molecules Article Quality Control of Gamma Irradiated Dwarf Mallow (Malva neglecta Wallr.) Based on Color, Organic Acids, Total Phenolics and Antioxidant Parameters JoséPinela1,2,LillianBarros1,AmilcarL.Antonio1,3,AnaMariaCarvalho1, M.BeatrizP.P.Oliveira2andIsabelC.F.R.Ferreira1,* 1 MountainResearchCentre(CIMO),ESA,PolytechnicInstituteofBragança,CampusdeSantaApolónia, 1172,5300-253Bragança,Portugal;[email protected](J.P.);[email protected](L.B.);[email protected](A.L.A.); [email protected](A.M.C.) 2 REQUIMTE/LAQV,FacultyofPharmacy,UniversityofPorto,RuaJorgeViterboFerreira, no.228,4050-313Porto,Portugal;[email protected] 3 CentrodeCiênciaseTecnologiasNucleares(C2TN),InstitutoSuperiorTécnico,UniversidadedeLisboa, E.N.10,2695-066Bobadela,Portugal * Correspondence:[email protected];Tel.:+351-273-303-219;Fax:+351-273-325-405 AcademicEditor:DerekJ.McPhee Received:7March2016;Accepted:7April2016;Published:8April2016 Abstract: Thisstudyaddressestheeffectsofgammairradiation(1,5and8kGy)oncolor,organic acids,totalphenolics,totalflavonoids,andantioxidantactivityofdwarfmallow(MalvaneglectaWallr.). Organicacidswereanalyzedbyultrafastliquidchromatography(UFLC)coupledtoaphotodiode array (PDA) detector. Total phenolics and flavonoids were measured by the Folin-Ciocalteu and aluminium chloride colorimetric methods, respectively. The antioxidant activity was evaluated based on the DPPH‚ scavenging activity, reducing power, β-carotene bleaching inhibition and thiobarbituricacidreactivesubstances(TBARS)formationinhibition. Analyseswereperformedin thenon-irradiatedandirradiatedplantmaterial,aswellasindecoctionsobtainedfromthesame samples. Thetotalamountsoforganicacidsandphenolicsrecordedindecoctedextractswerealways higherthanthosefoundintheplantmaterialorhydromethanolicextracts,respectively. TheDPPH‚ scavengingactivityandreducingpowerwerealsohigherindecoctedextracts.Theassayedirradiation doses affected differently the organic acids profile. The levels of total phenolics and flavonoids werelowerinthehydromethanolicextractspreparedfromsamplesirradiatedat1kGy(dosethat induced color changes) and in decocted extracts prepared from those irradiated at 8 kGy. The last samples also showed a lower antioxidant activity. In turn, irradiation at 5 kGy favored the amountsoftotalphenolicsandflavonoids. Overall,thisstudycontributestotheunderstandingof theeffectsofirradiationinindicatorsofdwarfmallowquality,andhighlightedthedecoctionsforits antioxidantproperties. Keywords: Malvaneglecta;ionizingradiation;colorparameters;organicacids;antioxidantactivity; decoction;qualitycontrol 1. Introduction Organicacidsareprimarymetaboliteswidelyspreadthroughouttheplantkingdom. Chemically, theyarelowweightmoleculesandareconsideredtobeanyorganiccarboxylicacidwithageneral structureR-COOH.Althoughtheyareweakacids,thesewater-solublecompoundsmayconferacidic propertiestofoodscontainingthemandinfluenceitsorganolepticproperties(flavor,colorandaroma) and consequent acceptability by the consumers [1]. From a practical point of view, the organic acidsprofile(levelsandrelativeratios)isimportantforfoodqualitycontrol. Itallowsdetermining Molecules2016,21,467;doi:10.3390/molecules21040467 www.mdpi.com/journal/molecules Molecules2016,21, 467 2of13 thepercentageofplantaddedtofinalproducts,thusdetectingadulterationsorpossiblemicrobial deteriorationsoccurringduringstorage,providingapracticaladvantageforitsuseasanauthenticity indexinplant-basedfoodsandbeverages[1–3]. Therelativeamountsandthepresenceofeachofthese compoundsarealsousefulasameanstoevaluatetheeffectoffoodprocessing[2,4]. Thus,qualitative andquantitativeanalysesoftheseingredientsareofgreatimportance. Duringtheproductionprocess(fromharvestinganddryingtopackagingandstorage),rawplants arepronetovariouscontaminationsandinfestations,whichcanleadtospoilage,qualitydeterioration andconsequenteconomiclosses[5]. Besidesconstitutinghealthhazardstoconsumers,contaminated productscanalsoadverselyaffecttheefficacyandstabilityoftheirbioactiveingredientsandleadto spoilageoffinalproducts[6]. Thepresenceoforganicacidsandphenoliccompoundsisadvantageous, as they contribute to the natural preservation process (through its antimicrobial and antioxidant activities),butisnotenough. Thesearchfornewpreservationtreatmentswithaminimumimpacton physical,chemicalandfunctionalparametershighlightedthegammairradiationasasafe,effective andsustainableoptiontosanitizeplantproducts[7,8]. Nowadaysthereisagrowingscientificinterestinirradiation-inducedmodificationsofantioxidant propertiesandcompoundsresponsibleforsucheffects. Theantioxidantactivityisstronglylinked the presence of phenolic compounds [9–12], secondary metabolites frequently found attached to sugars (glycosides), which increases their water solubility. These compounds have the ability to donateahydrogenatomfromthearomatichydroxylgrouptoafreeradicaland/orthecapacityto supportanunpairedelectronintheiraromaticstructures. Therefore,themethodsusedtoevaluatethe antioxidantactivitycanbeclassifiedaccordingtothemechanismofaction,i.e.,single-electrontransfer orhydrogenatomtransfer[13]. However,phenoliccompounds,organicacidsandotherbioactive constituents may be affected by irradiation treatment if applied inappropriately. It is known that ionizingradiationinteractswithwatermoleculesgeneratingfreeradicals,inareactioncommonly knownasradiolysis[14]. Thesefreeradicalscantheninteractwithdifferentbiomolecules,leading tobreakdownofchemicalbondsandchangesintheirstructureand,consequently,inthebioactivity andextractabilityfromtheplantmaterial. Thereferredcompoundsmayalsobeaffectedbythedirect impactofthegamma-rays[14,15]. Asaconsequence,thecoloroftheprocessedsamplesmaychange. However, thisqualityattributeisdirectlyrelatedtoconsumers’appreciationofaproduct, asthey tend to associate its color with its taste, hygienic safety, shelf-life and personal satisfaction [16,17]. Averystringentplantselectionbasedoncolorparametersalsooccursinthefood,pharmaceuticaland cosmeceuticalindustries[18]. Therefore,thecolorevaluationisimportantinqualitycontrolparameter ofirradiatedproducts. Dwarf mallow (Malva neglecta Wallr.) is an annual herbaceous plant of the family Malvaceae traditionallyeatenrawasaleafyvegetableorpreparedinherbalbeverages(mainlydecoctions)due toclaimsofdisinfectantandanti-inflammatoryeffects[19]. Itisalsousedtotreatmultiplemedical conditionssuchasasthma,colds,digestiveandurinaryproblems,andabdominalpains[20]. Scientific workshavereportedantioxidant[11,20],antibacterial[21]andanti-ulcerogenic[22]propertiesforthis plant. Nevertheless, as far as we know, the organic acids profile of this plant remains unknown, as well as the effects induced by the gamma irradiation treatment on its physical or chemical properties. Thus, the main purpose of this study was to investigate the dose-response effects of gammairradiationoncolor,organicacids,totalphenolicsandflavonoids,andantioxidantproperties (qualitycontrolindicators)ofM.neglectasamples. Theinfluenceofthepreparationmethod(decoction) wasalsoinvestigated. 2. Results 2.1. EffectsonColorParameters The CIE L*a*b* color values for non-irradiated and irradiated samples of M. neglecta are presented in Figure 1. The 5 and 8 kGy doses had no influence on color parameters. However, Molecules2016,21, 467 3of13 significant differences were found for samples irradiated with the 1 kGy dose. These samples revealedlowerlightness(L*=43.43˘0.89)andyellowness(b*=22.29˘0.96)andhigherredness (a*=´12.69˘0.45),whichinducedthemorepronouncedtotalcolordifference(∆E*=1.81),compared withthenon-irradiatedcontrolsamples(L*=45.07˘0.97,b*=23.98˘0.55anda*=´13.84˘0.29). Molecules 2016, 21, 467 3 of 12 Furthermore,whilethe∆E*upto0.5andfrom0.5to1.5indicatetracecolordifferencesandslight 0d.i5f faenredn cfreosm,r e0s.p5 etcot i1v.e5l yi,ntdhieca∆teE *trcaocrer ecsoploorn ddiifnfgerteoncthese a1nkdG sylidgohst ediinffdeirceantceessa, rneostpiceecatibvleelyd,i ftfheer eΔnEce* cdoertreecstpabolnedbinygt htoe hthuem 1a knGeyy ed[o2s3e] .indicates a noticeable difference detectable by the human eye [23]. 0.99 ΔE* 0.43 8 kGy 1.81 5 kGy 1 kGy 24.55 ±0.88a 24.14 ±0.77a 0 kGy b* 22.29 ±0.96b 23.98 ±0.55a -13.86 ±0.31b -13.61 ±0.26b a* -12.69 ±0.45a -13.84 ±0.29b 46.06 ±0.61a 45.47 ±0.74a L* 43.43 ±0.89b 45.07 ±0.97a -35 -25 -15 -5 5 15 25 35 45 55 65 CIE L*a*b* units Figure 1. Impact of the gamma irradiation treatment on color parameters of M. neglecta powdered Figure1. ImpactofthegammairradiationtreatmentoncolorparametersofM.neglectapowdered ssaammpplleess.. Δ∆EE**: :tototatal lcocololor rddififfefreernecnec;e b;*b: *b:lbuleuneenses s(s–)( –↔)Ø yeylleolwlonwesnse (s+s)(; +a)*;: ag*r:eegnreneenssn e(–s)s ↔(– )rØednreesdsn (e+s)s; a(+n)d; aLn*d: dLa*:rkdnaersksn e(0ss) (↔0) Ølighlitgnhetsnse s(1s0(01)0. 0F).oFr oeraecahc hcocloolro rpapraarmameteetre, r,ddififfefererennt tlleetttteerrss ((aa,,bb)) iinnddiiccaattee ssttaattiissttiiccaallllyy ssiiggnniiffiiccaanntt ddiiffffeerreenncceess ((pp << 00..0055)).. Similar results were previously reported by Kirkin et al. [24]. Those authors found that the 7 kGy SimilarresultswerepreviouslyreportedbyKirkinetal.[24]. Thoseauthorsfoundthatthe7kGy dose had a greater effect on color parameters of Rosmarinus officinalis L. than higher doses of 12 and 17 dosehadagreatereffectoncolorparametersofRosmarinusofficinalisL.thanhigherdosesof12and kGy. In these samples, the L* value was decreased and the a* value was increased, in accordance to our 17kGy. Inthesesamples,theL*valuewasdecreasedandthea*valuewasincreased,inaccordance results. The discoloration of Piper nigrum L. by decreasing the a* and b* values and increasing the L* toourresults. ThediscolorationofPipernigrumL.bydecreasingthea*andb*valuesandincreasing value was also reported, as well as the suitability of the applied doses to maintain the color parameters theL*valuewasalsoreported,aswellasthesuitabilityoftheapplieddosestomaintainthecolor of Thymus vulgaris L. and Cuminum cyminum L. A tendency for lightness decrease was also reported by parametersofThymusvulgarisL.andCuminumcyminumL.Atendencyforlightnessdecreasewas Pereira et al. [25] in Ginkgo biloba L. samples irradiated at 10 kGy. Nevertheless, browning is unwanted also reported by Pereira et al. [25] in Ginkgo biloba L. samples irradiated at 10 kGy. Nevertheless, in dried products [26]. On the other hand, Pinela et al. [9] reported that gamma irradiation treatment browningisunwantedindriedproducts[26]. Ontheotherhand,Pinelaetal.[9]reportedthatgamma up to 10 kGy had no effect on the color parameters of shade- and freeze-dried samples of Tuberaria irradiationtreatmentupto10kGyhadnoeffectonthecolorparametersofshade-andfreeze-dried lignosa (Sweet) Samp. Therefore, we can conclude that the irradiation-induced modifications on color samplesofTuberarialignosa(Sweet)Samp. Therefore,wecanconcludethattheirradiation-induced parameters not only depend on the applied dose, but also on the plant material under investigation. modificationsoncolorparametersnotonlydependontheapplieddose,butalsoontheplantmaterial underinvestigation. 2.2. Effects on Organic Acids 2.2. ETfafebcltes o1n sOhorwgasn itchAe coirdgsanic acids content found in M. neglecta dry material submitted to gamma irradiation, as well as in the decocted extracts (the form traditionally used in folk medicine) prepared Table1showstheorganicacidscontentfoundinM.neglectadrymaterialsubmittedtogamma from that material. Oxalic, quinic, malic, citric, succinic and fumaric acids were quantified, being irradiation,aswellasinthedecoctedextracts(theformtraditionallyusedinfolkmedicine)prepared oxalic acid the most abundant organic acid (Figure 2). The total amounts recorded in the decocted fromthatmaterial. Oxalic,quinic,malic,citric,succinicandfumaricacidswerequantified,beingoxalic extracts were always higher than those found in the plant dry material, as well as the individual acidthemostabundantorganicacid(Figure2). Thetotalamountsrecordedinthedecoctedextracts levels of each organic acid (except for citric acid) (Table 1). This difference may be related to a better were always higher than those found in the plant dry material, as well as the individual levels of extraction efficiency achieved at elevated temperature, but that can lead to citric acid degradation eachorganicacid(exceptforcitricacid)(Table1). Thisdifferencemayberelatedtoabetterextraction [27]. These results are in agreement with those previously reported by Guimarães et al. [10] for Matricaria recutita L. dry material and decocted extracts. Molecules 2016, 21, 467 4 of 12 Table 1. Organic acids content in the dry material and decocted extracts of M. neglecta samples submitted to gamma irradiation. Dose Oxalic Acid Quinic Acid Malic Acid Citric Acid Succinic Acid Fumaric Acid Total Dry material (mg/g dw) 0 kGy 67.50 ± 0.16 b 6.63 ± 0.21 b 3.16 ± 0.28 b 21.56 ± 0.41 b 7.50 ± 0.13 a 15.07 ± 0.03 c 121.43 ± 1.17 b 1 kGy 67.29 ± 0.05 b 7.50 ± 0.42 a 3.09 ± 0.16 b 19.84 ± 0.14 c 7.30 ± 0.41 a 18.04 ± 0.05 a 123.07 ± 0.02 a 5 kGy 65.30 ± 0.17 c 6.34 ± 0.28 b 3.42 ± 0.33 ab 22.28 ± 0.31 a 7.29 ± 0.12 a 13.59 ± 0.07 d 118.22 ± 1.15 c 8 kGy 71.75 ± 0.10 a 6.45 ± 0.08 b 3.64 ± 0.05 a 19.02 ± 0.08 d 6.23 ± 0.13 b 15.85 ± 0.05 b 122.94 ± 0.30 ab Decocted extracts (mg/g dw) Molecules2016,21, 467 4of13 0 kGy 106.71 ± 0.50 a 3.59 ± 0.25 d 9.78 ± 0.67 b 7.92 ± 0.09 d 47.43 ± 0.67 b 20.61 ± 0.14 c 196.03 ± 0.80 b 1 kGy 79.80 ± 0.05 c 6.96 ± 0.20 c 10.52 ± 0.08 a 9.80 ± 0.15 b 47.36 ± 0.38 b 21.54 ± 0.19 b 175.99 ± 0.89 c 5 kGy 88.72 ± 0.03 b 8.90 ± 0.09 a 9.72 ± 0.19 b 12.76 ± 0.07 a 54.17 ± 0.06 a 20.81 ± 0.08 c 195.09 ± 0.01 b efficiencyachievedatelevatedtemperature,butthatcanleadtocitricaciddegradation[27]. These 8 kGy 106.33 ± 0.10 a 8.37 ± 0.39 b 7.89 ± 0.29 c 8.58 ± 0.35 c 41.42 ± 0.50 c 25.17 ± 0.09 a 197.76 ± 0.95 a resultsareinagreementwiththosepreviouslyreportedbyGuimarãesetal.[10]forMatricariarecutitaL. The results are presented as mean ± standard deviation. In each column and for each sample (dry drymaterialanddecoctedextracts. material and decoction), different letters (a–d) indicate statistically significant differences (p < 0.05). 6 mAU 2500 2250 2000 1750 1 1500 1250 1000 750 500 250 2 3 4 5 0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 Time(min) FFiigguurree 22.. CChhrroommaattooggrraapphhiicc pprrooffiillee ooff oorrggaanniicc aacciiddss iinn tthhee ddeeccooccttiioonn pprreeppaarreedd ffrroomm MM.. nneegglleeccttaa ssaammpplleess iirrrraaddiiaatteedd aatt 55 kkGGyy,, oobbttaaiinneedd uussiinngg UUFFLLCC--PPDDAA.. PPeeaakk iiddeennttiifificcaattiioonn:: 11:: ooxxaalliicc aacciidd,, 22:: qquuiinniicc aacciidd,, 33:: mmaalliicc aacciidd,, 44:: cciittrriicc aacciidd,, 55:: ssuucccciinniicc aacciidd,, aanndd 66:: ffuummaarriicc aacciidd.. In the plant material, the relative amounts of oxalic, citric and fumaric acids were the most affected Table 1. Organic acids content in the dry material and decocted extracts of M. neglecta samples by the irradiation treatment (Table 1); however, this variation was more marked in the decocted submittedtogammairradiation. extracts, mainly in the oxalic and succinic acids, probably due to the combined effects induced by gaDmosmea irrOaxdaliiactAiocind andQ purineipcaArcaidtion mMaeltihcAocdid. TherCeiftorirceA, ctihde levSueclcsi noifc oArcigdaniFcu amcairdicsA acnidd relatiTvoeta rlatios in the decocted extracts were somewhat dDifrfyermeantetr ifarlo(mmg /tghdowse) found in the dry material, e.g., citric acid w0aks Gthye se6c7.o50n˘d 0m.16obst ab6u.6n3d˘a0n.2t1 obrgan3i.1c6 a˘ci0d.2 8inb the2 1p.5la6n˘t0 m.41abteria7l. 5a0n˘d0 p.13reasent1e5d.0 7a˘ r0e.d03ucctio1n2 1o.4f3 ~˘112.%17 bin 1kGy 67.29˘0.05b 7.50˘0.42a 3.09˘0.16b 19.84˘0.14c 7.30˘0.41a 18.04˘0.05a 123.07˘0.02a the decocted extracts, while the relative ratios of succinic acid increased ~19% in those preparations. 5kGy 65.30˘0.17c 6.34˘0.28b 3.42˘0.33ab 22.28˘0.31a 7.29˘0.12a 13.59˘0.07d 118.22˘1.15c N8ekvGerythel7e1s.7s5, ˘al0t.h10oaugh6 o.4x5a˘li0c.0, 8mbalic,3 .c64it˘ric0. 0a5nad fu1m9.0a2r˘ic0 .a0c8idds h6a.2v3e˘ b0e.1e3nb alre15a.d85y˘ d0e.0s5cbribe1d22 .i9n4 ˘flo0.w30eabrs and flowering shoots of Malva sylvestris DLe. c[o2c8te]d, qexutriancitsc (amngd/g sduwc)cinic acids were not detected or present in0 tkrGayce a1m06o.7u1n˘t0s. 5i0na thi3s. 5s9p˘e0c.i2e5sd, so a9. 7q8u˘a0l.i6t7abtive 7a.n92a˘ly0s.0is9 dof th4e7. 4o3r˘g0a.n67icb aci2d0.s6 1p˘ro0.f1i4lec can19 6b.0e3 u˘s0e.8d0 bto de1tkeGcty pos7s9.i8b0l˘e 0a.d05ucltera6.t9i6o˘ns0 .i2n0 cthe s10a.m52p˘l0e.s08. a 9.80˘0.15b 47.36˘0.38b 21.54˘0.19b 175.99˘0.89c 5kGy 88.72˘0.03b 8.90˘0.09a 9.72˘0.19b 12.76˘0.07a 54.17˘0.06a 20.81˘0.08c 195.09˘0.01b 8kGIyn th1e0 6d.3r3y˘ m0.1a0taerial8,. 3t7h˘e 01.3 k9Gb y d7o.s89e ˘d0id.2 9ncot in8d.5u8c˘e0 a.3n5yc adv41e.4r2se˘ e0f.5f0ecct on25 t.1h7e˘ o0r.0g9aanic 1a9c7i.d76s˘ p0r.o95fiale and increased the total levels. Lower amounts of total organic acids were however detected in samples Theresultsarepresentedasmean˘standarddeviation.Ineachcolumnandforeachsample(drymaterialand irradiadteecdo catito n5) ,kdGiffyer,e dntuleet tteors a(a –dde)cinrdeiacsaete ostfa toisxtiacalilcly asingdni fifcuamntadrififce raenccidess(.p T<h0e.0 5h).ighest levels of citric and Intheplantmaterial,therelativeamountsofoxalic,citricandfumaricacidswerethemostaffected bytheirradiationtreatment(Table1);however,thisvariationwasmoremarkedinthedecoctedextracts, mainly in the oxalic and succinic acids, probably due to the combined effects induced by gamma irradiationandpreparationmethod. Therefore,thelevelsoforganicacidsandrelativeratiosinthe decoctedextractsweresomewhatdifferentfromthosefoundinthedrymaterial,e.g.,citricacidwas thesecondmostabundantorganicacidintheplantmaterialandpresentedareductionof~12%in thedecoctedextracts,whiletherelativeratiosofsuccinicacidincreased~19%inthosepreparations. Molecules2016,21, 467 5of13 Nevertheless,althoughoxalic,malic,citricandfumaricacidshavebeenalreadydescribedinflowers andfloweringshootsofMalvasylvestrisL.[28],quinicandsuccinicacidswerenotdetectedorpresent intraceamountsinthisspecies,soaqualitativeanalysisoftheorganicacidsprofilecanbeusedto detectpossibleadulterationsinthesamples. Inthedrymaterial,the1kGydosedidnotinduceanyadverseeffectontheorganicacidsprofile andincreasedthetotallevels. Loweramountsoftotalorganicacidswerehoweverdetectedinsamples irradiated at 5 kGy, due to a decrease of oxalic and fumaric acids. The highest levels of citric and succinicacidsandareductionoffumaricaciddetectedinbothsamples(drymaterialanddecocted extract)werealsoassociatedwiththe5kGydose. Finally,thesamplesirradiatedat8kGygavethe highestlevelsoftotalorganicacids. Itcanbeconcludedthat,ingeneral,theeffectsinducedbythe differentdoseswerepositive,asthedecreaseintotalorganicacidswasmainlyassociatedwiththe oxalicacidcontent. Despitetheimportanceofthisacidinthepharmaceuticalindustry[29],ithasbeen associatedwithsomehealthproblems,e.g.,oxalicacidcancombinewithcalciuminthekidneysto formkidneystonesinsusceptiblepeople[30]. Theidentifiedorganicacidshavebeenusedasfoodadditivesorpharmaceuticalandcosmetic excipients [31,32]. Citric acid is a widely used food additive in many kinds of beverages due to itsmildandrefreshingsourness[1,33],succinicacidisalsousedinthefoodindustryaswellasin pharmaceuticalsandantibiotics[31],fumaricacidisusedduetoitseffectivenessagainstpsoriasis andinflammationandduetoitsneuro-andchemoprotectiveeffects[34],andmalicandcitricacids are reported to have bactericidal effects [35]. Additionally, the consumption of these compounds in moderate amounts can promote appetite, help digestion and be beneficial to human health [4]. Nevertheless,excessivedosesofcertainorganicacidsshouldbeavoided[32]. 2.3. EffectsonTotalPhenolics,TotalFlavonoidsandAntioxidantActivity Theeffectsofgammairradiationonthetotalphenolicandflavonoidcontentsandantioxidant activityoftheM.neglectahydromethanolicanddecoctedextractscanbeaccessedfromtheanalysisof Table2. TheantioxidantactivityresultsareexpressedinEC values;thus,thelowertheEC value, 50 50 thehighertheantioxidantactivity. Ingeneral,thedecoctedextractsrevealedhigheramountsoftotal phenolicsandflavonoidsthanthehydromethanolicextracts,aswellasanincreasedDPPH‚scavenging activityandreducingpower. Thesamplesirradiatedat1kGyandextractedwiththehydromethanolic mixturerevealedlowerlevelsofbothtotalphenolicandflavonoidsanddecreasedDPPH‚scavenging activity,reducingpower,andTBARSformationinhibitioncapacity. Thisresultisinagreementwith thehigher∆E*foundinthesesamples. Contrariwise,thehydromethanolicextractspreparedfromthe samplesirradiatedat5kGyrevealedhigherlevelsoftotalphenolicsandflavonoidsandanincreased DPPH‚ scavengingactivityandlipidperoxidationinhibitioncapacity(accessedbytheβ-carotene bleachinginhibitionandTBARSformationinhibitioninbraincellhomogenates)incomparisonwith those prepared from the non-irradiated control samples. In fact, the lipid peroxidation inhibition capacityoftheseextractswasfavoredbytheirradiationtreatment(exceptfortheTBARSformation inhibitionoftheextractspreparedfromthesamplesirradiatedat1kGy). Thisresultcanbeexplained bytheaffinityofthesetwoinvitroassaysforlipophilicantioxidantsandbythefactthattheirradiation treatmentaffectsthedifferentantioxidantmoleculesdifferently[14,15]. Molecules2016,21, 467 6of13 Table2.AntioxidantactivityofthehydromethanolicanddecoctedextractspreparedfromtheM.neglectadrymaterialsubmittedtogammairradiation. β-CaroteneBleaching TBARSFormation Dose DPPH‚ScavengingActivity ReducingPower(EC50 Inhibition Inhibition TotalPhenolics TotalFlavonoids (EC50values,mg/mL) values,mg/mL) (EC50values,mg/mL) (EC50values,mg/mL) (mgGAE/gExtract) (mgCE/gExtract) Hydromethanolicextracts 0kGy 1.15˘0.02c 0.52˘0.01c 0.46˘0.01a 0.56˘0.05b 69.54˘0.21b 22.85˘0.52b 1kGy 1.57˘0.02b 0.69˘0.01a 0.41˘0.03b 0.58˘0.03a 55.04˘0.36d 19.56˘0.08c 5kGy 1.06˘0.07d 0.57˘0.02b 0.41˘0.01b 0.11˘0.03d 78.55˘0.67a 27.30˘0.20a 8kGy 1.75˘0.04a 0.56˘0.01b 0.40˘0.01b 0.22˘0.01c 64.78˘1.51c 22.70˘0.51b Decoctedextracts 0kGy 0.37˘0.01c 0.268˘0.002b 0.16˘0.01c 0.403˘0.004b 91.05˘1.14b 25.14˘0.53b 1kGy 0.40˘0.01b 0.264˘0.003c 0.17˘0.02c 0.35˘0.01c 96.92˘3.73a 28.03˘0.07a 5kGy 0.36˘0.01c 0.253˘0.003d 0.41˘0.01b 0.32˘0.01d 96.76˘0.60a 27.63˘0.35a 8kGy 0.46˘0.02a 0.326˘0.001a 0.46˘0.01a 0.69˘0.02a 78.99˘0.30c 21.98˘0.47c Theresultsarepresentedasmean˘standarddeviation.Ineachcolumnandforeachsample(hydromethanolicanddecoctedextracts),differentletters(a–d)indicatestatistically significantdifferences(p<0.05). EC50:Extractconcentrationcorrespondingto50%ofantioxidantactivityor0.5ofabsorbanceinthereducingpowerassay. TroloxEC50values: 42µg/mL(DPPH‚scavengingactivity),41µg/mL(reducingpower),18µg/mL(β-carotenebleachinginhibition)and23µg/mL(TBARSinhibition).GAE:gallicacidequivalents; CE:catechinequivalents. Molecules2016,21, 467 7of13 Regardingthedecoctedextracts,the8kGydosedecreasedtheantioxidantpropertiesandlevels oftotalphenolicsandflavonoids. However,theotherassayeddosesreinforcedthereducingpower, theTBARSformationinhibitioncapacity, andthelevelsoftotalphenolicsandflavonoids. Similar trendshavebeenobservedinotherstudies. AhigherDPPH‚ scavengingactivityandreducingpower ofdecoctedandinfusedextractsofT.vulgaris,comparedtothehydroalcoholicones,wasfoundby Martinsetal.[12]. Decoctionwasalsothepreferablepreparationmethodforobtainingincreasedlevels ofphenolicacidsandflavonoids. Thesuitabilityofdecoctionsandinfusionsforextractingphenolic compoundsfromcommercialsamplesofAchilleamillefoliumL.wasdemonstratedbyDiasetal.[36], whopreparedaqueousextractsthatalsohadinterestingantioxidantproperties. Furthermore,despite theplantextractsrichinphenoliccompoundsarecommonlyreferredtoashavingincreasedantioxidant properties[9–11],thepresenceoforganicacids,asphenolics,mayalsocontributetotheseeffects[37]. ThetotalphenolicandflavonoidcontentsofdifferentpartsofM.neglectawerealreadyreportedby Dalaretal.[11]forsamplesfromtheEasternAnatoliaRegionofTurkey. Lowertotalphenoliccontents of17.4˘0.3mgGAE/gextractand6.6˘0.3mgGAE/gextractwerereportedinleafandwholeplant extracts,respectively,obtainedusingacidifiedmethanol(80%methanoland1%HCl(v/v)inwater)as extractionsolvent. Regardingtotalflavonoids,7.21˘0.28mgRE(rutinequivalents)/gextractand 2.95˘0.16mgRE/gextractwerefoundintheleafandwholeplantextracts,respectively. Thesame authorsalsoevaluatedtheantioxidantactivitythroughtheferricreducingantioxidantpower(FRAP) andoxygenradicalabsorbancecapacity(ORAC)assays. Thehighestbioactivitywasassignedtothe leafextractsandthentotheflowerextracts. Thesedifferencesinthephenoliccontentmaybejustified byvariationsinedafoclimaticconditionsofthelocationswherethesampleswerecollected,which may affect the plant composition during the growing season [38]. Additionally, as verified in our study,theextractionmethodalsocausessignificantvariationsintheevaluatedresponses. Theused ofdifferentvariablesinobtaininghydromethanolicanddecoctedextracts,namelydifferentsolvents, extraction times, temperatures, and sample to solvent ratios, may have favored the extraction of differentmolecules. Although nothing has been reported on the impact of gamma irradiation on the antioxidant activity or phenolic composition of M. neglecta, different effects have been reported in other plant materials. AstudyconductedbyPinelaetal.[9]concludedthatirradiationdosesupto10kGydid notsignificantlyaffecttheantioxidantactivityandphenoliccompositionofdecoctionsandinfusions preparedfromT.lignosasamples. Ontheotherhand, Pereiraetal. reportedincreasedantioxidant propertiesininfusionsandmethanolicextractsofborututu(CochlospermumangolensisWelw.)[39]and G. biloba samples [25] irradiated at 10 kGy, respectively. The authors also verified that the 10 kGy doseimprovestheextractabilityofphenoliccompoundsfromtheG.bilobasamples[40]. Anincreased totalphenoliccontentandenhancedantioxidantactivityofgammairradiatedalmondskinsextracted with40%ethanolwasreportedbyHarrisonandWere[41]. Thoseauthorsattributedtheseresultsto thereleaseofphenoliccompoundsfromglycosidiccomponentsanddegradationoflargerphenolic compounds into smaller ones by the gamma irradiation treatment. In fact, the direct impact of gamma-rays and the indirect action of radiolytic products may change the structure of different antioxidantmoleculesand/orbreaksomechemicalbonds,thusleadingtoitsdecompositionoraltered extractabilityfromtheplantmaterial[15,25,41]. Thatiswhythebioactivityofirradiatedsamplescan eitherdecreaseorimprove. 3. MaterialsandMethods 3.1. Dosimeters,StandardsandReagents Amber Perspex routine dosimeters, Batch V, were purchased from Harwell Company (Oxfordshire,UK).Organicacids(oxalic,quinic,malic,citric,succinicandfumaricacids)andTrolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylicacid)werepurchasedfromSigma(St. Louis,MO, USA).2,2-Diphenyl-1-picrylhydrazyl(DPPH‚)wasobtainedfromAlfaAesar(WardHill,MA,USA). Molecules2016,21, 467 8of13 Allotherchemicalsandsolventswereofanalyticalgradeandpurchasedfromcommonsources. Water wastreatedinaModelA10Milli-Qwaterpurificationsystem(Millipore,Billerica,MA,USA). 3.2. SampleCollectionandIrradiationExperiments Plantmaterial(leafyfloweringstems)fromdwarfmallow(MalvaneglectaWallr. Fam. Malvaceae) was sustainably harvested from the wild in June at Miranda do Douro, Northeastern Portugal, consideringlocalmedicinalusesaswellashealers’andselectedconsumers’criteria,whicharerelated toparticulargatheringsitesandrequirementsforsafeherbaldosagesforms,namelydecoctions[42]. TaxonomicidentificationoftheplantmaterialwasconfirmedbyDr. AnaMariaCarvalhofromthe PolytechnicInstituteofBragança,Portugal. AvoucherspecimenwasdepositedintheHerbariumof theSchoolofAgricultureofBragança. Sampleswerethenlyophilized(FreeZone4.5,Labconco,Kansas City,MO,USA),reducedtoafinedriedpowder(20mesh)andmixedtoobtainahomogeneoussample. Theobtainedpowderedsamplewasdividedintofourportionsandsubmittedto1,5and8kGy ofgamma-rays(predicteddoses). Anon-irradiatedcontrol(0kGy)followedalltheexperiments. The irradiationwasperformedinacobalt-60experimentalchamber(Precisa22,GravinerManufacturing Company Ltd., London, UK) located at the University of Lisbon Centre for Nuclear Sciences and Technologies(C2TN,Lisbon,Portugal),withfoursourcesandatotalactivityof177TBq(4.78kCi; January2014).Duringtheirradiationprocess,AmberPerspexroutinedosimeterswereusedtomeasure thedistributionoftheabsorbedenergyandtodeterminethemaximum(D )andtheminimum(D ) max min doseabsorbedbythesamples,followingtheprocedurepreviouslydescribedbyFernandesetal.[43]. The measured average doses were 1.10 ˘ 0.16 kGy, 4.82 ˘ 0.10 kGy and 8.07˘0.46kGy for the samplesirradiatedatthepredicteddosesof1,5and8kGy,respectively. Theestimateddoseratefor theirradiationposition,obtainedwithaFrickedosimeter[43],was1.9kGy/handthedoseuniformity ratio(D /D )was1.2. Forsimplicity,thepredicteddoseswereconsideredinthetext. max min 3.3. ColorMeasurement Thepowderedsampleswereplacedonaadapterforgranularmaterials(modelCR-A50,Konica MinoltaSensing,Inc.,Sakai,Osaka,Japan)toreduceexternalinterferencesanddatawerecollectedin threedifferentpointsoneachsetofsampleswithacolorimeter(modelCR-400,Konica)previously calibratedusingthestandardwhiteplate. UsingilluminantCandthediaphragmopeningof8mm,the CIEL*a*b*colorspacevalueswereregisteredthroughthecomputerizedsystemusingtheSpectraMagic Nx(versionCM-S100W)colordatasoftware. Averagevalueswereconsideredtodeterminethecolor coordinates,whereL*representslightness,a*representschromaticityonagreen(–)tored(+)axis, andb*representschromaticityonablue(–)toyellow(+)axis. Thetotalcolordifference(∆E*)was calculatedaccordingtotheCIEDE2000equation[44]. 3.4. PreparationofDecoctionsandHydromethanolicExtracts Decoctionswerepreparedaccordingtofolkrecipes/formulations[42]. Briefly,eachpowdered sample (1 g) was added to distilled water (200 mL) and boiled for 5 min. The mixture was left to stand at room temperature for 5 min more and then was filtered through Whatman No. 4 paper. Theobtaineddecoctionswerefrozenandlyophilized. Hydromethanolic extractions were performed by stirring each powdered sample (1 g) with methanol/water (30 mL, 80:20, v/v) at 25 ˝C and 150 rpm for 1 h. After filtering the supernatant through Whatman No. 4 paper, the residue was extracted with an additional portion (30 mL) of the hydromethanolic mixture. The combined extracts were concentrated under reduced pressure (R-210rotaryevaporator,Büchi,Flawil,Switzerland)andthenfrozenandlyophilized. The lyophilized decocted and hydromethanolic extracts were redissolved in water and methanol/water(80:20,v/v),respectively,toobtain4mg/mLstocksolutionswhichweresuccessively diluted to different concentrations for evaluation of the antioxidant activity and total phenolics andflavonoids. Molecules2016,21, 467 9of13 3.5. AnalysisofOrganicAcids Organic acids were analyzed by ultra fast liquid chromatography (UFLC) coupled with photodiode array (PDA) detection according to the procedures previously described by Pereiraetal.[28]. Briefly,thepowderedsamples(~1g)wereextractedbystirringwithmetaphosphoric acid(25mL,25˝Cat150rpm)for45minandthensubsequentlyfilteringthroughWhatmanNo.4 paper. Fordecoctions,thelyophilizedextracts(~10mg)weredissolvedinmetaphosphoricacid(1mL). Allsampleswerefilteredthrough0.2µmnylonfiltersbeforeanalysis. Theorganicacidsfoundwere quantifiedbycomparisonoftheareaoftheirpeaksrecordedat215nmwithcalibrationcurvesobtained fromcommercialstandardsofeachcompound. Theresultswereexpressedinmgpergofdryweight orlyophilizeddecoction(dw). 3.6. EvaluationoftheTotalPhenolicandFlavonoidContent The total phenolic content was determined in the hydromethanolic and decocted extracts concentratedat1.25mg/mLbytheFolin-Ciocalteumethod[45,46]withslightmodifications[47]. This assayisbasedontheformationofablue-coloredcomplexbetweenthemolybdenumandtungsten present in the Folin-Ciocalteu reagent upon reaction with reducing agents, which is monitored at 765nm. Thestandardcurvewascalculatedusinggallicacidandtheresultswereexpressedasmgof gallicacidequivalents(GAE)pergofextract. The total flavonoid content was determined in the hydromethanolic and decocted extracts concentrated at 2.5 mg/mL using the aluminium chloride colorimetric method [48] with slight modifications as described by the authors [49]. This assay is based on the formation of a flavonoid-aluminiumcomplex,whichismonitoredat510nm. Thestandardcurvewascalculated usingcatechinandtheresultswereexpressedasmgofcatechinequivalents(CE)pergofextract. 3.7. EvaluationoftheAntioxidantActivity The hydromethanolic and decocted extracts at different concentrations were submitted to four distinct invitro assays to evaluate its antioxidant capacity [9]. Briefly, the DPPH‚ scavenging activityandthereducingpowerassayswereperformedusinganELX800MicroplateReader(Bio-Tek Instruments,Inc.;Winooski,VT,USA).ThereductionofDPPH‚wasdeterminedafterincubationof thedifferentextractswithamethanolicsolutioncontainingDPPH‚ (6ˆ10´5 M)for60mininthe darkbymeasuringtheabsorbanceat515nm. Theradicalscavengingactivity(RSA)wascalculatedas apercentageofDPPH‚discolorationusingtheEquation(1): RSAp%q “ rpA ´A q{A sˆ100 (1) DPPH S DPPH where A is the absorbance of the DPPH‚ solution and A is the absorbance of the solution DPPH S containing the sample extract. The reducing power was evaluated by the ferricyanide/Prussian blue assay, whereby the capacity of the extracts to convert potassium ferricyanide (K [Fe(CN) ]) 3 6 into potassium ferrocyanide (K [Fe(CN) ]), which then reacts with ferric chloride (FeCl ) to form 4 6 3 a ferric-ferrous complex that is measuring spectrophotometrically, was monitored at 690 nm. The β-carotene bleaching inhibition (CBI) was evaluated by measuring the capacity of the extracts to neutralize linoleate free radicals. The different extracts were mixed with an emulsion containing β-carotene,linoleicacidandTween80emulsifierandtheabsorbancewasimmediatelymeasuredat 470nminaModel200spectrophotometer(AnalytikJena,Jena,Germany). After2hofincubationat 50˝C,theabsorbancewasreadagain. TheCBIwascalculatedusingtheEquation(2): CBIp%q“ pA {A qˆ100 (2) 120 0 whereA istheabsorbanceoftheemulsionafter2hofincubationandA istheinitialabsorbance.The 120 0 thiobarbituricacidreactivesubstances(TBARS)formationinhibitionwasevaluatedinporcinebrain Molecules2016,21, 467 10of13 homogenates. Thecolorintensityofthemalondialdehyde-thiobarbituricacid(MDA-TBA)complex formedduringheatingofthereactionmixtureat80˝Cwasmeasuredat532nm. Theinhibitionratio wascalculatedusingtheEquation(3): Inhibitionratiop%q “ rpA´Bq{Asˆ100 (3) whereAandBcorrespondtotheabsorbanceofthecontrolandthesamplesolution,respectively. The resultswereexpressedinEC values(mg/mL),i.e.,sampleconcentrationproviding50%ofantioxidant 50 activityor0.5ofabsorbanceinthereducingpowerassay. Troloxwasusedaspositivecontrol. 3.8. StatisticalAnalysis Inallcases,analyseswerecarriedoutusingthreesamplesseparatelyprocessed,andalltheassays werecarriedoutintriplicate. Theresultswereexpressedasmean˘standarddeviationandanalyzed using one-way analysis of variance (ANOVA) followed by Tukey’s HSD test with α = 0.05. This treatmentwascarriedoutusingIBMSPSSStatisticsforWindows,Version22.0(IBMCorp.,Armonk, NY,USA). 4. Conclusions This study demonstrated the adequacy of gamma irradiation at 5 and 8 kGy to preserve the color parameters of M. neglecta dry material. Moreover, it was confirmed that the observed irradiation-induced modifications of color parameters not only depend on the applied dose, but alsoontheplantmaterialunderstudy. Oxalic,quinic,malic,citric,succinicandfumaricacidswere identifiedinthisplantforthefirsttime. Thetotallevelsrecordedindecoctedextractswerealways higher than those found in the plant dry material, as well as the individual levels of each organic acid(exceptforcitricacid). Irradiationat5kGyincreasedtheamountsofcitricandsuccinicacids and decreased the fumaric acid levels in both matrices. In general, decoctions were preferred for theirhigherlevelsoftotalphenolicsandflavonoids,DPPH‚scavengingactivityandreducingpower. Inthesepreparations,theantioxidantpropertiesandlevelsoftotalphenolicsandflavonoidswere decreasedwiththe8kGydose. Inturn,thehydromethanolicextractsobtainedfromsamplesirradiated at1kGyshoweddecreasedlevelsoftotalphenolic,totalflavonoids,andlowerantioxidantproperties. Thus,decoctionswerehighlightedbyinterestingantioxidantpropertiesandlevelsoftotalphenolics and organic acids. Nevertheless, further studies are of interest to evaluate the decontamination effectivenessofthistechnologyandtoinvestigatetheeffectinotherqualityparameters. Acknowledgments: TheauthorsaregratefultoPRODERresearchprojectno. 53514,AROMAP,forfinancial supportoftheworkandtotheFoundationforScienceandTechnology(FCT,Portugal)forfinancialsupportto CIMO(PEst-OE/AGR/UI0690/2014),REQUIMTE(UID/QUI/50006/2013),C2TN(RECI/AAG-TEC/0400/2012), J.Pinela(SFRH/BD/92994/2013)andL.Barros(SFRH/BPD/107855/2015). Author Contributions: J. Pinela, L. Barros, A.L. Antonio and I.C.F.R. Ferreira designed the experiments; A.M.Carvalhoperformedthetaxonomicidentificationofthespecies;A.L.Antonioperformedtheirradiation treatment; J. Pinela and L. Barros performed the analytical assays and analyzed the data; J. Pinela and I.C.F.R.Ferreirawrotethemanuscript;A.L.Antonio,A.M.CarvalhoandM.B.P.P.Oliveirarevisedthemanuscript. ConflictsofInterest:Theauthorsdeclarenoconflictofinterest. References 1. Andrés,V.;Tenorio,M.D.;Villanueva,M.J.Sensoryprofile,solublesugars,organicacids,andmineralcontent inmilk-andsoy-juicebasedbeverages.FoodChem.2015,173,1100–1106.[CrossRef][PubMed] 2. Silva,B.M.;Andrade,P.B.;Mendes,G.C.;Seabra,R.M.;Ferreira,M.A.Studyoftheorganicacidscomposition of quince (Cydonia oblonga Miller) fruit and jam. J. Agric. Food Chem. 2002, 50, 2313–2317. [CrossRef] [PubMed] 3. Ehling,S.;Cole,S.Analysisoforganicacidsinfruitjuicesbyliquidchromatography-massspectrometry: Anenhancedtoolforauthenticitytesting.J.Agric.FoodChem.2014,59,2229–2234.[CrossRef][PubMed]
Description: