX:PuO -UO )pelletsthatareloadedintothinstainless 2 2 steel cladding tubes to form hexagonal array fuel assemblies. Additional depleted or natural uraniumisusedasacovertotheMOXcoretooptimizethebreeding. Thereactivitycontrolis accomplishedthroughtheuseofneutron-poisoncontrolrods. Amongstthecurrentlyavailablecommercialnuclearreactorsacrosstheworld,PWRs(numberof installations, N = 277) are the most widely used nuclear reactors, followed by BWR (N = 80), i i HWR(N =49),GCR(N =15),LWGR/PTGR(N =15),andFBR(N =2)[1].Somestudies[16,18,20,27] i i i i performed the LCA by combining the BWR and the PWR nuclear power generation systems, andreferredtothemasthelightwaterreactors(LWRs)basedonthecategorizationinaccordance with the medium of moderator. Accordingly, this study adopted the use of LWR as an additional categorytothegeneralclassification(BWR,PWR,HWR,GCR,LWGR/PTGR,andFBR)proposedby theNuclearEngineeringInternationalHandbook[33]inquantifyingthelifecycleGHGemissionsfrom nuclearpowergenerationsystems. EachofthereviewednuclearLCAstudycasedescriptionswasfirst categorizedonthebasisofthereactortype. Next,thelifecycleGHGemissionsfromthereactor-based and the fuel enrichment method-based nuclear power generation systems were quantified using statistical metrics (sample size, mean, standard deviation, minimum, maximum, standard error of the mean, quartile 1, quartile 2 or median, quartile 3) and graphical representations (error bars representingthemeanwith95%confidenceintervals,boxplotsrepresentingthequartileswithoutliers). Thesamplesizeisameasurethatindicatesthetotalnumberofobservations. Themeanisameasure thatrepresentsthecentraltendencyoftheobserveddata. Thestandarddeviationisameasureusedto quantifythedegreeofvariationwithinasetofobservationsfromasinglesample. Theminimumand maximummeasuresdefinetheleastobservationandthehighestobservationwithaconsideredsample, respectively. Thestandarderrorofthemeanisameasurethatestimatesthevariabilitybetweensample means obtained by taking multiple samples from the same population. The standard error of the meandeterminestheprecisionbetweenthemeanofthesampleestimatesandthepopulationmean. Thequartilestatisticsareasetofthreemeasuresthatdividearankedsetofobserveddatavaluesinto fourequalgroupswitheachgroupcomprisingaquarterofthedata. Whiletheerrorbarsdemonstrate thedegreeofconfidenceinthemeanGHGemissions,theboxplotsprovideinformationonthedegree ofvariationamongtheLCAstudiescharacterizedbydifferentbiomassfeedstockcategories. Thisstudyislimitedinitsscopebynotincludingthecategoryofsmallmodularreactors(SMRs) that are capable of generating the power on a small scale and have been gaining prominence in recentyears. Energies2016,9,863 5of13 3. ResultsandDiscussion 3.1. ReviewofNuclearLCAStudies Therearenumerousstudies[4–29]thatevaluatedthelifecycleenvironmentalimpactsofusing nuclear reactors for power generation. One needs to define the system boundary conditions (thatincludesdetailsontheactivitiesorprocessestobeconsideredintheanalysis)andafunctional unitofmeasure(thatenablesquantificationofthenetenvironmentalimpactsfromcarryingoutan activityoraprocessasdefinedwithintheLCAsystemboundaryconditions)whenperformingaLCA. Themajorityoftheaforementionedstudies[4–12,14–27,29]thatperformedtheLCAofnuclear power generation systems defined the system boundary conditions to include front-end activities (mining, milling, refinery, conversion, enrichment, fuel fabrication), operation of power plants to generate electricity, back-end activities (interim storage, waste conditioning, waste disposal), transportation,constructionofthenuclearpowerplant,anddecommissioningofthenuclearpower plant. Onestudy[13]definedtheirboundaryconditionstoincludealltheactivitiesassociatedwiththe majorityofthestudiesthatarelistedaboveandtheonlyexceptionbeingthatthefuelcycleresults wereborrowedfromthethenexistingliterature. Theremainingstudy[28]consideredalltheactivities associatedwiththemajorityofthestudiesthatarelistedaboveandadditionallyincludedtheactivities relatedtopowerdistributiontoendusers. The common functional unit of measure adopted by the majority of the nuclear LCA studies is grams of CO equivalent per kilowatt hour (gCO e/kWh) of electricity produced. Accordingly, 2 2 this study also adopted the functional unit of measure for GHG emissions to be gCO e/kWh of 2 electricityproduced. Table 1 provides a summary of the GHG emissions (in gCO e/kWh) for ∆different nuclear 2 reactortypesonthebasisofthereviewed26nuclearpowergenerationLCAstudies(having49case representations). Table1alsoprovidesadditionaldetailssuchastheelectricitygenerationcapacity (EGC, in MW), the thermal efficiency (η, in %), the capacity factor (CF, in %), the plant lifetime t (PL,inyears),thefuelenrichmentmethod(FEM—gaseousdiffusion(D),centrifuge(C),mixturewith gaseous diffusion dominance (M-D), mixture with centrifuge dominance (M-C), mixture with equivalent proportions of gaseous diffusion and centrifuge (M-DC)), the uranium ore-grade (UOG,in%), theLCAmethodtype(LCAType—processanalysis(Process), input-outputanalysis (I-O), mix of process analysis with input-output analysis (Hybrid)), and the geographical location (GL)fortheinstallednuclearpowergenerationsystems. TheEGCmaybedefinedastheamount of electrical power that is produced under standard operating conditions. η is the ratio of gross t electricitygeneratedtothermalenergy. Itisrelatedtothedifferenceintemperaturebetweenthesteam from the reactor and the coolant. The CF is the ratio of the average power generated to the rated peakpower. ThePLindicatesthelicensedoperationallifespanofthenuclearreactorconsideredin thestudy. TheFEMindicatesthetypeofprocessadaptedinfuel(uranium)enrichment. TheUOG denotesthegradeofuranium. TheGLindicatesthesite-specificlocationofthenuclearpowerplant beingexamined. Basedonthereviewof26nuclearpowergenerationLCAstudies(with49caserepresentations, refertoTable1),onemaynotethatthePWR(N=21)nuclearpowergenerationsystemsweremorein numbercomparedtotheBWR(N=15),LWR(N=7),HWR(N=3),FBR(N=2),andGCR(N=1). TherewerenoLCAstudiesontheuseofLWGRnuclearpowergenerationsystems. Energies2016,9,863 6of13 Table1.GHGemissionsforreactor-basednuclearpowergenerationsystems. NuclearReactor GHGEmissions Source Type (gCO2e/kWh) EGC(MW) ηt(%) CF(%) PL(years) FEMType UOG(%) LCAType GL MeridianCorporation[4] BWR 8.59 1000 70 30 D 0.17 Process USA SanMartin[5] BWR 8 1000 70 30 D 0.17 Process USA Yasukawaetal.[6] PWR 34 1000 33 75 30 D Hybrid Japan PWR 25.7 1100 D Hybrid Japan Yasukawaetal.[7] PWR 7.9 1100 C Hybrid Japan FBR 7.8 1000 33 75 30 C Hybrid Japan Uchiyama[8] BWR 10.4 1000 32 75 30 C Hybrid Japan BWR 21.1 1000 32 75 30 D Hybrid Japan PWR 6 600 87 60 C Process Switzerland Donesetal.[9] BWR 6 1300 87 60 C Process Switzerland HWR 3.2 600–900 31 80 40 Process Canada Andsetaetal.[10] (bestcase) HWR 15.41 600–900 31 80 40 Process Canada (worstcase) BWR 11 1000 32 70 30 C Hybrid Japan (Purecycle) BWR 21.6 1000 32 70 30 M-DC Hybrid Japan Hondoetal.[11] (Purecycle) PWR 24.7 1000 32 70 30 M-DC Hybrid Japan (Purecycle) BWR 26.4 1000 32 70 30 M-DC Hybrid Japan (noPurecycle) PWR 31.4 1000 32 70 30 M-DC Hybrid Japan (noPurecycle) BWR 37 1000 32 70 30 D Hybrid Japan (Purecycle) RashadandHammad[12] PWR 25.7 1000 75 30 D 0.2 Process PWR 1.8 1000 33 85 40 M-DC 0.2 Process Belgium Voorspoolsetal.[13] PWR 4 1000 33 85 40 M-DC 0.2 I-O Belgium WhiteandKulcinski[14] PWR 15 1000 33 75 40 C Hybrid USA Hondo[15] BWR 24.2 1000 32.2 70 30 D Hybrid Japan LWR 10 1000 90 60 C Process Japan Tokimatsuetal.[16] LWR 13 1000 90 60 M-D Process Japan Energies2016,9,863 7of13 Table1.Cont. NuclearReactor GHGEmissions Source Type (gCO2e/kWh) EGC(MW) ηt(%) CF(%) PL(years) FEMType UOG(%) LCAType GL PWR 5.19 1000 32 88.7 40 M-D Process Switzerland PWR 5.18 1000 32 88.7 40 M-C Process Switzerland PWR 9.8 1000 33 84.6 40 M-C Process Germany PWR 5.95 1000 33 71.7 40 D Process France Donesetal.[17] PWR 7.74 1000 33 80.4 40 M-D Process Europe BWR 11 1000 32 88.7 40 M-D Process Switzerland BWR 10.7 1000 32 88.7 40 M-C Process Germany BWR 7.45 1000 32 88.7 40 M-D Process Europe Värö LWR EPDReport[18] 3.8 3671 34 90 50 C Process Peninsula, (1BWR,3PWRs) Sweden Forsmark, EPDReport[19] BWR 3.3 3274 34 90 50 C Process Sweden LWR 16 1100 85 40 D 12.7 Hybrid USA (bestcase) FthenakisandKim[20] LWR 25 1100 85 40 D 0.2 Hybrid USA (baselinecase) LWR 55 1100 85 40 D Process USA (worstcase) PWR 5.91 1000 34 40 D Process Europe NEEDSReport[21] PWR 5.58 1590 37 60 C Process Europe FBR 4.72 1450 40 40 Process Europe EPDReport[22] GCR 8.35 1185 35 C Process Scotland Cantonof EPDReport[23] PWR 3.54 730(2×365) 50 C Process Aargau, Switzerland Kunakemakornetal.[24] PWR 1.98 1630 37 94 60 D Process Canada Santoyo-Castelazoetal.[25] BWR 11 1365 32.8 91 100 Process Mexico KumariandRao[26] HWR 66 4560 100 Process India Nianetal.[27] LWR 20.68 1000 33 70 60 Process Japan Pereiraetal.[28] PWR 16.95 1250 70 40 Process Japan Poinssotetal.[29] PWR 5.29 63400 20–50 C Process France Energies2016,9,863 8of13 ETnheregieGs 2H016G, 9,e xm FOisRs PioEEnRs RwEVeIErWe found to be lower for the case representations that had8 orfe 1c3y  cled plutonium (refer to the GHG emissions data provided by Hondo et al. [11] for LWR (BWR, PWR) The GHG emissions were found to be lower for the case representations that had recycled  nuclearpowergenerationsystemsinTable1). ItmayalsobenotedthattheGHGemissionsdecreased plutonium (refer to the GHG emissions data provided by Hondo et al. [11] for LWR (BWR, PWR)  withnauncilenacrr epaosweeirn gtehneeruartaionni usymstoemresg inra Tdaebl(er e1f)e. rItt moathy ealGsoH bGe neomteidss tihoants thdea GtaHpGro evmidisesdionbsy dFetchreeansaekdi sand Kimw[2i0th] afonr inLcWreRasen uinc ltehaer upraonwiuemr goeren egrraadtieo n(resfyesr tteom thsei nGHTaGb elem1is)s.iTonhsi sdpathae pnroomvideendo nbyo Ffthhiegnhakeris GHG emisasniodn Ksibme i[n2g0] afsosro LcWiaRte dnuwclietahr lpoowweerr ugreanneriuatmiono rseysgtermads eisn mTaabyleb 1e).a Ttthriisb uptheednotmoethnoenr eoqf uhiirgehmere ntof highGeHneGr geymiinssteionnssi tibeesinfog ralsoswoceiratuedra nwiiuthm  loowreegr ruadraensi.umSi moirlea rgorabdseesr vmataiyo nbsew  aetrtreibmutaedde  tboy  tahne other studyre[q3u4i]rethmaetnnt ootfe hdigGhH enGeregmy iinssteionnsistiwese froer lloowweerr uforarnniuumcl eoarre pgroawdeesr. gSeimneilraart oiobnsesryvsatteiomnss wuteirleiz minagdeh igher by another study [34] that noted GHG emissions were lower for nuclear power generation systems  uraniumoregrades(0.1%–2%)incomparisonwiththenuclearpowergenerationsystemsoperating utilizing higher uranium ore grades (0.1%–2%) in comparison with the nuclear power generation  withloweruraniumoregrades(0.01%–0.02%). IntheUnitedStatesofAmerica(USA),theNuclear systems operating with lower uranium ore grades (0.01%–0.02%). In the United States of America  RegulatoryCommission(NRC)providesaninitialoperatinglicenseforaperiodof40yearsfornewly (USA), the Nuclear Regulatory Commission (NRC) provides an initial operating license for a period  builtnuclearpowerplants.Towardstheendofthenuclearplantlifetime,theowners(i.e.,thelicensees) of 40 years for newly built nuclear power plants. Towards the end of the nuclear plant lifetime, the  mayocwhonoersse (tio.e.g, othfeo rlicae2n0seyees)a rmeaxyt ecnhsoioosne uton gdoe rfothr ea N20R yCe’asr eesxttaebnlsiisohne duntdimere ltyhel iNceRnCs’es reesntaebwliashlepdr ocess (coditfiimedelyin li1ce0nCseF rRenPeawratl5 p1roacnedss1 (0coCdFifRiedP ianr t105 4C)F.RT PhaerNt 5R1 Canhda 1s0g CrFaRn tPeadrto 5p4e).r Tahtien NgRliCce hnasse grreannteewd alsto 74ofotpheera1t0in0go lpiceernastei nregnreewaacltso tros 7i4n otfh teheU 1S0A0 ofpoerraatpinegr iroedacotofras dind tihtieo UnaSlA2 f0ory ae apresri[o3d5 ]o.f additional 20  years [35].  3.2. StatisticalEvaluationofNuclearLCAStudies 3.2. Statistical Evaluation of Nuclear LCA Studies  Figure1providesagraphicalrepresentationofthe(a)errorbars(mean±95%confidenceinterval Figure 1 provides a graphical representation of the (a) error bars (mean ±95% confidence interval  (CI)statistics)and(b)boxplots(quartiles+outlierstatistics)forGHGemissionsfromthedifferent (CI) statistics) and (b) box plots (quartiles + outlier statistics) for GHG emissions from the different  reactor-basednuclearpowergenerationsystemsreviewedinthisstudy. Table2providesastatistical reactor‐based nuclear power generation systems reviewed in this study. Table 2 provides a statistical  summaryofthelifecycleGHGemissionswithdetailsonthesamplesize(N),mean(X)±standard summary of the lifecycle GHG emissions with details on the sample size (N), mean (X) ± standard  deviation(SD),minimum(Min.),maximum(Max.),standarderrorofthemean(SE),quartile1(Q1), deviation (SD), minimum (Min.), maximum (Max.), standard error of the mean (SE), quartile 1 (Q1),  quartile2ormedian(Q2),andquartile3(Q3)forthedifferentreactor-basednuclearpowergeneration quartile 2 or median (Q2), and quartile 3 (Q3) for the different reactor‐based nuclear power generation  systesmysstermevsi reewvieedwiend tihni tshsistu sdtuyd.y.    FiguFreig1u.reG 1H. GGHeGm eismsiiossniosnfsr ofrmomd idffifefreernenttn nuucclleeaarr ppoowweerr ggeennereartaiotino nsyssytesmtesm: (sa:) (ma)eamn e±a 9n5±% C95I %errCorI error bars; and (b) quartile box plots.  bars;and(b)quartileboxplots. Table 2. GHG emission (gCO2e/kWh) statistics from different nuclear power generation systems.  Table2.GHGemission(gCO e/kWh)statisticsfromdifferentnuclearpowergenerationsystems. 2 Nuclear Reactor Type N  X ± SD Min. Max. SE Q1  Q2  Q3 NuclearRBeWacRto rType N15  X1±4.5S2D ± 9.37  Min3..3  Ma3x7.  2S.E42  8Q 1 11Q  2 21.6Q 3 PWR  21  11.87 ± 10.24  1.8  34  2.24  5.18  6  15  BWLWRR  157  14.5220.±5 ±9 1.367.71  3.33.8  3755  26..4322  108  16 11 252 1.6 PHWWRR  213  11.8728±.2 1±0 3.234.3  1.83.2  3466  129.2.242  35..21 8 15.416  66 15 LWGCRR  7 1  20.5±8.3156 .±7 01  3.88.35  585.35  6.30 2 8.3150  8.351 6 8.352 5 HWFBRR  3 2  28.26.±26 3±3 2.3.18  3.24.72  676.8  119..5242  4.372.2  6.2165 .41 7.86 6 GCR 1 8.35±0 8.35 8.35 0 8.35 8.35 8.35 FBR 2 6.26±2.18 4.72 7.8 1.54 4.72 6.26 7.8 Energies2016,9,863 9of13 From Figure 1a and Table 2, one may note that the mean lifecycle GHG emissions obtained from the use of BWR, PWR, LWR, HWR, GCR, and FBR in nuclear power generation systems are14.52gCO e/kWh,11.87gCO e/kWh,20.5gCO e/kWh,28.2gCO e/kWh,8.35gCO e/kWh, 2 2 2 2 2 and 6.26 gCO e/kWh, respectively. These results indicate that lower GHGs are emitted from the 2 FBR nuclear power generation systems in comparison to the widely adopted LWR (PWR/BWR) and HWR nuclear power generation systems. This is because the FBR nuclear power generation systems involves the recycling of plutonium (which is the bulk of long life radioactive waste) in its entirety, while the LWR nuclear power generation systems permit only partial recycling of plutoniumwithMOXfuelloading[22]. TherelativelyhighermeanlifecycleGHGemissionsfrom HWRnuclearpowergenerationsystemsmaybeattributedtotheprocessofheavywaterproduction beinghighlyenergyintensive[10,32,36]. ThehighestmeanlifecycleGHGemissioninthisstudywas obtainedfromtheHWRs(refertoTable2). ThehighestmeanlifecycleGHGemissionfromtheHWR reactors (28.2 gCO e/kWh) in this study was 108%, 108%, 62.7%, 33.2%, 5.7%, 3.9%, and 3.2% of 2 themeanlifecycleGHGemissionsfromhydroelectricity(26gCO e/kWh),wind(26gCO e/kWh), 2 2 biomass (45 gCO e/kWh), solar photovoltaics (85 gCO e/kWh), natural gas (499 gCO e/kWh), 2 2 2 oil (733 gCO e/kWh), and coal (888 gCO e/kWh) power generation systems, respectively [37]. 2 2 From Figure 1b, one may note that the degree of variation in GHG emissions was less for FBR nuclearpowergenerationsystems,followedbyPWR,BWR,LWR,andHWRnuclearpowergeneration systems. Consequently,onemayinferthattheuseofFBRnuclearpowergenerationsystemsprovides themostenvironmentally-friendlyoptionamongstthesixdifferenttypesofnuclearpowergeneration systemsconsideredinthisstudy. NotethatthisstudyhasalimitedsamplesizeoftwoforFBRnuclear powergenerationsystems,whichisequivalenttothetotalnumberofreal-worldFBRnuclearpower generationsystemsassuggestedbytheWorldNuclearAssociation[1]. MoreLCAstudiesutilizing GCRnuclearpowergenerationsystemsaretobeconsideredbeforeonegeneralizestheinfluenceof GCRonthelifecycleGHGemissions(notethatthemeanlifecycleGHGemissionstatisticsofGCR nuclearpowergenerationsystemsinthisstudywerebasedonasamplesizeequaltoone). Figure2providesagraphicalrepresentationofthe(a)errorbars(mean±95%CIstatistics)and (b)boxplots(quartiles+outlierstatistics)forGHGemissionswithrespecttodifferentfuelenrichment methods. Table 3 provides a statistical summary of the lifecycle GHG emissions for different fuel enrichmentmethodsassociatedwiththereviewed26nuclearLCAstudies. FromFigure2aandTable3, onemaynotethatthemeanlifecycleGHGsassociatedwiththeuseofC,D,M-C,M-D,andM-DC fuelenrichmentmethodsinnuclearpowergenerationsystemsare7.43gCO e/kWh,21gCO e/kWh, 2 2 8.56 gCO e/kWh, 8.87 gCO e/kWh, and 18.32 gCO e/kWh, respectively. These results clearly 2 2 2 indicate that the centrifuge fuel enrichment method is a better option than the gaseous diffusion enrichmentmethod,consideringthatthe100%gaseousdiffusionGHGemissionsexceededthe100% centrifugeGHGemissionsandthegaseousdiffusiondominantmixtureGHGemissionswerehigher thanthecentrifugedominantmixtureGHGemissions. ThehigherGHGemissionsassociatedwith gaseousdiffusionenrichmentmethodmaybeattributedtothehigherconsumptionofelectricload incomparisonwiththeelectricityconsumptionassociatedwithcentrifugeenrichmentmethod[37]. FromFigure2b,onemayalsonotethatthedegreeofvariationinGHGemissionswaslessforcentrifuge enrichmentmethodsincomparisonwiththecorrespondinggaseousdiffusionenrichmentmethods. Resultantly,onemayinferthattheuseofcentrifugeenrichmentmethodinnuclearpowergeneration systemsprovidesabetterenvironmental-friendlyoptiontowardsreducingGHGemissionsthanthe gaseousdiffusionenrichmentmethod. Energies2016,9,863 10of13 Energies 2016, 9, 863  10 of 13    FigurFeig2u.reG 2H. GGHeGm eimssiisosinosnsf rforomm ddiiffffeerreenntt fufuele elnernicrhicmhemnte mntetmhoedths:o (da)s m: (eaa)n m± e95a%n C±I 9er5r%or CbaIrse;r arnodr bars; (b) quartile box plots.  and(b)quartileboxplots. Table 3. GHG emission (gCO2e/kWh) statistics from different fuel enrichment methods.  Table3.GHGemission(gCO e/kWh)statisticsfromdifferentfuelenrichmentmethods. 2 Fuel Enrichment Method  N  X ± SD  Min.  Max.  SE  Q1  Q2  Q3  FuelEnrichmCen tMethod N14  X7.±43S ±D 3.33  Mi3n.3.  Ma1x5.  S0.E89  5Q.219  6Q.92  10Q 3 CD  1414  7.4321± ± 314.3.732  31.3.98  1555  03.8.993  5.82 9 226.6.95  25.170  DM‐C  143  218±.561 4± .27.296  1.59.818  5150.7  31.9.731  5.818  292.8.6 5 102.75 .7 MM-C‐D  35  8.568.±87 2±. 93.61  5.51.819  10.173  11.7.319  75..4158  79.7.48  1110 .7 MM-D‐DC  56  81.887.3±2 ±3 1.12.38  5.119.8  1331.4  15.3.095  7.44 5 273..1754  26.141  M-DC 6 18.32±12.38 1.8 31.4 5.05 4 23.15 26.4 4. Conclusions  4. ConcluTshiios npsaper quantified the lifecycle GHG emissions from six different reactor‐based nuclear  power generation systems (BWR, PWR, LWR, HWR, GCR, and FBR) by performing a review of 26  ThispaperquantifiedthelifecycleGHGemissionsfromsixdifferentreactor-basednuclearpower nuclear LCA studies (having 49 case representations) and the subsequent computation of statistical  generationsystems(BWR,PWR,LWR,HWR,GCR,andFBR)byperformingareviewof26nuclear metrics with development of associated graphical representations. Additionally, this study also  LCAstudies(having49caserepresentations)andthesubsequentcomputationofstatisticalmetrics quantified the lifecycle GHG emissions with respect to the type of fuel enrichment method.  withdevelopmentofassociatedgraphicalrepresentations. Additionally,thisstudyalsoquantifiedthe Lower lifecycle GHG emissions were noted for those nuclear power generation systems that  lifecyrcelceyGcleHdG pleumtoinsisuiomn sinw coitmhpraersipsoenct ttoo tthhoeset ynpuecloeafrf upeolweenrr gicehnmeraetniotnm seytshteomd.s that did not recycle  Lplouwtoenriulmife. cTyhcele liGfeHcyGclee mGHisGsi oenmsiswsieornes nforotmed nfuocrletahro speownuerc lgeeanrepraotiwone rsgysetnemersa tuiotinlizsiyngst elomws that recycqleudaliptylu utroanniiuumm oinre cgormadpesa r(riseoqnuirtiongth hoigseh nenuecrlgeya rinpteonwsietyr) gweenreer haitgiohner styhastne tmhossteh nautcdleiadr npoowtreerc ycle plutogneinuemra.tiTohne sylisfteecmycs loepGerHatGingem wiisthsi ohnigshf qroumalitnyu ucrleanariupmo woreer ggraedneesr.a tionsystemsutilizinglowquality The mean lifecycle GHG emissions obtained from the use of BWR, PWR, LWR, HWR, GCR, and  uraniumoregrades(requiringhighenergyintensity)werehigherthanthosenuclearpowergeneration systeFmBsRo ipn enruactlienagr pwoiwtherh gigenheqrautaiolint ysyusrteamnisu amre o14re.5g2 rgaCdOe2se./kWh, 11.87 gCO2e/kWh, 20.5 gCO2e/kWh,  28.2 gCO2e/kWh, 8.35 gCO2e/kWh, and 6.26 gCO2e/kWh, respectively. The FBR nuclear power  The mean lifecycle GHG emissions obtained from the use of BWR, PWR, LWR, HWR, generation systems proved to be the most environmentally‐friendly option (with minimal GHG  GCR, and FBR in nuclear power generation systems are 14.52 gCO e/kWh, 11.87 gCO e/kWh, emissions  and  minimal quartile  variation)  amongst  the  six  different2  types  of  nuclear po2wer  20.5 gCO e/kWh, 28.2 gCO e/kWh, 8.35 gCO e/kWh, and 6.26 gCO e/kWh, respectively. genera2tion systems considere2d in this study. This stu2dy captured the variation in2 the performance of  TheFFBBRR nnuucclleeaarr ppoowweerr ggeenneerartaiotino nsyssytesmtesm isn pitrso venetdiretotyb, ecotnhseidmeroinstg etnhvati rtohnem saemntpallel ys-ifzrei efnodr lFyBoRp tion (withnmucilneaimr paolwGeHr gGeneemraitsiosnio snysstaenmd LmCAin simtudalieqs ureavriteilweevda irni athtiios ns)tuadmy oanndg sttheth teotsailx nudmiffbeerre onft FtByRp es of nuclenaurcpleoawr peorwgeern geernaetrioatniosny ssytestmemssc oopnesriadteinregd ini nthteh riesasl‐twudoryl.dT ahreis bsottuh deqyuciavpalteunrte tdo ttwheo.v Tahreia htiigohnlyi nthe perfoernmeargnyc einotefnFsBivRe nhueacvleya wrpatoewr perrogdeuncetiroant ipornocseyssst ecomnstriinbuittesde ncotinrseitdye,rcaobnlys itdoewrainrdgst hhiagthtehre lisfeacmycpllee  size GHG emissions from HWR nuclear power generation systems.  forFBRnuclearpowergenerationsystemLCAstudiesreviewedinthisstudyandthetotalnumber The mean lifecycle GHGs associated with the use of C, D, M‐C, M‐D, and M‐DC fuel enrichment  of FBR nuclear power generation systems operating in the real-world are both equivalent to two. methods from nuclear power generation systems reviewed in this study are 7.43 gCO2e/kWh, 21  Thehighlyenergyintensiveheavywaterproductionprocesscontributedconsiderablytowardshigher lifecy cleGHGemissionsfromHWRnuclearpowergenerationsystems. ThemeanlifecycleGHGsassociatedwiththeuseofC,D,M-C,M-D,andM-DCfuelenrichment methods from nuclear power generation systems reviewed in this study are 7.43 gCO e/kWh, 2

Description:
The FBR nuclear power generation systems produced the minimum lifecycle GHGs. The centrifuge enrichment method produced lower GHG emissions than the gaseous diffusion enrichment method. Keywords: lifecycle assessment; greenhouse gas emissions; nuclear energy; power generation;.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.