ebook img

Quantification of Red Blood Cell Adhesion using Holographic Optical Tweezers and Single Cell PDF

169 Pages·2012·14.07 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Quantification of Red Blood Cell Adhesion using Holographic Optical Tweezers and Single Cell

Quantification of Red Blood Cell Adhesion using Holographic Optical Tweezers and Single Cell Force Spectroscopy Dissertation zur Erlangung des Grades des Doktors der Naturwissenschaften der Naturwissenschaftlich-Technischen Fakult¨at II -Physik und Mechatronik- der Universit¨at des Saarlandes von Patrick Steffen Saarbru¨cken 2012 Tag des Kolloquiums: 17.09.2012 Dekan: Prof. Dr. Helmut Seidel Mitglieder des Pru¨fungsausschusses: Vorsitzender: Prof. Dr.-Ing. Michael Mo¨ller 1. Berichterstatter: Prof. Dr. Christian Wagner 2. Berichterstatter: apl. Prof. Dr. Ingolf Bernhardt 3. Berichterstatter: Dr. Chaouqi Misbah Akademischer Mitarbeiter: Dr. Martin Straub 2 Abstract In this work the adhesion processes of red blood cells are investigated by means of a combined approach of holographic optical tweezers and microfluidics and are quan- tified by means of single cell force spectroscopy. In general, there are two different mechanisms that trigger red blood cells to aggregate: specific aggregation after stim- ulation with certain messengers and non-specific aggregation due to the presence of surrounding macromolecules. Both mechanisms are investigated in this work. Theformeroccursduringbloodcoagulationinwhichareleasedmessenger,lysophopha- tidic acid, triggers the red blood cells to aggregate. Holographic optical tweezers and microfluidics resolved key features of this adhesion process. Single-cell force spec- troscopy quantified the occurring adhesion process to amount to 100pN. With this value the adhesion mechanism is identified to be of importance in the later stages of blood coagulation and thrombosis and supports the assumption that red blood cells actively participate in thrombus solidification. The second investigated aggregation process is caused by macromolecules present in the blood plasma. To resolve the ongoing question of whether this aggregation is caused by an absorption and resulting bridging of macromolecules (bridging model) or by an osmotic pressure of the surrounding macromolecules (depletion model), sin- gle cell force spectroscopy is utilized to measure the interaction energies and adhesion forces of two adhering cells. With this approach, an existing theory in favor of the depletion model is confirmed, resulting in the conclusion that the aggregation of red blood cells is rather depletion-induced than bridging-induced. Kurzzusammenfassung IndieserArbeitwerdenoptischePinzetten,MicrofludikenunddieMethodederEinzel- Zell Spektroskopie genutzt, um zwei Adh¨asions-Ph¨anomene roter Blutzellen zu unter- suchen und zu quantifizieren. Bei den untersuchten Adha¨sionsarten handelt es sich zum einen um eine spezifisch ausgel¨oste Adh¨asion einzelner Blutzellen nach Stimula- tionmiteinemgewissenBotenstoffundeineunspezifischauftretendeAdha¨sioninfolge osmotischen Drucks umgebender Makro-Moleku¨le. Der erste Prozess findet wa¨hrend der Blutgerinnung statt, wenn aktivierte Blutpla¨tchen Botenstoffe aussenden, die in der roten Blutzelle Prozesse ausl¨osen die vermutet werden eine direkte Adh¨asion der Zellen untereinander zur Folge zu haben. Mittels optischer Pinzetten und Mikroflu- idikenkonntedasAuftretenderAdha¨sionstatistischbelegtundmittelsderEinzel-Zell Spektroskopie auch quantifiziert werden. Die Messungen belegen, dass sich im Mittel die St¨arke der Adha¨sion auf 100pN bela¨uft. Dieser Wert scheint groß genug um physiologisch im spa¨teren Verlauf der Blutgerinnung zur Stabilita¨t des Blutgerinnsels beizutragen. Der zweite untersuchte Adh¨asions-Prozess stellt die Rouleauxbildung dar. Im statis- chen Blut oder bei geringen Scherraten neigen rote Blutzellen dazu lineare Aggre- 3 gate zu bilden die dem Abbild von Geldrollen a¨hneln. Die hier zugrunde liegenden Mechanismen sind bis heute nicht restlos gekla¨rt. Es haben sich zwei Theorien en- twickelt die verschiedene Ursachen fu¨r dir Rouleauxbildung postulieren. Zum einen das so genannte Bridging Modell, welches eine Absorption von Makromoleku¨hlen in ¨ der Membran und der damit verbunden Uberbru¨ckung zu benachbarten Zellen als Ur- sachederAdha¨sionsieht. ZumanderendassogenannteDepletionModell, inwelchem der osmotische Druck, infolge von Verarmung von Makromoleku¨hlen als Ursache der Adha¨sion angesehen wird. Es wird in dieser Arbeit die Einzel-Zell Spektroskopie ver- wendet um die ersten direkten Zell-Zell Adh¨asionmessungen von roten Blutzellen in ihrer natrlichen, discozoiden Form durchzufu¨hren. Die Ergebnisse der Messung ste- ¨ heninsehrguterUbereinstimmungmitdenausdemDepletionModellvorhergesagten Ergebnissen. Basierend auf diesen Ergebnissen ist eine Depletion induzierte Adh¨asion der roten Blutzellen bei der Ursache der Rouleaux Bildung als am wahrscheinlichsten anzusehen. 4 Contents 1 Introduction 9 2 Literature Survey 12 2.1 Lysophosphatidic Acid-Induced Adhesion of Red Blood Cells . . . . . 12 2.2 Depletion-Induced Adhesion of Red Blood Cells . . . . . . . . . . . . 13 3 Optical Tweezers 15 3.1 Basics of Optical Forces . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Theoretical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2.1 Ray Optics Model . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2.2 Electromagnetic Field Model . . . . . . . . . . . . . . . . . . . 21 3.2.3 Intermediate Regime . . . . . . . . . . . . . . . . . . . . . . . 22 3.3 Holographic Optical Tweezers . . . . . . . . . . . . . . . . . . . . . . 23 3.3.1 Holography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3.2 Phase-Modulation . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3.3 Prism Superposition . . . . . . . . . . . . . . . . . . . . . . . 25 3.4 Calibration of Optical Tweezers . . . . . . . . . . . . . . . . . . . . . 26 3.5 Microfluidics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.5.1 Navier-Stokes Equation . . . . . . . . . . . . . . . . . . . . . . 28 3.5.2 Microfluidic Design . . . . . . . . . . . . . . . . . . . . . . . . 30 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4 Single Cell Force Spectroscopy 34 4.1 SCFS Setup and Experimentation . . . . . . . . . . . . . . . . . . . . 35 4.1.1 Interpretation of Cell-Adhesion Signals . . . . . . . . . . . . . 35 4.1.2 Cantilevers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.1.3 Attaching Cells to the Cantilever . . . . . . . . . . . . . . . . 37 4.2 Thermal noise calibration . . . . . . . . . . . . . . . . . . . . . . . . 38 4.3 Parameter settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.3.1 Force Set Point . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.3.2 Cantilever Velocity . . . . . . . . . . . . . . . . . . . . . . . . 39 4.3.3 Contact Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5 Contents 4.4 Current Limitations of SCFS and Perspectives . . . . . . . . . . . . . 40 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5 Setup 42 5.1 Optical Tweezers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.1.1 Laser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.1.2 Beam Expander . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.1.3 PAL-SLM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.1.4 Damping Table . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.1.5 Fluorescence Camera . . . . . . . . . . . . . . . . . . . . . . . 45 5.1.6 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.1.7 Microscope . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.1.8 Differential Interference Contrast Microscopy . . . . . . . . . . 47 5.1.9 Microfluidic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.2 Single Cell Force Spectroscopy . . . . . . . . . . . . . . . . . . . . . . 50 5.2.1 AFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.2.2 CellHesion Module . . . . . . . . . . . . . . . . . . . . . . . . 52 5.2.3 Microscope . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.2.4 Petri Dish Heater . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6 LPA-Induced Adhesion of Red Blood Cells 54 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6.2 Structure of RBC-Membrane . . . . . . . . . . . . . . . . . . . . . . . 56 6.2.1 Membrane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.2.2 Cell Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.2.3 Transporting Systems . . . . . . . . . . . . . . . . . . . . . . . 58 6.3 Signalling Cascade . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.3.1 Substances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.4.1 Microfluidic Approach to RBC Adhesion . . . . . . . . . . . . 64 6.4.2 Petri Dish Measurements . . . . . . . . . . . . . . . . . . . . . 64 6.4.3 Red Blood Cell Stimulation with LPA . . . . . . . . . . . . . 65 6.4.4 Approaching Signaling Entities . . . . . . . . . . . . . . . . . 68 6.4.5 Quantification of the Intracellular Adhesion . . . . . . . . . . 71 6.4.6 Effects of Spherical Shape on Adhesion Behavior . . . . . . . . 74 6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.5.1 LPA Stimulation Leads to Inter-Cellular Adhesion . . . . . . . 76 6.5.2 Signaling Components . . . . . . . . . . . . . . . . . . . . . . 77 6.5.3 Relevance to in Vivo Conditions . . . . . . . . . . . . . . . . . 79 6 Contents 6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 7 Depletion-Induced Adhesion of Red Blood Cells 81 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 7.2 Mechanism of Red Blood Cell Aggregation . . . . . . . . . . . . . . . 81 7.2.1 The Bridging Model . . . . . . . . . . . . . . . . . . . . . . . 82 7.2.2 The Depletion Model . . . . . . . . . . . . . . . . . . . . . . . 83 7.2.3 Bridging Versus Depletion . . . . . . . . . . . . . . . . . . . . 84 7.3 Theoretical Description of Depletion Based Aggregation of RBCs . . 85 7.3.1 Depletion Interaction . . . . . . . . . . . . . . . . . . . . . . . 85 7.3.2 Depletion Layer Thickness . . . . . . . . . . . . . . . . . . . . 87 7.3.3 Macromolecular Penetration into the Glycocalyx . . . . . . . . 89 7.3.4 Electrostatic Repulsion . . . . . . . . . . . . . . . . . . . . . . 92 7.3.5 Red Blood Cell Adhesion Energy in Polymer Solutions . . . . 93 7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 7.4.1 Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 7.4.2 BSA Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . 97 7.4.3 Parameter Settings . . . . . . . . . . . . . . . . . . . . . . . . 99 7.4.4 Adhesion Forces and Adhesion Energies of RBCs . . . . . . . 102 7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 7.5.1 Dextran-Induced Adhesion of RBCs . . . . . . . . . . . . . . . 102 7.5.2 Bridging vs. Depletion . . . . . . . . . . . . . . . . . . . . . . 104 7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 8 Summary 106 A Materials and Methods 108 A.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 A.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 A.2.1 RBC Preparation and Fluorescence Microscopy . . . . . . . . 108 A.2.2 Loading of RBCs with Fluo-4 . . . . . . . . . . . . . . . . . . 109 A.2.3 Statistical Significance . . . . . . . . . . . . . . . . . . . . . . 109 A.2.4 Cell Tak Functionalization Protocol . . . . . . . . . . . . . . . 110 A.2.5 ConA Functionalization Protocol . . . . . . . . . . . . . . . . 110 A.2.6 Dextran Preparation . . . . . . . . . . . . . . . . . . . . . . . 110 A.2.7 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 A.2.8 PDMS Manufacturing Protocol . . . . . . . . . . . . . . . . . 111 Publications 112 7 Contents Bibliography 150 Danksagung 168 Eidesstattliche Versicherung 169 8 1 Introduction Interdisciplinary work of biology, medicine and physics have become more important over the past. Accordingly, disciplines such as biophysics or medical physics pushed themselves to the fore front. Questions involved in these areas exhibit such a large complexity that a quantitatively accurate description of the underlying physical pro- cessesrequiredthedevelopmentofmodernnumericalandexperimentalmethods. One of the areas of research currently using methods provided by physics is the field of blood coagulation. Thrombosis develops in the arterial as well as in the venous cir- culatory system and occasionally has fatal clinical ramifications [120]. Acute arterial thrombosis is the main cause of myocardial infarction or apoplectic stroke and are therefore the reason for the most frequent causes of death in the Western World. To this day, the involved processes are not fully understood. Nonetheless, a compre- hensive understanding is crucial for the development of effective medical treatments. At this present day, arterial thrombosis is treated with medication that focuses on the blood platelets (thrombocytes), whereas venous thrombosis is treated with med- ication that focuses on certain proteins involved in the clotting process. However, an undesirable side effect, as a direct consequence of the inhibited clotting process, is long bleeding times. In general, it is distinguished between white and red thromboses. A white thrombus consists of a polymerized fibrin mesh, a protein that is generated from fibrinogen in the blood coagulation cascade. A red thrombus (see Fig. 1.1a) ad- ditionally possesses a huge amount of red blood cells (erythrocytes), that are trapped in the fibrin mesh; a fact that is not surprising, considering the circumstance that 40 50% of the blood volume consist of red blood cells. This dissertation deals with − with the following question: “What if the red blood cells in a thrombus are subjected to adhesion forces among themselves?” Such aggregates have been known to exist for a long time. In static blood or at very low shear rates in the vascular system red blood cells form linear aggregates, known as rouleaux, which look similar to a stack of coins (see Fig. 1.1b). Erythrocyte aggregation is the main determinant of blood viscosity. At low shear rates large rouleaux form and cause a large viscosity. With in- creasing shear rates the rouleaux break and the viscosity consequently decreases (see Fig. 1.1c). The mechanism responsible for rouleaux formation still has not been fully understood yet and will also be investigated in this work in chapter 7. The adhesion process in the rouleaux formation is assumed to be completely reversible and prob- ably does not play a significant role in the cardiovascular system. However, during 9 1 Introduction a) b) 8µm 0,06 c) 0,05 0,04 s] 0,03 a P [ h 0,02 0,01 0,00 1 10 100 shear rate [1/s] Figure 1.1: a) Colored SEM photograph of a red thrombus.(Source: Science Photo Library) b) Snapshot of a rouleaux of 7 RBCs in a dextran solution. c) Dependence of blood viscosity η on the applied shear rate. Illustration of the shear thinning properties of blood blood coagulation and thrombus formation, an inter cellular adhesion of red blood cells would be important for both, a deeper understanding of the clotting process and for new approaches to medical treatments. Recently, Kaestner et al. [97] suggested a signaling cascade that hypothesiszed such an active adhesion of red blood cells after stimulating with physiological substances released during blood coagulation. A test 10

Description:
tion mit einem gewissen Botenstoff und eine unspezifisch auftretende .. Accordingly, disciplines such as biophysics or medical physics pushed all theories the arising forces can be divided into two groups: scattering forces [74] F. Gittes and C.F. Schmidt, Signals and noise in micromechanical
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.