ebook img

Quadratic Algebras, Clifford Algebras, and Arithmetic Witt Groups PDF

295 Pages·1994·10.5 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Quadratic Algebras, Clifford Algebras, and Arithmetic Witt Groups

Un iversitext Editorial Board (North America): J.H. Ewing F.W. Gehring P.R. Halmos Universitext Editors (North America): 1.H. Ewing, F.W. Gehring, and P.R. Halmos Aksoy/Khamsi: :--Ionstandard Methods in Fixed Point Theory Aupetit: A Primer on Spectral Theory Bachumikern: Linear Programming Duality Benedetti/Petronio: Lectures on Hyperbolic Geometry Berger: Geometry I, II (two volumes) Bliedtner/Hansen: Potential Theory Booss/Bleecker: Topology and Analysis Carleson/Gamelin: Complex Dynamics Cecil: Lie Sphere Geometry: With Applications to Submanifolds Chandrasekharan: Classical Fourier Transforms Charlap: Bieberbach Groups and Flat Manifolds Chern: Complex Manifolds Without Potential Theory Cohn: A Classical Invitation to Algebraic :--lumbers and Class Fields Curtis: Abstract Linear Algebra Curtis: Matrix Groups van Dalen: Logic and Structure Das: The Special Theory of Relativity: A Mathematical Exposition DiBenedetto: Degenerate Parabol ic Equations Dimca: Singularities and Topology of Hypersurfaces Edwards: A Formal Background to Mathematics I alb Edwards: A Formal Background to Mathematics II alb Emery: Stochastic Calculus Foulds: Graph Theory Applications Frauenthal: Mathematical Modeling in Epidemiology Fukhs/Rokhlin: Beginner's Course in Topology Gallot/Hulin/Lafontaine: Riemannian Geometry Gardiner: A First Course in Group Theory Garding/Tambour: Algebra for Computer Science Godbillon: Dynamical Systems on Surfaces Goldblatt: Orthogonality and Spacetime Geometry Hahn: Quadratic Algebras, Clifford Algebras, and Arithmetic Witt Groups Hiawka/Schoissengeier/Taschner: Geometric and Analytic :--lumber Theory HoweiTan: Non-Abelian Harmonic Analysis: Applications of SL(2,R) Humi/Miller: Second Course in Ordinary Differential Equations Hurwitz/Kritikos: Lectures on Number Theory Iversen: Cohomology of Sheaves Jones/Morris/Pearson: Abstract Algebra and Famous Impossibilities Kelly/Matthews: The Non-Euclidean Hyperbolic Plane Kempf: Complex Abelian Varieties and Theta Functions Kostrikin: Introduction to Algebra Krasnoselskii/Pekrovskii: Systems with Hysteresis Luecking/Rubel: Complex Analysis: A Functional Analysis Approach MacLane/Moerdijk: Sheaves in Geometry and Logic Marcus: Number Fields McCarthy: Introduction to Arithmetical Functions Meyer: Essential Mathematics for Applied Fields (continued after index) Alexander J. Hahn Quadratic Algebras, Clifford Algebras, and Arithmetic Witt Groups Springer-Verlag New York Berlin Heidelberg London Paris Tokyo Hong Kong Barcelona Budapest Alexander 1. Hahn Department of Mathematics University of Notre Dame Notre Dame, IN 46556 USA Editorial Board (North America): 1.H. Ewing F. W. Gehring Department of Mathematics Department of Mathematics Indiana University University of Michigan Bloomington, IN 47405 Ann Arbor, MI 48109 USA USA P.R. Halmos Department of Mathematics Santa Clara University Santa Clara, CA 95053 USA Mathematics Subject Classifications (1991): 15A66, 16H05, 13A20 Library of Congress Cataloging-in-Publication Data Hahn, Alexander, 1943- Quadratic algebras, Clifford algebras, and arithmetic Witt groups/ Alexander J. Hahn. p. cm. - (Universitext) Includes bibliographical references. ISBN-13: 978-0-387-94110-3 e-ISBN-13: 978-1-4684-6311-8 DOl: 10.1007/978-1-4684-6311-8 I. Clifford algebras. 2. Commutative rings. 3. Forms, Quadratic. 1. Title. II. Series. QA199.H34 1993 512' .57 - dc20 93-5139 Printed on acid-free paper. © 1994 Springer-Verlag New York, Inc. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereaf ter developed is forbidden. The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone. Production managed by Francine McNeill; manufacturing supervised by Vincent Scelta. Camera-ready copy prepared by the author using Microsoft Word. 987654321 To my parents with great affection and esteem Preface This volume had its starting point with certain questions about the structure of the Clifford algebra over a commutative ring, in particular with the existence of certain "special elements" in the centralizer of the even subalgebra. These - see Chapter 7 of Hahn-O'Meara The Classical Groups and K-Theory, Springer Verlag 1989 - play a role in the isomorphism theory of linear groups of small rank. When I realized that the structure theory of Clifford algebras over commutative rings could be developed around special elements and the closely related concept of quadratic algebras, these early investigations had developed into the theme for this volume. The flow of ideas was refined, expanded, and finalized in the course of discussions, lectures, and seminars at the University of Notre Dame. In this context, I would like to express a warm thank you to my colleagues at the University of Notre Dame, especially to Timothy O'Meara, who introduced me to the theory of quadratic forms years ago and has been a source of inspiration since; to Stephan Stolz and Gudlaugur Thorbergsson for contributing their considerable expertise to Chapter 15, especially for providing Chapters 15F and 15G, respectively; to Ken Grant, who provided valuable assistance with the number theory required for the table in Chapter 14E; and to Warren Wong for the many discussions on the topics of this text A word of gratitude goes also to my colleagues at the Mathematisches Institut der Universiutt Innsbruck, particularly to Ottmar Loos and Ulrich Oberst, for their hospitality both during the academic years 1987-88 (toward the beginning of the present project) and again in 1992-93 (at its conclusion). Thanks, too, to my student Zhang Qi for her diligent proofreading, and to the staff at Springer Verlag, New York, for its courtesy and professionalism. To my wife Marianne: many thanks for your understanding throughout this enterprisel Last, but certainly not least, I wish to thank the National Security Agency for supporting my efforts with a two-year research grant awarded under its Mathematical Sciences Program. Innsbruck,Austria vii Contents Preface ............................................................................................. vii Introduction ................ ........................................................................ 1 Notation and Terminology ..................................................................... 3 Chapter 1. Fundamental Concepts in the Theory of Algebras ..... ...... ............ 5 A. Free Quadratic Algebras .... ........ ........... ............. ....... ......... ...... 5 B. Involutions on Algebras ........... ............ ........... ....... ..... .... ...... 9 C. Gradings on Algebras ............................................................ 10 D. Tensor Products and Graded Tensor Products..... ... ..... ....... ..... ...... 11 E. Exercises ............................................................................. 13 Chapter 2. Separable Algebras ............................................................. 18 A. Separability of Algebras ..... ...... ............ ...... ......................... .. 18 B. Separability Idempotents ..... ....... ............. ... ........ ....... ......... .... 20 C. Separable Free Quadratic Algebras ........................................... 21 D. Properties of Conjugation .. ............. ....... .................... ....... .... 24 E. Exercises ....... ..... .............. ............ ........... .... .... ....... ............ 27 Chapter 3. Groups of Free Quadratic Algebras ........................................ 29 A. The Group QUt\R) .... ...... ................... ................................... 29 a ..................... ... ...... ................................. B. The Discriminant 32 C. The Group QUt\R) ............................................................... 33 D. Another Look at (a, b)E • (b, c)" ............................................. 36 E. Exercises ......... ........................... ... ........ ............................. 40 Chapter 4. Bilinear and Quadratic Forms ............................................... 45 A. Localization ... .......... ........ .......... ......... ............. ................... 45 B. Bilinear Forms .... ...... ........ ......... ........... ............. ...... ... ........ 48 C. The Group Dis(R) ................................................................. 52 D. Quadratic Forms ................................................................... 56 E. Exercises ............................................................................. 61 ix x Contents Chapter 5. Clifford Algebras: The Basics ............................................... 65 A. I>efinition and Existence ..... .............. ............... ................ ...... 65 B. Generation, Grading, and Involutions . ........... ................. .......... 66 C. Graded Tensor Product ........................................................... 69 D. Exterior Algebras ................................................................. 73 E. Exercises . . . .... . . .. . . . .. . ... . . . . . ... . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Chapter 6. Algebras with Standard Involution .... ............. ....................... 77 A. Standard Involutions ............... ... .......... ............. ... ........ ......... 77 B. Free Quaternion Algebras ...................................................... 81 C. Separability of Free Quatemion Algebras ................................. 84 D. Nonsingular Algebras .......................................................... 86 E. Exercises ............................................................................ 88 Chapter 7. Arf Algebras and Special Elements ........................................ 92 A. TIle Arf Algebra ................................................................. 92 B. The Arf Algebra of an Orthogonal Sum ............... ..................... 96 C. Special Elements ................................................................. 99 D. Exercises .............. .......... .............. ......... .............. .... ..... ..... 104 Chapter 8. Consequences of the Existence of Special Elements ................ 106 A. Connections between C(M) and Co(M) ................................... 106 B. Gradings I>efmed by Roots of X2 - aX - b....... ............. ......... 108 C. Linear Maps with Polynomial X2 - aX - b..... .............. .... ...... 109 D. Graded Properties of Representations ..................................... 114 E. Comparing the Tensor and Graded Tensor Products ................... 118 F. Exercises ..... . .... . . ... ... .. .. . . ..... ..... . . . . . . . ... . . .. . . . . . . .... . . . . . . . . . . . .. . . 121 Chapter 9. Structure of Clifford and Arf Algebras .................................. 123 A. More on Separable Algebras ................................................. 123 B. The Separability of C(M) and Co(M) .................................... 126 C. The Even-Odd Splitting of C(M) ............................................ 127 D. The Structures ofCen C(M), Cen Co(M), and A(M) ................. 131 E. Exercises ................................... , .... .. . .. ... .. ..... . . .. ..... .. . .. . ... . 133 Chapter 10. The Existence of Special Elements .................................... 137 A. Separable Quadratic Algebras ................................................ 137 B. The Discriminant Module of S .............................................. 142 C. Criteria for the Existence of Special Elements .......................... 144 D. Special Elements and the Discriminant .................................... 146 E. Exercises ........................................................................... 150 Contents xi Chapter 11. Matrix Theory of Oifford Algebras over Fields .................... 153 A. Matrix Connections between C(M) and Co(M) ......................... 153 B. Basics about Quadratic Spaces .............................................. 157 C. Quaternion Algebras ............................................................ 159 D. Periodicity Phenomena. ....... ......................... ... .... ................. 162 E. Local and Global Fields .. ...... ............................................ ... 164 F. Excr-cises.......... .... ..... ..... ........................... ..... ..... .... ..... ..... 169 Chapter 12. Dis(R) and Qu(R) ........................................................... 172 A. 1be Quadratic Group Qu(R) ..... .......................................... ... 172 B. More about Dis(R) .............................................................. 175 C. Connecting Qu(R) with Dis(R) ............................................. 177 D. The Case of an Integrally Closed Domain ............................... 183 E. The Classical Discriminant ..... ................ ..... ... ..... ................ 187 F. Ex€7Cises ........ .... ..... ..... .... ................... ..... ..... .... ..... ..... ..... 190 Chapter 13. Brauer Groups and Witt Groups ...................................... ... 194 A. Brauer and Brauer-Wall Groups .............................................. 194 B. 1be Graded Quadratic Group QU(R) ....................................... 199 C. The Witt Group of Quadratic Forms ....................................... 204 D. The Witt Group of Symmetric Bilinear Forms ......................... 209 E. The Classical Situations ....................................................... 214 F. Excr-cises..... ....................... ..... ..... ..................................... 218 Chapter 14. 1be Arithmetic ofWq(R) ................................................. 223 A. Arithmetic Dedekind Domains ............................................ ... 223 B. The Arithmetic of Br(R)2 ......... ................ ......... ........ ........... 225 C. AnalyzingWq(R) ................................................................ 229 D. Computing Qu(R....) and Wq(R....) ............................................ 233 E. Connections between W(R) and Wq(R) .................................... 237 F. Excr-cises ..... ................ ... .... ....................... ..... ................... 242 Chapter 15. Applications of Clifford Modules ...................................... 249 A. Clifford Modules ................................................................ 249 B. Vector Fields on Spheres ...................................................... 251 C. Connections with Topological K-Theory ................................. 253 D. Lie Groups and Lie Algebras ................................................. 257 E. DinIc Operators ............................. .................. ................ ... 258 F. Spin Manifolds ............. ............................. .................. ...... 260 G. Isoparametric Hypersurfaces ... ....... ....................... .... ..... ......... 263 Bibliography................... ..... .... .... .... ..... ............. ... ..... .... .... .... ........ 267 Index 281 Introduction The goal of this volume is to introduce the reader in an elemental and accessible way to the large and dynamic area of algebras and forms over commutative rings. Quadratic algebras and their analysis give the volume its direction. Indeed, its defming moment is the fact that quadratic algebras lie at the heart of the theory of quadratic forms and Clifford algebras over commutative rings. The first two chapters set out the main themes: algebras over a commutative ring R, involutions on algebras, gradings and tensor products of algebras, and separable algebras. These concepts are illustrated in the concrete case of free quadratic algebras, i.e., algebras of the form R[X]/(X2 - aX - b). The third chapter gathers the isomorphism classes of separable free quadratic algebras into a group, the "free quadratic group," and studies its main properties. This chapter ends the introductory phase of the book. It is very elementary, but gives a flavor of the material that is investigated later. Chapter 4 quickly recalls the localization of rings and modules, introduces bilinear and quadratic modules, and develops the group of "discriminant modules," i.e., the group of isomorphism classes of projective bilinear modules of rank 1. The elementary properties of the Clifford algebra of a quadratic module are collected in Chapter 5 mostly without proof. The chapter that follows investigates algebras with "standard" involution. The most important examples are the quaternion algebras, i.e., Oifford algebras of quadratic modules of rank 2. They provide concrete examples of the basic concepts and constructions in the theory of Oifford algebras. The third part of the book interrelates the first two. It begins in Chapter 7, with the study of the Arf algebra, i.e., the centralizer of the "even" part of the Clifford algebra in the full Clifford algebra. This algebra is quadratic and establishes the connection between quadratic algebras, Clifford algebras, and quadratic forms. Properties of the Arf algebra, and in particular certain "special elements" in it, have impact on the representation theory of Clifford algebras and clarify the connection between the tensor and graded tensor products. This is taken up in Chapter 8. In Chapter 9, the structure of the Clifford algebra C(M) and its even part Co(M) for a general fmitely generated projective nonsingular quadratic module M is analyzed. Both are shown to be separable. If the rank of M is even, then C(M) is central, and if the rank of M is odd, then the even part is central. Chapter 10 proves that special elements exist whenever M is 1

Description:
Quadratic Algebras, Clifford Algebras, and Arithmetic Forms introduces mathematicians to the large and dynamic area of algebras and forms over commutative rings. The book begins very elementary and progresses gradually in its degree of difficulty. Topics include the connection between quadratic alge
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.