ebook img

Quadruple crossing number of knots and links PDF

0.31 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Quadruple crossing number of knots and links

QUADRUPLE CROSSING NUMBER OF KNOTS AND LINKS COLINADAMS ABSTRACT. Aquadruplecrossingisacrossinginaprojectionofaknotorlinkthathasfourstrandsoftheknotpassing straightthroughit.Aquadruplecrossingprojectionisaprojectionsuchthatallofthecrossingsarequadruplecrossings.Ina previouspaper,itwasprovedthateveryknotandlinkhasaquadruplecrossingprojectionandhence,everyknothasaminimal quadruplecrossingnumberc4(K).Inthispaper,weinvestigatequadruplecrossingnumber,andinparticular,usethespanof 3 thebracketpolynomialtodeterminequadruplecrossingnumberforavarietyofknotsandlinks. 1 0 2 n 1. INTRODUCTION a In[1],amulti-crossing(alsocalledann-crossing)ofaknotisdefinedtobeasingularityinaprojectionsuchthat J nstrandsoftheknotcrossstraightthroughthesingularpoint. Inthatpaper,itwasprovedthatforeveryfixedn ≥ 2, 8 anygivenknotorlinkhasaprojectionsuchthatallsingularitiesaren-crossings. Hence,wecandefinec (K)tobethe 2 n minimalnumberofn-crossingsinanysuchprojection. Inthatpaper,triplecrossingprojectionswereconsidered,and ] c (K)wasdeterminedforavarietyofknotsandlinks. T 3 Inthispaper,wecontinuetheinvestigation,extendingresultstoquadruplecrossingprojectionsofknotsandlinks. G For simplicity, define q(K) = c (K). A quadruple crossing has strands at four heights, which we label top to bottom 4 h. as1,2,3,and4respectively. Readingclockwisearoundthecrossing,andalwaysstartingwiththetopstrand,thereare t sixtypesofcrossings,denotedc ,c ,c ,c ,c ,andc . Notethatifwereflecttheprojectionofoneof a 1234 1243 1324 1342 1423 1432 m thesecrossingsinalineperpendiculartothestrandlabelled1,wefindc1234 pairedwithc1432,c1243 pairedwithc1342 andc pairedwithc . Thispairingwillbehelpfullater. [ 1324 1423 2 1 1 1 v 6 2 4 3 2 3 3 2 7 4 2 4 2 . (a)c (b)c (c)c 1 1234 1432 1324 1 1 1 1 2 1 4 3 2 v: 2 4 4 i 3 2 3 X (d)c (e)c (f)c r 1423 1342 1243 a FIGURE1. Quadruplecrossings. Notethatasingequadruplecrossingresolvesintosixdoublecrossings,andhence,q(K) ≥ c(K) wherec(K)isthe 6 traditionalcrossingnumber. Thisboundisrealizedbya(4k,4)-toruslinkL,whichhasfourcomponents,andisknown tohavecrossingnumber12k. Eachmeridianalhalf-twistisrealizedbyaquadruplecrossing,soq(L)=2k. InSection2,weconsiderfurthertherelationbetweenq(K)andc(K). In[1],itwasprovedthatc (K)≤c(K)–2for 3 allknotsandlinksexcept2-braidknots,andfor2-braidknots,c (K)≤c(K)–1.Onemighthopethatc(K)>c (K)> 3 3 c (K),however,thisisnotthecase. Forexample,thefigure-eightknotJ hasc (J) = c (J) = 2.Onemightalsohope 4 3 4 thatatleastc (K)≥c (K)forallk≥2. Atthispoint,wedonotknowthis. Wedoknowthatc (K)≥c (K)forall n n+1 n n+2 k≥2. InSection2,weprovethatc (K)<c(K),thefirstproofofwhichwasgivenbyMichaelLandry. Thissectionis 4 independentofthesubsequentsections. Date:January30,2013. 1 2 COLINADAMS InSection3,werelatethequadruplecrossingnumberofaknotorlinktothespanofthebracketpolynomial. In[1], itwasshownthatspan(<K >)≤8c (K). Here,weshowthatspan(<K >)≤16q(K). Fromthis,itfollowsthatifK 3 isanalternatingknotorlink,weobtainastrongerlowerboundq(K)≥ c(K). 4 InSection4,afterintroducingsomemovestoturnatraditionalprojectionintoaquadruplecrossingprojection,we usethisresulttodeterminethequadruplecrossingnumberofavarietyofknots.Weincludeatableofspecificquadruple crossingnumberformanyoftheprimeknotsof10orfewercrossings. Further investigations into multi-crossings appear in [2], where it was proved that every knot and link has a pro- jection with just one multi-crossing. The minimal n for which there is a single n-crossing is called the u¨bercrossing numberoftheknot. Onecanfurtherprovethatforknots, thereissuchaprojectionthatresemblesaflower, calleda petalprojection,sothattherearenonestedloopsleavingandre-enteringthesinglemulti-crossing. Hence,everyknot hasapetalnumber,whichistheleastnforthesinglen-crossingofapetalprojection. U¨bercrossingnumberandpetal numberandboundsonthemweredeterminedforavarietyofknotsandlinks. I would like to thank B. DeMeo, M. Montee, S. Park, S. Venkatesh and F. Yhee for helpful conversations and especiallyAlexLin,whodeterminedtheskeinrelationsforquadruplecrossingsthatappearbelowandMichaelLandry, whofirstprovedTheorem2.1below. 2. UPPERBOUNDONQUADRUPLECROSSINGNUMBER Inthissection,weprovethatq(K)<c(K)forallnontrivialknotsandlinks.Wefirstnotethatq(K)≤c(K).Thiswas provedin[1], wheretheoperationasinFigure2allowsonetoturneverydoublecrossingintoaquadruplecrossing. Theobviousgeneralizationimmediatelyimpliesc (K)≥c (K)forallk≥2. n n+2 FIGURE2. Turningadoublecrossingintoaquadruplecrossing. Wenotethefollowinggeneralizationoffolding,theoriginalversionofwhichwasalsointroducedin[1]. There,a closednon-self-intersectingloopintheprojectionplanewascalledacrossingcoveringcircleifitintersectedtheknot projection only in crossings, and at each crossing, there were two strands of the knot coming out to each side of the loop. We call the length of the circle the number of crossings it passes through. Given such a circle that crosses an evennumberofcrossings,wecanperformaquadruplefolding,asinFigure3. Firstwetaketheoverstrandatoneof thecrossingshitbythecrossingcoveringcircleandwestretchitaroundthecircleasinFigure3(b),eliminatingone crossing in the process and turning the other crossings on the circle into triple crossings. Then we take the second strandmakinguptheoriginalcrossing,andwestretchitaroundthecirclealso. Butaswedosowepushitalternately insideandoutsidethefirststretchedstrand,switchingaswepassthrougheachcrossing. Wethusobtainaprojection wherethendoublecrossingsthatwereintersectedbythecrossingcoveringcirclehavenowbecomen–1quadruple crossings. (a) (b) (c) FIGURE 3. Using an even length covering crossing circle to turn double crossings into quadruple crossings. QUADRUPLECROSSINGNUMBEROFKNOTSANDLINKS 3 Theorem2.1. q(K)<c(K)foreverynontrivialknotandlink. Proof. Fromwhatwehavesaid,givenaminimalcrossingprojectionPofK,itsufficestofindasinglecrossingcovering circleofevenlength,sayn.Thenbyquadruplefoldingit,weobtainn–1quadruplecrossings,andtheremainderofthe doublecrossingscanbeconverteddirectlytoquadruplecrossingsasinFigure2, yieldingfewerquadruplecrossings thandoublecrossings. If the projection contains a complementary region with an even number of edges, then we can take our crossing coveringcircletosurroundit,passingthrougheachofitscrossings,andwearedone. Sowemayassumethatallofthe complementaryregionsofPhaveanoddnumberofedges. Chooseacrossingx. Replacetheprojectionwiththecorrespondingplanargraph. Thefourcomplementaryregions atxmustbealldistinct,sinceiftheywerenot,theoriginalprojectionwouldnothavebeenreduced. Calltheregions A,B,CandD. LetR=A∪B∪C∪D. IfP–Risconnected,thenwecanformaloopthatshadowstheboundaryofR, passingalternatelyinsideandoutsidetheouterboundaryofeachofthecomplementaryregions,asinFigure4. That circlewillhaveevenlength. A B D C FIGURE4. Findinganevenlengthcrossingcoveringcircle. If P–R is not connected, then two of the regions must touch each other in more than one connected component. Supposetwooppositeregionstoucheachotheratasecondcrossingy.Thenwecanformacircleoflength2thatpasses throughthesetworegionsandthecrossingsxandy. Iftwooppositeregionsdonottoucheachother,sayAandC,we cantakeourcoveringcrossingcircleofevenlengthasinFigure4,shadowingtheboundaryofR,totheoutsideonthe boundariesofAandCandtotheinsideontheboundariesofBandD. (cid:3) 3. QUADRUPLECROSSINGNUMBERANDTHEBRACKETPOLYNOMIAL Inthissection,weconsiderwhatthespanofthebracketpolynomialcantellusaboutquadruplecrossingnumber. Thebracketpolynomialwasintroducedin[3]andisdefinedbyconsideringallthewaystosplitcrossingsinafixed projectionPofKandthentaking<P>=ΣAa(s)A–b(s)(–A2–A–2)|s|–1,wherethesumisoverallstatessofP,a(s)isthe numberofA-splits,b(s)isthenumberofB-splits,and|s|isthenumberofcirclesinthestates. Althoughthebracket polynomialdependsontheparticularprojection,itsspanisaninvariantforK. Each quadruple crossing in a quadruple crossing projection will be one of the six possibilities mentioned above. Whenweresolveasinglequadruplecrossingintosixdoublecrossingsandthensplitthosecrossingseachinthetwo wayspossible,weobtain64possiblesplittings.Manyofthesecontainadditionalcomponents,butoncethecomponents areremoved,weareleftwith14possiblesplittings,fourthatconsistoffourparallelstrands,calledparallelsplits,two that consist of four u-shaped components, called U splits, and eight that have two parallel components and two U components,calledmixedsplits. SothesecondlineofthefirstskeinrelationbelowconsistsofoneUsplit,twomixed splitsandtwoparallelsplitsinthatorder. 4 COLINADAMS Theorem3.1. 1 (3.1) < 2 >= A2(< > + < >) 3 4 +A0(< > + < > + < > + > + < >) +A–2(< > + < > + < > + < > + < >) +A–4(< > + < > + < >)+A–6(< >) 1 (3.2) < 4 >= A6 < > + A4(< > + < > + < >) 3 2 +A2(< > + < > + < > + < > + < >) +A0(< > + < > + < > + < > + < >) +A–2(< > + < >) (3.3) 1 < 3 >= A4 < > 2 4 +A2(< > + < > + < > + < >) +A0(< > + < > + < > + < > + < > + < >) +A–2(2 < > + < > + < >)+A–4(< >) (3.4) 1 < 4 >= A4 < > + A2(2 < > + < > + < >) 2 3 +A0(< > + < > + < > + < > + < > + < >) +A–2(< > + < > + < > + < >) +A–4(< >) QUADRUPLECROSSINGNUMBEROFKNOTSANDLINKS 5 1 (3.5) < 3 >= A4 < > 4 2 +A2(< > + < > + < > + < >) +A0(2 < > + < > + < > + < > + < >) +A–2(< > + < > + < > + < >) +A–4(< >) 1 (3.6) < 2 >= A4 < > 4 3 +A2(< > + < > + < > + < >) +A0(2 < > + < > + < > + < > + < >) +A–2(< > + < > + < > + < >) +A–4(< >) Proof. Thisfollowsimmediatelybyresolvingeachoftheparticularquadruplecrossingsintoitssixdoublecrossings, andthenapplyingtheskeinrelationforthebracketpolynomialappliedtodoublecrossings(cf.[3])tospliteachofthe crossings,eliminatetheclosedcomponentsandcleanuptheresult.TheserelationswerefirstdeterminedbyAlexTong Lin. (cid:3) Givenacrossingc,definethefirstlevelsplitstobethosesplitscorrespondingtothehighestpowerofAintheskein relationforthatcrossinginTheorem3.1. Thesecondlevelsplitsaredefinedtobethosethatcorrespondtoapowerof Atwolessthanthoseofthefirstlevelsplits,thethirdlevelsplitsarethosethatcorrespondtoapowerofAthatisfour lessthanthoseofthefirstlevelsplits,etc. Given a particular splitting of a crossing that occurs in a state s, we can perform a split move which replaces two adjacentstrandsinthesplittingbythetwootherstrandsthatconnecttheirendpointsasinFigure5. Theresultingstate s(cid:48)willsatisfy|s(cid:48)|=|s|±1. FIGURE 5. Performingasplitmoveonasplittingchangestheresultantnumberofcomponentsby 1. Notethateachsplitcanbeobtainedfromanyothersplitbyasequenceofsuchsplitmoves. Eachmovechangesthe numberofcomponentsinastateby±1. 6 COLINADAMS Lemma3.2. Letsbeaparticularstate. (1) Changingasplitinsofagivenleveltooneofalowerlevelthatisonesplitmovedifferentcannotincreasethe highestpowerofAinthepolynomialassociatedtos. (2) Changingasplitinsofagivenleveltooneofahigherlevelthatisonesplitmovedifferentcannotdecrease thelowestpowerofAinthepolynomialassociatedtos. Proof. In the first case, by the skein relations, the power of A from the relation will go down by at least 2. But the numberofcomponentsinthestateincreasesbyatmost1,andthereforetheadditional(–A2–A–2)thatcomesfromthe potentialincreaseinthenumberofcomponentscanatmostoffsetthelossof2inthepowerofA.Hencethenewstate hasgreatestpowernolargerthantheoriginal. Asimilarargumentholdsforthesecondstatement. (cid:3) Theorem3.3. Foranynontrivialknotornon-splittablelink,span(<K >)≤16q(K). Proof. Let P be a quadruple crossing projection of K with q triple crossings. Each crossing is one of our six types. Defineastatetobes ifitisobtainedbysplittingeachcrossingotherthanc orc asafirstlevelsplit,suchthat max 1342 1243 ifthereismorethanonefirstlevelsplit(asoccursforc ),wechooseacollectionoffirstlevelsplitsthatmaximizes 1234 thenumberofcomponentcirclesinthestate. Inthecaseofc orc ,weconsidertheirparallelsecondlevelsplit. 1342 1243 We use it rather than the first level split, if it intersects four components of the state or it intersects two components and the parallel fourth level split intersects four components. We call each of the splittings used to form s a high max splitting. Similarly,definethestates tobethestateobtainedbysplittingeachcrossingotherthanc orc asafifth min 1342 1243 levelsplit,suchthatifthereisachoiceoffifthlevelsplits(asoccursforc ),wechooseacollectionthatmaximizes 1432 thenumberofcirclesins . Forc andc ,weconsidertheirparallelfourthlevelsplit. Weuseitratherthanthe min 1342 1243 fifthlevelsplitifweusedthesecondlevelsplitfors . Wecalleachofthesplittingsusedtoforms alowsplitting. max min We first prove that there is no state with a higher power of A than s . Any other state is obtained from s by max max changingsomenumberofthefirstlevelsplitsonthecrossingsotherthanc orc . Bycheckingthefourskein 1342 1243 relationsforthefourothercrossingsinTheorem3.1,weseethateachofthesecondlevelsplitsisobtainedfromoneof thefirstlevelsplitsbyasinglesplitmove. Eachthirdlevelsplitisobtainedfromasecondlevelsplitbyasplitmove. Andsoon. Similarly,eachfourthlevelsplitisobtainedfromafifthlevelsplitbyasinglesplitmove,etc. Thus, in the cases of c ,c and c , where there is only one first level splitting, Lemma 3.2 implies that 1432 1324 1423 changing the first level split to a second level split results in a new state that has greatest power no larger than the original. Inthecaseofc ,wheretherearetwofirstlevelsplittings,eachsecondlevelsplittingisonesplitmoveawayfrom 1234 oneofthefirstlevelsplittings. Ifwechangethefirstlevelsplittingins toasecondlevelsplittingandthatsplitting max differsfromthefirstonebyonesplitmove,thenthenumberofcomponentscangoupbyatmostone,andthegreatest powerofAisunchanged. Ifwechangethefirstlevelsplittingtoasecondlevelsplittingandthenumberofcomponents goesupbyatleast2,thentheotherfirstlevelsplitting,whichdiffersfromthesecondlevelsplittingbyonlyonesplit move,wouldhavegeneratedmorecomponentsfors thandidtheonewehad,acontradictiontoourprocedurefor max choosingthesplittingsthatforms . max Finally,weconsiderthepairofcrossingsc andc . Exceptfortheparallelsecondlevelsplit,allothersecond 1243 1342 levelsplitsdifferfromthefirstlevelsplitbyonesplitmove,andhenceLemma3.2showsthatwecannotincreasethe highestpowerofAbyswitchingtooneofthose.Thesameholdsforthethird,fourthandfifthlevelsplits.Supposenow thattheparallelsecondlevelsplitisusedins . Thentherearetwocases. Itcouldbethattheparallelsecondlevel max split generates four components, which implies that the the first level split and the fifth level split each generate one componentandtheparallelfourthlevelsplitgeneratestwo. Oritcouldbethattheparallelfourthlevelsplitgenerates fourcomponents,whiletheparallelsecondlevelsplitgeneratestwocomponentsandthefirstlevelandfifthlevelsplits each generate one component. In either case, changing this split cannot yield a higher power of A, since in the first case,thehighestpowerofAinthepolynomialtermoftheparallelsecondlevelsplitbeatsthatofthefirstlevelsplitby A4 andinthesecondcase,thehighestpowerofAinthepolynomialtermoftheparallelsecondlevelsplittiesthatof thefirstlevelsplit,andnoothersplithasahigherpowerofAinitspolynomialtermthanthefirstlevelsplit. Thesametypeofargumentsapplytoshowthatthepolynomialtermofs possessesthelowestpowerofA. min GivenaprojectionP,defineM tobethehighestexponentofAinthepolynomialtermassociatedtos andm to P max P bethelowestexponentofAinthepolynomialtermassociatedtos . min Let|c |bethenumberofcrossingsoftypec inP. SoΣ|c |=q. Accordingtotheskeinrelation, ijk ijk ijk M ≤6|c |+4(|c |+|c |+|c |+|c |)+2|c |+2|s |–2 P 1432 1342 1243 1324 1423 1234 max QUADRUPLECROSSINGNUMBEROFKNOTSANDLINKS 7 m ≥–2|c |–4(|c |+|c |+|c |+|c |)–6|c |–(2|s |–2) P 1432 1342 1243 1324 1423 1234 min Hence, span(<K >)≤M –m ≤8Σ|c |+2(|s |+|s |)–4 P P ijk max min =8q+2(|s |+|s |)–4 max min Thus,itsufficestoprovethat|s |+|s |≤4q+2foranyconnectedquadruplecrossingprojectionwithqquadruple max min crossings. Weapplyinductiononq. Ifthereisasinglequadruplecrossing, thesinglesplittingfors isdeterminedbythe max typeofcrossing,butinallcasesthehighsplittingwilleitherbeaU-splittingasinFigure6(a)oraparallelsplittingas inFigure6(b)and6(c),allowingforrotation. Ifthehighsplittingisoneortwoofthese,thelowsplittingorsplittings comefromthosethatremain. NotethattherelativeorientationsofthesethreesplittingsmustappearasinFigure6but allthreecanberotatedtogether. (a) (b) (c) FIGURE 6. Splittings that can correspond to high and low states, allowing rotation of all three to- gether. Itisthenstraightforwardtocheckthatifthehighsplittingyields4components, thelowsplittingmustyield2. If the high splitting yields 3 components, the low splitting must yield 1 or 3 components. If the high splitting yields 2 components, thelowsplittingmustyield2or4. Andifthehighsplittingyields1component, thelowsplittingmust yield1or3. Thus,|s |+|s |≤6. max min Supposenowthatwehaveprovedthatforaconnectedprojectionwithqquadruplecrossings,|s |+|s |≤4q+2. max min Given a connected quadruple crossing projection P with q+1 quadruple crossings, choose one and split it as a high split. Intheonecaseofacrossingoftypec wheretherearetwopossiblehighsplits,choosetheonethattogether 1234 withalltheotherhighsplitswouldyieldthegreatestnumberofcomponents. Aftersplitting,wehaveaprojectionP(cid:48)of alinkwithqquadruplecrossings. Thisprojectionhas1,2,3or4connectedcomponents. Supposefirstthatithasfour connected components, labelled L ,L ,L and L . Each of the components contains some number of the quadruple 1 2 3 4 crossings,denotedq ,q ,q andq respectively. Welabeltheirmaxandminstatesass(cid:48) ands(cid:48) . 1 2 3 4 max,i min,i Then by our induction hypothesis, |s(cid:48) |+|s(cid:48) | ≤ 4q +2 for each i. But |s | = (cid:80)|s(cid:48) | since we split the max,i min,i i max max,i first crossing as a high split. To obtain |s |, we take |s(cid:48) | for each component, but then we must change the first min min,i crossing we set from the high splitting to the low splitting. So the total number of components will go down by 2. Hence,|s |=(cid:80)4 |s(cid:48) |–2.Thus,|s |+|s |≤(cid:80)4 (4q +2)–2=4q+6=4(q+1)+2aswewantedtoshow. min i=1 min,i max min i=1 i Inthecasethatthehighsplitatthefirstcrossingyieldsthreecomponents,thelowsplitatthesamecrossingyields atmostthreecomponents. Hence,|s |+|s |≤(cid:80)3 (4q +2)=4q+6=4(q+1)+2aswewantedtoshow. max min i=1 i Ifthehighsplitatthefirstcrossingyields2components,thefactthelowsplitcanyieldatmost4componentsyields |s |+|s | ≤ (cid:80)2 (4q +2)+2 = 4q+6 = 4(q+1)+2. Finally, ifthehighsplityieldsonlyonecomponent, the max min i+1 i lowsplitcanyieldatmostthreecomponentsso|s | = |s(cid:48) |and|s | ≤ |s(cid:48) |+2. Thus,wehave|s |+|s | ≤ max max min min max min (4q+2)+2≤4(q+1)+2. Hence,inallcases,|s |+|s |≤4(q+1)+2. (cid:3) max min Corollary3.4. ForanynontrivialalternatingknotorlinkK,q(K)≥ c(K). 4 Proof. Resultsof[3],[4]and[7]yieldthefactthatforareducedalternatingknot, span(<K >)=4c[K]. Hence,byTheorem3.3,4c(K)≤16q(K),yieldingtheresult. (cid:3) Corollary3.5. LetT denotean(r,s)-torusknot. Thenq(T )≥ r+s–2. r,s r,s 4 Proof. Thisfollowsimmediatelyfromthefactthatfollowsfromresultsin[3]thatthespanofthebracketpolynomial forsuchaknotis4(r+s–2). (cid:3) 8 COLINADAMS Aswewillseeinthenextsection,thisdoesyieldtheexactquadruplecrossingnumberforthe2-braidknots,although wewillnotusethistoproveit. 4. MOVESTOOBTAINQUADRUPLECROSSINGNUMBER In this section, we exhibit in Figure 7 a collection of moves that allows one to convert certain standard double crossingprojectionsofaknotintoquadruplecrossingprojections.WiththesemovesandTheorem3.3wecandetermine thequadruplecrossingnumberofavarietyofknots. Moves III and IV apply to regions of a projection containing 3 crossings. We call a region as appears on the left inthosediagrams a3-set. Notethat MoveIVisinfacta specialcaseofMoveIII. Similarly MovesVandVIapply to regions of a projection containing 4 crossings. We call such a region a 4-set. A single crossing is a 1-set and an alternating bigon is a 2-set. In order to turn a standard projection into a quadruple crossing projection, we will be lookingtosubdivideitinto4-setsand3-sets,withthepossibilityofa1-setor2-setaswell. Corollary4.1. LetK beanalternatingknotorlinkinareducedalternatingprojectionPwithccrossings. (1) Ifc=4kforsomek≥0,andareducedalternatingprojectioncanbesubdividedinto4-sets,thenq(K)= c. 4 (2) If c = 4k+1, anda reduced alternating projectioncan be subdivided intoa disjoint collection ofall 4-sets, anda3-setanda2-set,orall4-setsanda1-set,orall4-setsandthree3-sets,thenq(K)= c+3. 4 (3) Ifc=4k+2,andareducedalternatingprojectioncanbesubdividedintoadisjointcollectionofall4-setsand a2-set,orall4-sets,andtwo3-sets,thenq(K)= c+2. 4 (4) Ifc=4k+3,andareducedalternatingprojectioncanbesubdividedintoadisjointcollectionofall4-setsand one3-set,thenq(K)= c+1. 4 Proof. By Theorem 3.3, we obtain a lower bound on quadruple crossing number which exactly matches the upper boundobtainedbythenumberofsetsinoursubdivisionoftheprojection,eachsetofwhichbecomesasinglequadruple crossing. (cid:3) This corollary is relatively effective at determining the quadruple crossing number of small crossing alternating knots. (See Table 1.) For instance, for the 5,6,7 and 9-crossing prime alternating knots, it determines exactly the quadruple crossing number for all except 7 ,7 ,9 ,9 ,9 ,9 ,9 , and 9 . It is less effective at determining the 6 7 26 31 32 33 34 40 quadruplecrossingnumberofthe8-crossingknots,onlydeterminingq=2for8 ,8 and8 . However,bydetermining 3 4 9 allknotsgeneratedbyprojectionswithq = 2,andusingMoveVIIon8 ,8 ad8 ,thequadruplecrossingnumber 19 20 21 of 7 and 7 and all 8-crossing knots except four is determined. Corollary 4.1 also allows us to determine that the 6 7 quadruplecrossingnumberis3formanyoftheprime10-crossingknots. Notethatfor10 and10 ,onemustgoto 33 34 non-alternating11-crossingdiagramstoobtainthenecessarydecompositionintosets.Anyprime10-crossingknotthat doesnotappearinthetablehasunknownquadruplecrossingnumber. Corollary4.1appliestovariousinfinitefamiliesofknotsandlinks,includingavarietyofpretzelknotsandrational knots. Wementiontwoparticularlysimplefamilieshere. Corollary4.2. (1) LetK bea2-braidknotorlinkofncrossings. Thenq(K )=(cid:100)n(cid:101). n n 4 (2) LetJ bearationalknotwithalternatingConwaynotation3a. Thenq(J )=(cid:100)3+a(cid:101). n n 4 Proof. InthecaseofK ,thefourcasesofCorollary4.1yieldtheresult. InthecaseofJ ,thereisa4-setcomingfrom n n the3andthefirstcrossinginthesequenceofacrossings. Theremaininga–1crossingscanbeeithersubdividedinto all4-sets,if3+a=4k,orone1-setandtherest4-setsif3+a=4k+1,orone2-setandtherest4-setsif3+a=4k+2 orone3-setandtherest4-setsif3+a=4k+3. (cid:3) REFERENCES [1] C.Adams,Triplecrossingnumberofknotsandlinks,ArXiv:1207.7332,toappearintheJournalofKnotTheoryanditsRamifications(2012), [2] C.Adams,T.Crawford,B.DeMeo,M.Landry,A.Lin,M.Montee,S.Park,S.Venkatesh,F.Yhee,Knotprojectionswithasinglemulti- crossing,ArXiv:1208.5742(2012), [3] V.F.R.Jones,Heckealgebrarepresentationsofbraidgroupsandlinkpolynomials,Ann.ofMath.126(1987),335388. [3] L.Kauffman,Newinvariantsinthetheoryofknots,Amer.Math.Monthly95(1988),195242. [4] K.Murasugi,Jonespolynomialsofalternatinglinks, Trans.Amer.Math.Soc.295(1986),147174. [5] J.Pach,G.To´th,Degeneratingcrossingnumbers,DiscreteComput.Geom.41(2009),376384. [6] H.Tanaka,M.Teragaito,Triplecrossingnumbersofgraphs,ArXiv:1002.4231(2010), [7] M.Thistlethwaite,AspanningtreeexpansionoftheJonespolynomial,Topology26(1987),297–309. QUADRUPLECROSSINGNUMBEROFKNOTSANDLINKS 9 (a)MoveI(holdsforany choiceatcrossing) (b)MoveII(holdsforany choiceatcrossings) (c)MoveIII(holdsforany choiceatcrossing) (d)MoveIV (e)MoveV (f)MoveVI (g)MoveVII FIGURE7. Movestoobtainquadruplecrossings. DEPARTMENTOFMATHEMATICSANDSTATISTICS,WILLIAMSCOLLEGE,WILLIAMSTOWN,MA01267 E-mailaddress:[email protected] 10 COLINADAMS Knot q(K) Knot q(K) Knot q(K) Knot q(K) 3 1 9 3 10 3 10 ? 1 8 1 43 4 2 9 3 10 3 10 ? 1 9 2 44 5 2 9 0 3 10 3 10 ? 1 1 3 45 5 2 9 3 10 3 10 3 2 11 4 46 6 2 9 3 10 3 10 3 1 12 5 47 6 2 9 3 10 3 10 3 2 13 6 48 6 2 9 3 10 3 10 3 3 14 7 49 7 2 9 3 10 3 10 3 1 15 8 50 7 2 9 3 10 3 10 3 2 16 9 51 7 2 9 3 10 ? 10 3 3 17 10 52 7 2 9 3 10 3 10 3 4 18 11 53 7 2 9 3 10 3 10 ? 5 19 12 54 7 3 9 3 10 3 10 ? 6 20 13 55 7 3 9 3 10 3 10 ? 7 21 14 56 8 3 9 3 10 3 10 ? 1 22 15 57 8 3 9 3 10 3 10 ? 2 23 16 58 8 2 9 3 10 ? 10 ? 3 24 17 59 8 2 9 3 10 3 10 ? 4 25 18 60 8 3 9 ? 10 3 10 3 5 26 19 61 8 3 9 3 10 3 10 3 6 27 20 62 8 3 9 3 10 3 10 3 7 28 21 63 8 3 9 3 10 3 10 3 8 29 22 64 8 2 9 3 10 3 10 3 9 30 23 65 8 3 9 ? 10 3 10 3 10 31 24 66 8 3 9 ? 10 3 10 3 11 32 25 74 8 3 9 ? 10 3 10 3 12 33 26 76 8 ? 9 ? 10 ? 10 3 13 34 27 77 8 3 9 3 10 3 10 3 14 35 28 124 8 3 9 3 10 3 10 3 15 36 29 125 8 ? 9 3 10 3 10 3 16 37 30 126 8 ? 9 3 10 3 10 3 17 38 31 127 8 ? 9 3 10 3 10 3 18 39 32 130 8 2 9 ? 10 3 10 3 19 40 33 131 8 2 9 3 10 3 10 3 20 41 34 134 8 2 9 3 10 3 10 3 21 42 35 135 9 3 9 3 10 3 10 3 1 43 36 139 9 3 9 3 10 ? 10 3 2 44 37 140 9 3 9 3 10 ? 10 3 3 45 38 142 9 3 9 2 10 ? 10 3 4 46 39 144 9 3 9 ? 10 ? 10 3 5 47 40 142 9 3 9 3 10 ? 10 3 6 48 41 148 9 3 9 3 10 ? 10 3 7 49 42 161 TABLE1. Knownquadruplecrossingnumbers.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.