ebook img

Quadratic Number Theory: An Invitation to Algebraic Methods in the Higher Arithmetic PDF

394 Pages·2019·2.46 MB·english
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Quadratic Number Theory: An Invitation to Algebraic Methods in the Higher Arithmetic

AMS / MAA DOLCIANI MATHEMATICAL EXPOSITIONS VOL AMS / MAA DOLCIANI MATHEMATICAL EXPOSITIONS VOL 52 [[[ 52 222 : 111 ]]] [[[ 222 : [ 1 2: ] 1 ] [ 2 : 1 Quadratic Number Theory is an introduction to algebraic number t]heory for readers with a moderate knowledge of elementary number theory and Q some familiarity with the terminology of abstract algebra. By restricting QUADRATIC u attention to questions about squares the author achieves the dual goals of 2 3 a [ making the presentation accessible to undergraduates and refl ecting the d2 : =([2:1] [2:1]) ([3:1] [3:-1]) historical roots of the subject. The representation of integers by quadratic r 1 forms is emphasized throughout the text. a NUM]BE R [=([2:1] [3:1]) ([2:1] [3:-1]) [ Lehman introduces an innovative notation for ideals of a quadratic domain ti 3: 2: that greatly facilitates computation and he uses this to particular effect. J c = 1+ -5 1- -5 1] 1The text has an unusual focus on actual computation. This focus, and this . N ] L notation , serv[e the author’s historical purpose as well; ideals can be seen . THEORY An Invitation L u as number-like objects,3 as Kummer and Dedekind conceived of them. The e : h m to Algebraic notation can be adapted to quadratic forms an1d provides insight into the m ] a connection between quadratic forms and ideals. The computation of class n b Methods in the groups and continued fraction representations are featured—the author’s e J. L. Lehman Higher Arithmetic notation makes these computations particularly illuminating. r T Quadratic Number Theory, with its exceptionally clear prose, hundreds of 1 exercises, and historical motivation, would make an excellent textbook h + for a second undergraduate course in number theory. The clarity of the e - exposition would also make it a terrifi c choice for independent reading. It o 5 will be exceptionally useful as a fruitful launching pad for undergraduate r y >> research projects in algebraic number theory. << 1 + - 5 > <A For additional information M S and updates on this book, visit / M www.ams.org/bookpages/dol-52 A A P R E S S DOL/52 4-Color Process 408 pages on 50lb stock • Backspace 1 1/2'' AMS/MAA DOLCIANIMATHEMATICALEXPOSITIONS VOL 52 Quadratic Number Theory An Invitation to Algebraic Methods in the Higher Arithmetic J. L. Lehman DolcianiMathematicalExpositionsEditorialBoard HarrietS.Pollatsek,Editor PriscillaS.Bremser ThomasA.Richmond AlfredM.Dahma C.RayRosentrater ElizabethDenne AyseA.Sahin EmilyH.Moore DanE.Steffy KatharineOtt 2010MathematicsSubjectClassification.Primary11R11, 11R29,11R27,11E25,11E16,11A55,11B50,11Y40. Foradditionalinformationandupdatesonthisbook,visit www.ams.org/bookpages/dol-52 LibraryofCongressCataloging-in-PublicationData Names:Lehman,J.L.(JamesLarry),1957–author. Title: Quadraticnumbertheory: Aninvitationtoalgebraicmethodsinthehigherarithmetic/J.L. Lehman. Description:Providence,RhodeIsland:MAAPress,animprintoftheAmericanMathematicalSoci- ety,[2019]|Series:Dolcianimathematicalexpositions;volume52|Includesanindex. Identifiers:LCCN2018040720|ISBN9781470447373(alk.paper) Subjects: LCSH:Algebraicnumbertheory. |Numbertheory. |Quadraticfields. |Algebraicfields. |AMS:Numbertheory–Algebraicnumbertheory: globalfields–Quadraticextensions. msc| Numbertheory–Algebraicnumbertheory: globalfields–Classnumbers,classgroups,discrim- inants. msc|Numbertheory–Algebraicnumbertheory: globalfields–Unitsandfactorization. msc|Numbertheory–Formsandlinearalgebraicgroups–Sumsofsquaresandrepresentations byotherparticularquadraticforms. msc|Numbertheory–Formsandlinearalgebraicgroups– Generalbinaryquadraticforms. msc|Numbertheory–Elementarynumbertheory–Continued fractions.msc|Numbertheory–Sequencesandsets–Sequences(mod𝑚).msc|Numbertheory –Computationalnumbertheory–Algebraicnumbertheorycomputations.msc Classification:LCCQA247.L419552019|DDC512.7/4–dc23 LCrecordavailableathttps://lccn.loc.gov/2018040720 Copyingandreprinting.Individualreadersofthispublication,andnonprofitlibrariesactingforthem,areper- mittedtomakefairuseofthematerial,suchastocopyselectpagesforuseinteachingorresearch.Permissionis grantedtoquotebriefpassagesfromthispublicationinreviews,providedthecustomaryacknowledgmentofthe sourceisgiven. Republication,systematiccopying,ormultiplereproductionofanymaterialinthispublicationispermitted onlyunderlicensefromtheAmericanMathematicalSociety. RequestsforpermissiontoreuseportionsofAMS publicationcontentarehandledbytheCopyrightClearanceCenter.Formoreinformation,pleasevisitwww.ams. org/publications/pubpermissions. Sendrequestsfortranslationrightsandlicensedreprintstoreprint-permission@ams.org. ©2019bytheAmericanMathematicalSociety.Allrightsreserved. TheAmericanMathematicalSocietyretainsallrights exceptthosegrantedtotheUnitedStatesGovernment. PrintedintheUnitedStatesofAmerica. ⃝1Thepaperusedinthisbookisacid-freeandfallswithintheguidelines establishedtoensurepermanenceanddurability. VisittheAMShomepageathttps://www.ams.org/ 10987654321 242322212019 Contents Preface vii Acknowledgments xiii Introduction: ABriefReviewofElementaryNumberTheory 1 0.1 LinearEquationsandCongruences 1 0.2 QuadraticCongruencesModuloPrimes 6 0.3 QuadraticCongruencesModuloCompositeIntegers 10 PartOne: QuadraticDomainsandIdeals 15 1 GaussianIntegersandSumsofTwoSquares 17 1.1 SumsofTwoSquares 17 1.2 GaussianIntegers 25 1.3 IdealFormforGaussianIntegers 32 1.4 FactorizationandMultiplicationwithIdealForms 38 1.5 ReductionofIdealFormsforGaussianIntegers 44 1.6 SumsofTwoSquaresRevisited 48 GaussianIntegersandSumsofTwoSquares—Review 52 2 QuadraticDomains 55 2.1 QuadraticNumbersandQuadraticIntegers 56 2.2 DomainsofQuadraticIntegers 61 2.3 IdealFormforQuadraticIntegers 68 2.4 IdealNumbers 74 2.5 QuadraticDomainswithUniqueFactorization 80 2.6 QuadraticDomainswithoutUniqueFactorization 86 QuadraticDomains—Review 91 3 IdealsofQuadraticDomains 93 3.1 IdealsandIdealNumbers 94 3.2 WritingIdealsasIdealNumbers 99 3.3 PrimeIdealsofQuadraticDomains 103 3.4 MultiplicationofIdeals 107 iii iv Contents 3.5 PrimeIdealFactorization 112 3.6 AFormulaforIdealMultiplication 119 IdealsofQuadraticDomains—Review 126 PartTwo: QuadraticFormsandIdeals 129 4 QuadraticForms 131 4.1 ClassificationofQuadraticForms 131 4.2 EquivalenceofQuadraticForms 136 4.3 RepresentationsofIntegersbyQuadraticForms 140 4.4 GeneraofQuadraticForms 145 QuadraticForms—Review 151 5 CorrespondencebetweenFormsandIdeals 153 5.1 EquivalenceofIdeals 154 5.2 QuadraticFormsAssociatedtoanIdeal 158 5.3 CompositionofBinaryQuadraticForms 164 5.4 ClassGroupsofIdealsandQuadraticForms 170 CorrespondencebetweenFormsandIdeals—Review 175 PartThree: PositiveDefiniteQuadraticForms 177 6 ClassGroupsofNegativeDiscriminant 179 6.1 ReducedPositiveDefiniteQuadraticForms 179 6.2 CalculationofIdealClassGroups 186 6.3 GeneraofIdealClasses 190 ClassGroupsofNegativeDiscriminant—Review 197 7 RepresentationsbyPositiveDefiniteForms 199 7.1 NegativeDiscriminantswithTrivialClassGroups 200 7.2 PrincipalSquareDomains 205 7.3 QuadraticDomainsthatAreNotPrincipalSquareDomains 212 7.4 ConstructionofRepresentations 219 RepresentationsbyPositiveDefiniteForms—Review 225 8 ClassGroupsofQuadraticSubdomains 227 8.1 ConstructingClassGroupsofSubdomains 227 8.2 ProjectionHomomorphisms 234 8.3 TheKernelofaProjectionHomomorphism 239 ClassGroupsofQuadraticSubdomains—Review 244 PartFour: IndefiniteQuadraticForms 245 9 ContinuedFractions 247 9.1 IntroductiontoContinuedFractions 247 9.2 Pell’sEquation 253 Contents v 9.3 ConvergenceofContinuedFractions 259 9.4 ContinuedFractionExpansionsofRealNumbers 265 9.5 PurelyPeriodicContinuedFractions 269 9.6 ContinuedFractionsofIrrationalQuadraticNumbers 274 ContinuedFractions—Review 281 10 ClassGroupsofPositiveDiscriminant 285 10.1 ClassGroupsofIndefiniteQuadraticForms 285 10.2 GeneraofQuadraticFormsandIdeals 291 10.3 ContinuedFractionsofIrrationalQuadraticNumbers 296 10.4 EquivalenceofIndefiniteQuadraticForms 301 ClassGroupsofPositiveDiscriminant—Review 304 11 RepresentationsbyIndefiniteForms 307 11.1 TheContinuedFractionofaQuadraticForm 307 11.2 UnitsandAutomorphs 316 11.3 ExistenceofRepresentationsbyIndefiniteForms 320 11.4 ConstructingRepresentationsbyIndefiniteForms 326 RepresentationsbyIndefiniteForms—Review 331 PartFive: QuadraticRecursiveSequences 333 12 PropertiesofRecursiveSequences 335 12.1 DivisibilityPropertiesofQuadraticRecursiveSequences 336 12.2 PeriodicityofQuadraticRecursiveSequences 343 12.3 SuborderFunctions 349 12.4 SuborderSequences 356 PropertiesofRecursiveSequences—Review 364 13 ApplicationsofQuadraticRecursiveSequences 367 13.1 RecursiveSequencesandAutomorphs 367 13.2 AnApplicationtoPell’sEquation 371 13.3 QuadraticSubdomainsofPositiveDiscriminant 376 ApplicationsofQuadraticRecursiveSequences—Review 381 ConcludingRemarks 383 ReferencesandSuggestedReading 384 ListofNotation 387 Index 391 Preface This book is intended as an introduction to algebraic methods in number the- ory,suitableformathematicsstudentsandotherswithamoderatebackground inelementarynumbertheoryandtheterminologyofabstractalgebra. Although oftenfirstencounteredatthegraduatelevel, algebraicnumbertheorycanbea valuablefieldofstudyforundergraduatemathematicsstudents,providingcon- textforandconnectionsbetweendifferentareasofthemathematicscurriculum andservingasamotivationforthehistoricaldevelopmentofabstractalgebraic concepts. Wehaveaimedthistexttowardundergraduatestudentsandnonspe- cialistsbyrestrictingourattentiontoquestionsarisingfromsquaresofintegers, thus referring to our topic as quadraticnumbertheory. This grounding in eas- ily stated problems motivates the key concepts of algebraic number theory but allowsfor“hands-on”computationaltechniques,oftenasapplicationsoftopics fromelementarynumbertheory. Manyofthesemethodsareapproachedinan originalwayinthistext,whichwedescribefurtherinthispreface. Background. Numbertheory(sometimescalledthehigherarithmetic)isde- finedbroadlyasthestudyofthepropertiesofintegers. Manyarithmeticprob- lemscanbeapproachedby“elementary”methods,thatis,intermsofthesetof integersitself. Butinsomecases,propertiesofintegersmightbemosteasilyob- tainedandunderstoodbyworkingwithinlargersetsofnumbers. Anexample, which we will take as our starting point in Chapter 1, is the classical problem of determining which integers can be written as a sum of two squares. While we can answer this question by elementary means, as we will see in §1.1, the resultscanbemorenaturallyexplainedbyappealingtothesetofGaussianinte- gers,ℤ[𝑖]={𝑞+𝑟𝑖 ∣𝑞,𝑟 ∈ℤ},where𝑖2 =−1. Aninteger𝑛thatisasumoftwo squaresisalsoaproductoftwoGaussianintegers: 𝑛=𝑞2+𝑟2 =(𝑞+𝑟𝑖)(𝑞−𝑟𝑖). Writingthesumasaproductallowsustorephrasetheproblemintermsoffactor- izationof𝑛intheGaussianintegers,whereaclassificationofirreducibleelements ofℤ[𝑖]leadstoacompletedescriptionofsumsoftwosquaresofintegers. vii viii Preface Similarexamples,suchasrepresentationsofintegersas𝑥2+2𝑦2or𝑥2+3𝑦2, mightbeapproachedusingnumbersoftheform𝑞+𝑟√−2or𝑞+𝑟√−3. Intro- ducing these numbers raises new questions, however. Which numbers of this typearemostanalogoustointegersintheirproperties? Whichelementsinthese sets can be regarded as “prime” factors, and how can we distinguish between differentprimes? Doesuniquenessofprimefactorization—afamiliarproperty of the integers—hold in these more general sets of numbers? For instance, in ℤ[√−7]={𝑞+𝑟√−7∣𝑞,𝑟 ∈ℤ},theequation 2⋅2⋅2=8=(1+√−7)(1−√−7) appearstopresenttwodifferentfactorizationsofanumberintotermsthatcannot bebrokendownfurther. Inthisexample,forreasonswewillclarifylater,itturns outthatabettersettingforthisfactorizationistheset 1+√−7 𝐷 ={𝑞+𝑟𝑧||𝑞,𝑟 ∈ℤand𝑧= }. −7 2 1−√−7 If𝑧= =1−𝑧,wefindthat 2 2⋅2⋅2=(𝑧⋅𝑧)(𝑧⋅𝑧)(𝑧⋅𝑧)=(𝑧2⋅𝑧)(𝑧⋅𝑧2)=(1+√−7)(1−√−7), sothattheapparentlydifferentfactorizationsaremerelydifferentgroupingsof thesameterms. Asanotherexample,thefollowingmightappeartopresentdif- ferentfactorizationsof7inℤ[√2]={𝑞+𝑟√2∣𝑞,𝑟 ∈ℤ}: (3+√2)(3−√2)=7=(5+4√2)(−5+4√2). Thistime,however,wefindthat (5+4√2)(−5+4√2)=(3+√2)(1+√2)(−1+√2)(3−√2)=(3+√2)(3−√2), andwesaythatthefactorsareunitmultiplesofeachother,orassociates,soare notregardedasdistinctfactorizations(inthesamewaythat3⋅5and(−3)(−5) arenotviewedasdifferentwaysoffactoring15intheintegers). Butwewilllater showthatotherexamplesofdistinctfactorizations,suchas 2⋅3=6=(1+√−5)(1−√−5) inthesetℤ[√−5]={𝑞+𝑟√−5∣𝑞,𝑟 ∈ℤ},cannotberesolvedineitherofthese ways. ErnstKummer(1810–1893)madeamajoradvanceinattackingthisproblem of distinct irreducible factorization, reasoning that in such cases, the apparent lackofuniquenesscouldberemediedbyconsideringalargersetof“idealnum- bers,” in which terms factor further, similarly to the case of ℤ[√−7] and 𝐷 −7 notedabove. Asanoften-usedanalogytoKummer’sconcept,supposethatsome alienbeingsknowallaboutevenintegers,buthavenoconceptofoddintegers. Preface ix Theset𝐸ofevenintegershasmanypropertiesincommonwithoursetℤ(aside from an identity element for multiplication). In particular, we can generalize theconceptofdivisibilityin𝐸,wherewecouldsaythat𝑎divides𝑏ifthereisan element𝑞in𝐸suchthat𝑏 =𝑎𝑞. Forinstance,wewouldsaythat6divides12be- cause12=6⋅2with2in𝐸,butthat6doesnotdivide30becausethereisnoeven integerthatwecanmultiplyby6toobtain30. Wemightthendefineanelement 𝑝in𝐸tobeprimeif𝑝cannotbewrittenasaproductoftwoelementsin𝐸. The primeelementsof𝐸 arepreciselythenumbersthatare(inourusualterminol- ogy)congruentto2modulo4,thatis,2,6,10,14,andsoforth.Wefindthatevery elementof𝐸 canbewrittenasaproductofprimes. Butthisfactorizationisnot alwaysunique, asillustratedforexampleby60, whichcanbewritteneitheras 2⋅30oras6⋅10. Ofcourse,knowingaboutoddintegers,werecognizethesetwo factorizationsasdifferentcombinationsofthe“true”primefactorizationof60: 2⋅30=2⋅(2⋅3⋅5)=(2⋅3)⋅(2⋅5)=6⋅10. However,thealiensfamiliaronlywithevenintegersmightregardtheseoddin- tegersasidealnumbers,introducedsimplytoobtainuniquefactorization. Kummerdidnotdefineidealnumbersprecisely, butratherdescribedonly theirdivisibilityproperties.RichardDedekind(1831–1916)recognizedthatideal numberscouldbedefinedascertaintypesofsubsets, whichhecalled“ideals,” of a set such as ℤ[√−5], and so be studied in a concrete way. In addition to clarifyingKummer’swork,Dedekind’sdefinitionofidealsfoundapplicationsto otheralgebraicproblemsandwasamajorfactorinthedevelopmentofmodern abstractalgebrainthenineteenthandtwentiethcenturies. Thereisnodoubt,however,thatDedekindregardedidealsasbeing“num- bers,” in some sense, as had Kummer. In his 1877 treatise TheoryofAlgebraic Integers,Dedekindcomparedthedefinitionofidealstohisearlierdevelopment of irrational numbers as certain types of subsets of the rational numbers, now known as Dedekind cuts, which placed the set of real numbers on firm logical ground. Thustheconceptofanumberbeingdefinedasasetwasnotunnatural forhim. Onegoalofthisbookistorecapturethis“numerical”interpretationofideals. Wecandoso,aswedescribeinthenextsubsection,inthespecialcaseofdomains ofquadraticintegersdefinedintermsofrootsofdegreetwopolynomialswithin- tegercoefficients. (TheworkofKummerandDedekindwasinabroadersetting ofalgebraicintegers,usingrootsofpolynomialsofarbitrarydegreehavinginteger coefficients.) Thuswemayregardquadraticnumbertheory,andthistextinpar- ticular,asasteppingstonetowardtheconceptsandmethodsofalgebraicnumber theory. Innovative Aspects of the Text. Thisbookisdividedintofiveparts,each consistingoftwoorthreechapters. Eachparthasaseparateintroduction,and

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.