QCD Green’s Functions and Phases of Strongly-Interacting Matter ReinhardAlkofer,a,MarioMitter,b,andBernd-JochenSchaefer,c Institutfu¨rPhysik,Karl-Franzens–Universita¨tGraz,Universita¨tsplatz5,8010Graz,Austria Abstract. AfterpresentingabriefsummaryoffunctionalapproachestoQCDatvanishingtemperaturesand 1 densitiestheapplicationofQCDGreen’sfunctionsatnon-vanishing temperatureandvanishingdensityisdis- 1 cussed.Itispointedoutinwhichwaytheinfraredbehaviorofthegluonpropagatorreflectsthe(de-)confinement 0 transition. Numerical results for the quark propagator are given thereby verifying the relation between (de-)- 2 confinement and dynamical chiral symmetry breaking (restoration). Last but not least some resultsof Dyson- n Schwingerequationsforthecolor-superconductingphaseatlargedensitiesareshown. a J 0 1 Introduction:Why Green’s functions? tinuumquantumfieldtheory,inprinciple,aninfinitehier- 1 archyof coupledcomplicatedequationshasto be solved. The QCD Green’s functions, and thereby especially the AsforQCD, we areofcoursemostinterestedin theirin- ] h onesintheLandaugauge,havebeeninthefocusofmany fraredbehaviour,i.e.,intheGreen’sfunctionsinthestron- p recentinvestigations.Inprinciple,theyprovideacomplete gly-interactingdomain.Tothisenditturnsoutthatrestrict- - descriptionoftheStrongInteraction.Thisimpliesthatthey ingoneselftotheprimitivelydivergentGreen’sfunctions, p alsoembodythenon-perturbativephenomenaofQCD,a- which are the most interesting ones, provides an appro- e h mongst them most prominently confinement, dynamical priate starting point(see e.g. [4] and referencestherein). [ chiral symmetry breaking,and the axial anomaly.On the EvenintheLandaugaugewiththeleastnumberofprim- otherhand,theyserveasinputintohadronphenomenology itively divergentfunctionsa formidable task is left: there 1 based on bound-state equations: mesons and their prop- aresevenprimitivelydivergentfunctionswhileinLandau v erties are studied from solutions of Bethe-Salpeter, and gaugeYang-Millstheorytherearestillfiveprimitivelydi- 7 baryonsfromthesolutionsofcovariantFaddeevequations.1 vergentfunctions,namelythegluonandghostpropagators 7 9 Ofcourse,thisraisesimmediatelythequestionwhether as well as the 3-gluon, 4-gluon and the gluon-ghost ver- 1 Green’s functions are suitable to study the properties of tices.Includingquarks,onehastoconsiderinadditionthe . thedifferentQCDphasesandthephasediagramofQCD. quarkpropagatorandthequark-gluonvertex. 1 Although this question will likeley be answered affirma- Thefunctionalapproachesincludemethodswhichare 0 1 tively,theinvestigations,asdescribedinthefollowing,are basedontheDyson-SchwingerEquations(DSEs),theFunc- 1 definitely at an early stage and require several improve- tional Renormalisation Group Equations (FRG), and the : mentsbeforetheycanbeconsideredconclusive.Neverthe- n-ParticleIrreducibleActions(nPI).Hereby,theDSEs,be- v less,theyarecertainlynotonlyverypromisingbutalsothe ingtheequationsofmotionfortheGreen’sfunctions,are i X bestaccesstomapouttheQCDphasediagram. derived straightforwardly from the generating functional. r Beforecontinuingwith abriefsummaryoffunctional TheFRGisbasedontheideaofemployingenergy-momen- a approachesto QCD at vanishing temperaturesand densi- tum cutoffsto “integrateout”thehigh-momentummodes ties, we want to point out that studies of the QCD phase andthenPIareeffectiveactionsallowtoderivesymmetry- diagram within functional methods have been discussed preservingequationsfortheGreen’sfunctions. from a broader perspective than here in [3] (see also ref- Theadvantagesoffunctionalmethodsare: erencestherein). – Itisstraightforwardtoimplementchiralfermionsand Goldstone’stheorem. – Thereexistanalyticalinfraredsolutions. 2 FunctionalApproaches to QCD – Hadrons are described in terms of their fundamental substructure. As stated above,QCD Green’s functionsare a promising – There is no sign problem at non-vanishing chemical powerfultool.However,inordertodeterminethemincon- potential. a e-mail:[email protected] Compared to the most widely employednon-perturbative b e-mail:[email protected] first-principle method, the lattice gauge theory, these ad- c e-mail:[email protected] vantagesareclearbenefits.Butthesedonotcomeforfree, 1 Arecentexampleofsuchcalculationscanbefoundin[1,2] because, on the other hand, functional methods miss the andreferencestherein. mainadvantagesoflatticegaugetheory: EPJWebofConferences [11,12,13].Withtheknowledgethattheghost-gluonvertex staysregularintheinfraredonecannowanalyzetheghost propagatorDSE.Power-lawlikeansa¨tzeforthegluonand ghostrenormalizationfunctionsleadtoarelationbetween theinfraredexponents[6](thiskindofrelationsarenowa- days known as scaling relations). Denoting by Z(p2) and G(p2) the gluon and the ghost renormalization function, respectively,oneobtainsfor p2 →0 Z(p2)∼(p2)2κ, G(p2)∼(p2)−κ, (1) intermsoftheghostpropagatorinfraredexponentκ.Asit Fig. 1. The Landau gauge gluon renormalization function ob- can beshownthat0.5 < κ < 1 [14] thegluonpropagator tainedfromdifferentcalculations,seetextfordetails. isinfraredsuppressedandtheghostpropagatorisinfrared enhanced.3 – Therearenotruncations. ThistypeofinfraredanalysisofDSEscanbeextended – Manifestgaugeinvariance. toallYang-Millsvertexfunctions[17,18].4 Employingin additiontheFRG equations,andrequiringthatthesetwo, This makes plain that, whenever possible, an intelligent seeminglydifferent,towersofequationshavetogiveiden- combinationsofmethodswillprovidethemostreliablere- ticalGreen’sfunctions,allowsonetorestrictthetypeofso- sults. lutionsstrongly.Thereisoneuniquescalingsolutionwith power laws for the Green’s functions [20,21] and a one- parameterfamilyofsolutions,theso-calleddecouplingso- 3 What do we know for T = 0 and µ = 0? lutions.Atthispointsomenotesareinorder.Quite some time ago, in the Coulomb gauge, a similar situation has 3.1 InfraredStructureofLandaugaugeYang-Mills been found in variational approaches [22]: A family of theory infrared trivial solution possesses as an endpoint a criti- cal solution characterized by some infrared power laws. In order to demonstrate the progress of functional meth- As it concernsthe Landaugauge:Numericalsolutions of ods over the last decade it is interesting to compare dif- thedecouplingtype(therecalled“massivesolution”)have ferentsteps in the calculation of the Landau gaugegluon beenpublishedin[23,24]andreferencestherein.Arecent propagatorwithcorrespondinglatticeresults.Manylattice detailed description and comparison of these two type of calculations of the gluon propagator are available, and it solutions has been given in Ref. [9].5 Firstly, one has to would be beyond the scope of these proceedings to cite notethatthescalingsolutionrespectstheBRSTsymmetry only the major steps in improving on these calculations. whereasthedecouplingsolutionsbreakthissymmetry[9]. In Fig. 1 we have chosen the lattice results for the gluon Secondly,almostalllatticecalculationsofthegluonprop- renormalizationfunction(see also Eq.(1))ofRef. [5] for agator favor a decoupling solution. But lattice studies at comparison,butanyotherrecentcalculationwouldequally strongcoupling[27,28,29]revealtheexistenceofaregime wellbesuitable.Thelowestlyinglinedisplaystheresults wherethescalingrelationbetweenthegluonandtheghost of Ref. [6] in which the coupled DSEs for the gluon and propagatorisfulfilled,andthecorrespondinginfraredex- ghost propagatorshave been solved employing some ap- ponentκisveryclosetothevaluedeterminedintruncated proximative treatment of the involved angular integrals. continuumstudieswith κ = 0.595.A potentialresolution ThesecondlowestcurveisfromRef.[7]inwhichthean- of this puzzle has been offered recently in Ref. [30]: The gularintegralscouldbetreatedwithoutanyapproximation. infraredbehaviouroftheGreen’sfunctiondependsonthe ThecurveaboveistheresultofRef.[8]wheretheFRGhas non-perturbativecompletionofthegauge. been used to solve for the propagators.The highest lying At this pointit has to be emphasized that this discus- curvewhichbecomesalsoclosesttothelatticedataisare- sionisoffundamentalimportance(especiallywithrespect sultobtainedbyJanPawlowskibasedontheworkofRef. to the role of the BRST symmetry in a non-perturbative [9]whereDSEandFRGmethodshavebeencombined.2 How has this success of functional methods been a- chieved?Tothisendoneshouldnotethattheghost-gluon 3 It is an interesting side remark that withthis behaviour the vertex becomes bare in the limit of vanishing ghost mo- Kugo–Ojima confinement criterion, the Oehme–Zimmermann mentum due to the transversality of the gluon propaga- superconvergence relation, and the Gribov–Zwanziger horizon tor. This has been noticed already 40 years ago [10] and condition are fulfilled, see, e.g., the review [15] for a detailed has been tested in several non-perturbativeinvestigations discussion. 4 NotethatarecentlypublishedMATHEMATICAcodecanbe 2 We thank Jan Pawlowski for discussing with us his work usedtosimplifysignificantlythederivationofthecorresponding in preparation and Lorenz von Smekal for a compilation of DSEs[19]. the data (see also his talk under http://www.thphys.uni-heidel- 5 Theinfraredanalysisforbothtypeofsolutionsisdescribed berg.de/∼smp/view/Main/Delta10Programme). inRefs.[25,26]. HotandColdBaryonicMatter–HCBM2010 approach)butthedifferencebetweenthetwotypesofso- chiral symmetry is broken, either explicitely or dynami- lutionsisphenomenologicallyirrelevant.6 cally. For completenesswe will give the infrared behaviour Thisself-consistentquarkpropagatorandquark-gluon ofallone-particleirreducibleGreen’sfunctionsinthescal- vertexsolutionrelatestoquarkconfinementviatheanoma- ing solution in the simplified case with only one external lousinfraredexponentofthefour-quarkfunction.Thestatic scale p2 → 0. For a function with n external ghost and quarkpotentialcanbecalculatedfromthisfour-quarkone- antighostaswellasmgluonlegsonehas: particleirreducibleGreenfunction,whichbehaveslike (p2)−2 for p2 → 0duetotheinfraredenhancementofthe Γn,m(p2)∼(p2)(n−m)κ. (2) quark-gluonvertexforvanishinggluonmomentum.Using thewell-knownrelationforafunctionF ∝(p2)−2onegets NotethatthissolutionfulfillsallDSEs,allFRGequations andallSlavnov-Tayloridentities.Inaddition,itverifiesthe d3p hypothesisof infraredghostdominance[31] and leads to V(r)= F(p0 =0,p)eipr ∼ |r| (3) Z (2π)3 infrareddiverging3-and4-gluonvertexfunctions. Asafurthersideremarkwewanttoaddthatthegluon forthestaticquark-antiquarkpotentialV(r).Thereforethe propagatorviolates positivity [32,33] which is a property infrared divergence of the quark-gluon vertex, as found related to the confinement of transverse gluons. Further- in the scaling solution of the coupled system of DSEs, more,inRef.[32]ananalyticstructureforthegluonprop- thevertexovercompensatestheinfaredsuppressionofthe agatorhasbeenproposedinwhichthegluonpropagatoris gluonpropagatorsuchthatoneobtainsalinearlyrisingpo- analyticinthecomplexp2-planeexceptthespace-likereal tential. half-axis. Generally,ifanapproachiscompleteithastodescribe all phenomena of a given theory. This especially implies thatalsotheaxialU (1)anomalyshouldbedescribedwith A 3.2 Quarks:Confinementvs.DχSBandtheUA(1) the Green’s functions, or in other words, that the QCD anomaly Green’s functionsincorporatethe topologicalsusceptibil- ityoftheQCDvacuum.Tothisendwewouldliketopoint Independentofthetypeofthesolutions–scalingordecou- outthattheinfrareddivergenceofthequark-gluonvertex, pling – the gluon propagator is infrared suppressed, and mentionedabove,indeed generatesan η′ mass and there- therefore quark confinement cannot be generated by any fore describes the axial anomaly [36]. Following an old typeofgluonexchangetogetherwithaninfrared-bounded idea[37]whichattributedtheη′ masstotheinfraredslav- quark-gluonvertex.ToaddquarksoneconsiderstheDSE eryofquarksitwasshownthattheinfrareddivergenceof forthequarkpropagatortogetherwiththeoneforthequark- the quark four-point function in the soft limit is exactly gluon vertex in a self-consistent way [34,35]. Hereby, a the one which is needed to find a non-vanishingη′ mass. significantdifferenceofthequarkscomparedtotheYang- However,the appearenceof the correctinfraredsingular- Mills fields has to be taken into account:Since they pos- ity in single Feynman diagrams is the case only for the sess a mass, and since dynamicalchiralsymmetrybreak- scaling solution. To our best knowledge, it is up to now ing (DχSB) doesoccur,the quarkpropagatorwill always unknownhowtheaxialanomalyisencodedintheelemen- approachaconstantintheinfrared. tary Green’s functionsof the decouplingsolution as only In general, the fully dressed quark-gluon vertex can aresummationofinfinitelymanydiagramswillbeableto beexpandedintwelvelinearlyindependentDiractensors. describetheanomalywhenemployingthesesolutionsfor Halfofthecoefficientfunctionswouldvanishifchiralsym- theGreen’sfunctions. metry were realized in the Wigner-Weyl mode. From a solution of the Dyson-Schwinger equations we infer that these “scalar” structures are, in the chiral limit, gener- 4 Phasesof strongly-interactingmatter: atednon-perturbativelytogetherwiththedynamicalquark How to go to T , 0 and µ , 0 ? mass functionin a self-consistentfashion. Thus, dynami- cal chiral symmetry breaking manifests itself not only in The explorationof the QCD phase diagram, in particular thepropagatorbutalsointhequark-gluonvertex. the higher baryon-density regime, within functional ap- Based on the Yang-Millsscaling solution one obtains proachesisaveryactivefieldofresearchandofgreatim- from an infrared analysis an infrared divergent solution portance for a deeper understanding of the experimental for the quark-gluonvertex such that the Dirac vector and data of the running and planned heavy-ion programs. As “scalar” components of this vertex are infrared divergent withanexponent−κ− 1 ifeitherallmomenta[34]orthe already argued, in the last years a fruitful interaction be- 2 tweenthedifferentfunctionalmethodshasleadtoalargely gluon momentum vanish [35]. A numerical solution of a quantitative understanding of QCD at vanishing temper- truncatedsetofDSEsconfirmsthisinfraredbehaviour.The ature and density while an understanding of the confine- essentialcomponents,toobtainthissolution,arethescalar ment mechanism and its relation to the DχSB is not yet Diracamplitudesofthequark-gluonvertexandthescalar settled. At finite temperature and chemical potential the part of the quark propagator.Both are only present when situation is even much less clear. On the one hand, with 6 Maybe with the exception of how to describe the axial thehelpoffunctionaltechniquesresultsforthepureYang- anomalywithGreen’sfunctions,seebelow. Mills sector of QCD at finite temperature as well as for EPJWebofConferences the hadronicsector of QCD could be obtainedbut on the tionoftheQCDGreen’sfunctionwithinfunctionalmeth- otherhandafullQCDinvestigationishamperedbythefact odswillbedescribed. that the gaugesector, i.e. the (de-)confinementtransition, is not fully resolved.Furthermore,for full QCD with dy- namicalquarksthe(de-)confinementtransitionisexpected 4.1 T,0andµ=0case to be a smooth crossover as the underlying center sym- metry of the SU(Nc) gauge group is explicitly broken by AtT ,0theheatbathprovidesapreferedrestframe.Ac- the quarks. Similarly, the nature of the chiral phase tran- cordingly, the Green’s functions will not only depend on sition depends, among other quantities, on the values of theLorentzinvariantcombinationsofenergyandmomenta. thecurrentquarkmasseswhichagainbreakchiralsymme- This,byitself,makesthesolutionoffunctionalequations tryexplicitly.Itisanimportantobservationthatforsmall muchmoreinvolved.Inaddition,thenumberoffunctions chemicalpotentialsbothphasetransitionsliewithrespect whichspecifyuniquelyagivenGreen’sfunctionincreases. tothetemperatureremarkablyclosetoeachother.Thisis Anexceptionistheghostpropagatorwhichstillcanbede- interesting since the (de-)confinementtransition is driven scribedbyonlyonefunction.However,forthegluonprop- by the gluodynamicswhile the chiral transition is govern agatortheonerenormalizationfunctionsplitsintotwo, by strongly-interactingquarks. The deeper understanding ofthisinterrelationisaprimaryfocusoftheapplicationof Z (p2) Z (p2) functionalapproaches,seealso[3,16]. DGluon = T PT (p)+ L PL (p), (4) µν p2 µν p2 µν AfirststeptowardsfullQCDwithfunctionalmethods at non-vanishingtemperatureand densities is done in the accordingtotransverseandlongitudinalprojectionstothe framework of effective models which are generally con- heat bath. For further discussions it is important to note structedfromnon-perturbativeYang-Millseffectivepoten- that the corresponding contributions are essentially chro- tialsandhadronicpotentials.PureYang-Millstheorycor- momagnetic and chromoelectric in nature. For the quark responds to the heavy-quarklimit of QCD where the ex- propagatoralsotherenormalizationfunctionsplitsintotwo pectationvalueofthePolyakovloopservesasanorderpa- suchthatthequarkpropagatorisdescribedbythreefunc- rameterforthe(de-)confinementtransition.Inthesemod- tions7 els some information about the confining glue sector of 1 QCDisincorporatedinaneffectivePolyakov-looppoten- S(p)= . (5) tial that is extracted frompure Yang-Millslattice simula- −iγipiA(p)−iγ4ωpC(p)+B(p) tionsatvanishingchemicalpotential.Thissectoriseffec- tivelycombinedwiththechiralquark(-meson)mattersec- AtT = 0onehasofcourseZT = ZL = Z andC = A torleadingtothePolyakov-NJL-typeeffectivechiralmod- whicharefunctionsof p2onlywith p =(ωp,p).AtT ,0 elssuchasthePNJLorPQMmodels,e.g.,[38,39,40].The wedealwithsixpropagatorfunctionsdependingonp2and mattersectorofthesemodelshasbeenstudiedalsobeyond ωp.AtT →∞oneobtainsathree-dimensionalYang-Mills mean-field level by taking into account the quark-meson theoryplusascalarfieldoriginatingfromtheA4. quantum fluctuations within a FRG approach, for recent AtanyT thechromomagneticpartofthe gluonprop- studiesseeRefs[41,42,43]. agator keeps positivity violating [46,47,48]. This clearly indicates a kind of partial gluon confinementat any tem- Themostdifficultproblemwithinthesemodelinvesti- perature(amoredetaileddiscussionmaybefoundin[49] gationsistheinclusionofthequantumback-reactionofthe andreferencestherein).Theresultsoftheseinvestigations mattersectortothegluonicsector.Thisproblemhasbeen relate also to the non-perturbative origin of chromomag- attacked in Ref. [39] which leads to a flavor and chem- neticscreening,whateverthetemperatureis.Thisisnotat ical potential dependence of the (de-)confinementtransi- all surprising because three-dimensional Yang-Mills the- tion temperature. This first perturbative estimate of Ref. ory is confining (and thus the infrared behaviour of the [39] has been confirmed by first-principle QCD calcula- gluon propagator is genuinely non-perturbative),one has tionswithintheFRGapproachatrealandimaginarychem- an arealaw forthe spatialWilsonloop,andthe Coulomb ical potentials[16] and also by constrainingPNJL model stringtensionisnon-vanishingatanyT [50]. results with those in the statistical model, see [44] for a To calculate the quark propagator we solve its DSE recent review. This already demonstrates that even with with the finite-temperature gluon propagator and quark- QCD-basedeffectivemodelscombinedwithfunctionalap- gluon vertex as input. In our corresponding first calcula- proaches valuable information about the QCD phase di- tions we follow Ref. [51] where a fit to the lattice gluon agram can be provided and certain scenarios can be ex- propagator and an ansatz for the quark-gluon vertex has cluded. As an example see [45] concerning the expected been used. As already stated the chromomagneticpart of focusingofisentropictrajectoriesinthevicinityofacriti- the gluonpropagatoris not at all influencedby the phase calendpointinthephasediagram.Inthissensethesemod- transition.Ontheotherhand,thechromoelectricpartmay elscanbeunderstoodascontrolledapproximationstofull serveasanorderparameter.InFig.2oneseesveryclearly dynamicalQCD. Nevertheless, treating the QCD Green’s functions di- 7 Bysymmetriesastructureof thetype γpγ ω D(p) would i i 4 p rectlyis,ofcourse,verydesireable.Inthenexttwosubsec- be allowedwhich, however, has turned out sofar inall investi- tionstwotypesofinvestigationsaimingatadirectcalcula- gatedcasesasnegligiblysmall. HotandColdBaryonicMatter–HCBM2010 the drastice change in the infrared value of the chromo- 1.4 electricgluonpropgator,D (0),atT =T =277MeV.The L c 1.2 inverse of the square root of D (0) is the chromoelectric L V] 1 screeningmassscale,andfromthefitinFig.2weobtaina Ge criticalexponentofapproximately0.53. 2 [ 0.8 Theresultingquarkpropagatorfunctionsfromthecor- -1/0) 0.6 respondingDSEaredisplayedinFigs.3and4.Thescalar D(L 0.4 function B(p2) is the one reflecting DχSB.8 Correspond- ingly, in the chiral limit it vanishes identically above T c 0.2 thereby signaling the chiral phase transition. Of course, 0 thistransitionbecomesacrossoverfornon-vanishingcur- 0 0.5 1 1.5 2 2.5 rentquarkmass,andthefunctionBisslowlyvaryingand T/Tc mostlydrivenbythecurrentquarkmass.Anotanticipated behaviouris the factthat B(0)raises with temperatureup Fig.2.DisplayedistheLandaugaugechromoelectricscreening toTc.ButFig.2makesevidentwhythishappens:Thein- massscalewithafittothecriticalexponentnearthecriticalpoint. fraredvalueofthechromoelectricpartofthegluonprop- ThedatapointsaretakenfromRef.[51]. agatorincreaseswithT uptoTc beforeitthensharplyde- creases. Putting as usual antiperiodic boundary conditions for T/T = 0, chiral limit quarks,thechiral-limitquarkcondensate(beingessentially 1.6 c T/Tc = 0.986, chiral limit thefunctionaltraceoverthequarkpropagator)servesasan 1.4 T/T = 0 c orderparameter.However,playingwiththeboundarycon- V] 1.2 TT/T/Tc = = 0 .19.8861 ditionsallowstolinkconfinementwithspectralproperties Ge 1 c of the Dirac operator [52]. Correspondingly,in Ref. [51] 2) [ 0.8 also the dual quark condensate and the dressed Polykaov p B( 0.6 loop [52,53,54] have been calculated.9 The trick consists 0.4 in setting U(1)-valuedboundaryconditionsfor the quark 0.2 fieldin“temporal”direction: 0 -3 -2 -1 0 1 2 3 4 q(x,β=1/T)=eiϕq(x,0), (6) Log(p2) [GeV2] whichamountstoaneffectiveshiftofMatsubarafrequen- cies, Fig. 3. The Landau gauge scalar quark function B(p2) (see Eq. ω =2πT(n+ϕ/2π). (7) n (5))fordifferenttemperaturesinthechirallimit(solidlines)and The generalized condensate hq¯qi at fixed ϕ is the corre- foratypicallight-quarkcurrentquarkmass(dashedlines). ϕ spondingexpectationvalueoftheDiracoperator,anditis expandablein a geometricseries containingloopsof link 2.4 A, T/T = 0 variables with increasing winding number. One can then c A, T/T = 0.986 definethedual(Gattringer)condensateas 2.2 c C, T/T = 0.986 c V] 2 A, T/Tc = 1.81 2π dϕ Ge 1.8 C, T/Tc = 1.81 Σν =−Z 2πe−iνϕhq¯qiϕ (8) 2) [ 1.6 0 p C( 1.4 where ν = 1 projects out winding-number-oneloops, the A, 1.2 so-called dressed Polyakov loops [52]. It is an order pa- rameterforcentersymmetrybreakingandconfinement. 1 The aim of our future investigations is now to calcu- 0.8 late the dual quark condensate and the dressed Polyakov -3 -2 -1 0 1 2 3 4 loop with an improvedinput. Substituting the parameter- Log(p2) [GeV2] izedgluonpropagatorbyrecentresultsoffunctionalequa- tions is herebymorea matter of convenienceand numer- Fig.4.TheLandaugaugequarkrenormalizationfunctionsA(p2) ical precision than of fundamentalprogress.However,an and C(p2) (see Eq. (5)) for different temperatures in the chiral (atleastpartially)self-consistentdeterminationofthequark limit. propagatorandthequark-gluonvertextogether,generaliz- ing the work of Ref. [35] to non-vanishingtemperatures, 8 For conceptional clarity we prefer to discuss the function B(p2) and not one of themass functions M(p2) = B(p2)/A(p2) orM(p2)=B(p2)/C(p2),respectively. 9 ForcorrespondingT =0latticeandfunctionalequationssee Refs.[55,56]. EPJWebofConferences would be a decisive step towards a first-principle calcu- 250 lationoffinite-temperaturequarkpropertiesincontinuum 2SC - unbroken uSC - 2SC QCD. V] gCFL - uSC Attheendofthissubsectionwewanttopointoutthat e 200 CFL - gCFL M one can define a Polyakov-loop related confinement cri- [ teriumfrominfraredexponents[57].TogetherwithanFRG V) calculationofthePolyakovpotentialthisallowsonetocal- Ge 150 culate the transition temperature.In pureYang-Millsthe- 2 = oryonefindsherebyforSU(2)asecond-orderphasetran- ν ( sitionlyingintheIsinguniversalityclassandafirst-order cal [tr5a8n]s.itionforallSU(Nc ≥3),Sp(2)andfortheE(7)group ms,criti100 50 300 350 400 450 500 4.2 Colorsuperconductingphase µ [MeV] Ofcourse,itisquiteobvioustoexploittheabsenceofthe Fig.5.Colorsuperconductingphasesinthems−µplane. signprobleminfunctionalapproachestoextendthestud- ies to non-vanishing density. Nevertheless, the introduc- clearlyherethatthemainaspectsoftheQCD phasetran- tionofachemicalpotentialintofunctionalequationsleads sitionatfinitedensitywillnotbeuncoveredbyfunctional to a significant complication of the quark propagator pa- methods if we will not get more information on the cou- rameterization,usuallydoneintheNambu-Gorkovformal- plingofquarkstogluonsalsointhisregionofthephasedi- ism then,see e.g.Refs.[59,60,61]andreferencestherein. agram.InthecaseofaDSEstudythisespeciallyincludes It has to be noted that as long as one uses an Abelian- moreknowledgeaboutthequark-gluonvertex type model for the quark-gluon vertex these difficulties aremerelytechnicalobstacleswhichcanbeovercomeby combining computer algebra with numerical techniques. 5 Summary and Outlook:What may we Nevertheless, including medium modifications by quarks (as done e.g. in Refs. [59,60,61]) and employing the re- expect? sults of functional equations or a combined phenomeno- logical and lattice fit to the gluon propagator (as e.g. in The last years have seen a quite dramatic increase in our Ref.[62])oneobtainsaquiteastonishingbutrobustresult: knowledge on the Landau gauge QCD Green’s functions Restricting oneself to translationally invariantphases one atvanishingtemperaturesanddensities.Ithasbecomeevi- concludes that for a realistic renormalized strange quark dent that the propagation of transverse gluons is infrared massforallchemicalpotentialsabovethephasetransition, suppressed, and that positivity is violated for transverse quarkmatter isin the colour-flavourlockedcolour-super- gluons.Ithasturnedoutthatghostsarethelong-range“de- conducting phase. In Fig. 5 a resulting phase diagram in greesoffreedom”,andconcentratingonthemainpointone the plane of renormalized strange quark mass and quark maysaythatinLandaugaugeQCD,ghostsandtherestric- chemicalpotentialisgiven.10Theshadedbandinthefigure tiontotheGribovhorizon(i.e.thecorrelationsintroduced indicatesthe value of the strange quarkmass as givenby bygauge-fixinguniquely)arerelatedtotheoriginofcon- theParticle DataGroup,the differentlinesarephasesep- finement[31,15]. arationlinesfromcolour-flavour-lockedtogaplesscolour- Itcannotbeemphasizedenoughthatdynamicalchiral flavour-locked (lowest line), from gapless colour-flavour- symmetry breaking does not only lead to the generation lockedtotheuSCphase(second-lowestline),andsoon. of constituent quark masses but also to scalar-type cou- In addition, these calculations demonstrate that there plings between quarks and gluons. There are indications are huge deviations of the gap functions as compared to thattherelatedscalarconfinementpotentialisevenlarger thoseextrapolatedfromtheweak-couplingresultuptoche- than the vector component [35]. We also remark that the micalpotentialsoftheorderofseveralGeV.Evenatsuch axialanomalyisencryptedintheinfraredbehaviourofthe largechemicalpotentialsperturbationtheoryquantitatively Green’sfunctionsinthescalingsolution[36]. fails.Furthermore,thelightquarksscreeninteractionalso Having set the stage, one is ready to continue to ei- inthestrangequarksector,aneffect,whichisnotseenin ther non-vanishing temperatures or/and densities. Firstly, mostmodels. oneshouldnotethatthechromomagneticpartofthegluon A calculation of the dressed Polyakov loop at finite propagatordoesnotseethephasetransitionatall.Inpar- chemical potential will certainly shed more light on the ticular,onehaspositivityviolation(andthuspartialgluon natureofthefinite-densityphasetransition,andthereforea confinement)atanytemperature.Secondly,theinfraredre- correspondinggeneralizationoftheworkdescribedinRef. gionofthechromoelectricpartofthegluonpropagatordis- [59,60,61]isinprogress[63].However,ithastobestated playsverynicelythephasetransition[51].Needlesstosay, that in the chiral limit the quark propagatorchanges also 10 Toobtainthisfigureelectricandcolourneutralityhavebeen accordingly due to the chiral symmetry restoration at the imposed,butthisis,however,notdecisiveforthemainresult. criticaltemperature. HotandColdBaryonicMatter–HCBM2010 The results of the quarkpropagatorDSE at non-vani- 13. W.Schleifenbaumetal.,Phys.Rev.D72(2005) shingdensitiesprovideevidencethatfora realisticrenor- 014017[arXiv:hep-ph/0411052]. malizedstrangequarkmassforallvaluesofthechemical 14. P. Watson andR. Alkofer,Phys.Rev.Lett. 86(2001) potentialsabovethephasetransition,quarkmatterisinthe 5239[arXiv:hep-ph/0102332]. colour-flavourlocked colour-superconductingphase [61]. 15. R.AlkoferandL.vonSmekal,Phys.Rept.353(2001) However,herewehavetokeepinmindthattheseinvesti- 281[arXiv:hep-ph/0007355]. gationsarerestrictedtotranslationallyinvariantphases. 16. J. Braun et al., Phys. Rev. Lett. (2011) in press Asweknowfromrecentstudieswithinfunctionalap- [arXiv:0908.0008[hep-ph]]. proaches at T = 0 and µ = 0 the dressing of the quark- 17. R. Alkofer, C. S. Fischer and F. J. Llanes-Estrada, gluonvertexisofutterimportance.Thereforewewillcon- Phys.Lett.B611(2005)279[arXiv:hep-th/0412330]. centrateinfutureoninvestigationsofthisfunctionatnon- 18. M. Q. Huber et al., Phys. Lett. B 659 (2008) 434 vanishingtemperaturesanddensities.Hereby,thedualqua- [arXiv:0705.3809[hep-ph]]. rkcondensateandthedressedPolyakovloop[55]willbe 19. R.Alkofer,M.Q.HuberandK.Schwenzer,Comput. importantquanitities in the studies of the QCD phase di- Phys. Commun. 180 (2009) 965 [arXiv:0808.2939 agram. Although it may sound very ambitious today we [hep-th]]. wantto emphasizethatthe goalis to calculate thermody- 20. C. S. Fischer and J. M. Pawlowski, Phys. Rev. D 75 namicobservablesofQCD atallphysicallyrelevanttem- (2007)025012[arXiv:hep-th/0609009]. peraturesandchemicalpotentials. 21. C. S. Fischer and J. M. Pawlowski, Phys. Rev. D 80 (2009)025023[arXiv:0903.2193[hep-th]]. 22. A.P.SzczepaniakandE.S.Swanson,Phys.Rev.D65 (2002)025012[arXiv:hep-ph/0107078]. Acknowledgments 23. A. C. Aguilar, D. Binosi and J. Papavassiliou, Phys. Rev.D78(2008)025010[arXiv:0802.1870[hep-ph]]. RA thanksthe organizersof this highlyinteresting work- 24. P. Boucaud et al., JHEP 0806 (2008) 099 [arXiv: shop,inparticularTama´sBiro´,fortheinvitation. 0803.2161[hep-ph]]. We are grateful to Christian Fischer, Davor Horvatic, 25. R.Alkofer,M.Q.HuberandK.Schwenzer,Phys.Rev. AxelMaas,DominikNickel,JanMartinPawlowski,Lorenz D81(2010)105010[arXiv:0801.2762[hep-th]]. vonSmekal,andJochenWambachforhelpfuldiscussions. 26. M.Q.Huber,K.SchwenzerandR.Alkofer,Eur.Phys. We thank Jan Martin Pawlowskifor a criticalreading J.C68 (2010)581-600[arXiv:0904.1873[hep-th]]. ofthemanuscript. 27. A. Sternbeck and L. von Smekal, Eur. Phys. J. C 68 ThisworkwassupportedbytheAustrianScienceFund (2010)487[arXiv:0811.4300[hep-lat]]. FWFwithintheDoctoralProgramNo.W1203,andinpart 28. A.Maasetal.,Eur.Phys.J.C68(2010)183[arXiv: bytheEuropeanUnion(HadronPhysics2project“Studyof 0912.4203[hep-lat]]. strongly-interactingmatter”). 29. A.CucchieriandT.Mendes,Phys.Rev.D81(2010) 016005[arXiv:0904.4033[hep-lat]]. 30. A. Maas, Phys. Lett. B 689 (2010) 107 [arXiv:0907. References 5185[hep-lat]]; 31. D.Zwanziger,Phys.Rev.D69(2004)016002[arXiv: 1. D. Nicmorus, G. Eichmann, R. Alkofer, Phys. Rev. hep-ph/0303028]. D82(2010)114017[arXiv:1008.3184[hep-ph]]. 32. R. Alkofer et al., Phys. Rev. D 70 (2004) 014014; 2. H. Sanchis-Alepuz et al., PoS LC2010 (2010) 018 [arXiv:hep-ph/0309077];Nucl.Phys.Proc.Suppl.141 [arXiv:1010.6183[hep-ph]]. (2005)122[arXiv:hep-ph/0309078]. 3. J.M.Pawlowski,arXiv:1012.5075[hep-ph]. 33. P.O.Bowmanetal.,Phys.Rev.D76(2007)094505 4. R.Alkoferetal.,PoSCONFINEMENT8(2008)019 [arXiv:hep-lat/0703022]. [arXiv:0812.2896[hep-ph]]. 34. R. Alkofer, C. S. Fischer and F. J. Llanes- 5. A.Sternbecketal.,PoSLAT2006(2006)076[arXiv: Estrada, Mod. Phys. Lett. A23 (2008) 1105 hep-lat/0610053]. [arXiv:hep-ph/0607293]. 6. L. vonSmekal,R. AlkoferandA. Hauck,Phys.Rev. 35. R.Alkoferetal.,AnnalsPhys.324(2009)106[arXiv: Lett.79(1997)3591[arXiv:hep-ph/9705242]. 0804.3042[hep-ph]]. 7. C.S.FischerandR.Alkofer,Phys.Lett.B536(2002) 36. R.Alkofer,C.S.FischerandR.Williams,Eur.Phys. 177[arXiv:hep-ph/0202202]. J.A38(2008)53[arXiv:0804.3478[hep-ph]]. 8. J. M. Pawlowski et al., Phys. Rev. Lett. 93 (2004) 37. J. B. KogutandL.Susskind,Phys.Rev.D 10(1974) 152002[arXiv:hep-th/0312324]. 3468. 9. C. S. Fischer, A. Maas and J. M. Pawlowski, Annals 38. C.Ratti,M.A.ThalerandW.Weise,Phys.Rev.D73 Phys.324(2009)2408[arXiv:0810.1987[hep-ph]]. (2006)014019[arXiv:hep-ph/0506234]. 10. J.C.Taylor,Nucl.Phys.B33(1971)436. 39. B.-J.Schaefer,J.M.PawlowskiandJ.Wambach,Phys. 11. C.LercheandL.vonSmekal,Phys.Rev.D65(2002) Rev.D76(2007)074023[arXiv:0704.3234[hep-ph]]. 125006[arXiv:hep-ph/0202194]. 40. B.-J. Schaefer, M. Wagner and J. Wambach, Phys. 12. A. Cucchieri, T. Mendes, and A. Mihara JHEP 12 Rev. D 81, 074013 (2010) [arXiv:0910.5628 [hep- (2004)012[arXiv:hep-lat/0408034]. ph]].B.-J.SchaeferandM.Wagner,Phys.Rev.D79, EPJWebofConferences 014018(2009)[arXiv:0808.1491[hep-ph]]. 41. B.-J. Schaefer and J. Wambach, Phys. Part. Nucl. 39 (2008)1025[arXiv:hep-ph/0611191]. 42. T. K. Herbst, J. M. Pawlowski and B.-J. Schaefer, Phys. Lett. B 696 (2011) 58 [arXiv:1008.0081[hep- ph]]. 43. V. Skokov et al., Phys. Rev. C 82, 015206 (2010) [arXiv:1004.2665[hep-ph]]. 44. K. Fukushima and T. Hatsuda, Rept. Prog. Phys. 74 (2011)014001[arXiv:1005.4814[hep-ph]]. 45. E. Nakano, B.-J. Schaefer, B. Stokic, B. Friman and K. Redlich, Phys. Lett. B 682 (2010) 401 [arXiv:0907.1344[hep-ph]]. 46. A. Maasetal.,Eur.Phys.J. C37(2004)335[arXiv: hep-ph/0408074]. 47. A. Cucchieri, A. Maas and T. Mendes, Phys. Rev. D 75(2007)076003[arXiv:hep-lat/0702022]. 48. A.Maas,J.WambachandR.Alkofer,Eur.Phys.J.C 42(2005)93[arXiv:hep-ph/0504019]. 49. K. Lichtenegger and D. Zwanziger, Phys. Rev. D 78 (2008)034038[arXiv:0805.3804[hep-ph]]. 50. J.Greensite,S.OlejnikandD.Zwanziger,Phys.Rev. D69(2004)074506[arXiv:hep-lat/0401003]. 51. C.S.Fischer,A.MaasandJ.A.Muller,Eur.Phys.J. C68(2010)165[arXiv:1003.1960[hep-ph]]. 52. C. Gattringer, Phys. Rev. Lett. 97 (2006) 032003 [arXiv:hep-lat/0605018]. 53. F.Synatschke,A.WipfandC.Wozar,Phys.Rev.D75 (2007)114003[arXiv:hep-lat/0703018]. 54. F.Synatschke,A.WipfandK.Langfeld,Phys.Rev.D 77(2008)114018[arXiv:0803.0271[hep-lat]]. 55. E. Bilgici et al., Phys. Rev. D 77 (2008) 094007 [arXiv:0801.4051[hep-lat]]. 56. C. S. Fischer, Phys. Rev. Lett. 103 (2009) 052003 [arXiv:0904.2700[hep-ph]]. 57. J.Braun,H.GiesandJ.M.Pawlowski,Phys.Lett.B 684(2010)262[arXiv:0708.2413[hep-th]]. 58. J. Braunetal.,Eur.Phys.J. C 70(2010)689[arXiv: 1007.2619[hep-ph]]. 59. D. Nickel,J. WambachandR. Alkofer,Phys.Rev.D 73(2006)114028[arXiv:hep-ph/0603163]. 60. D. Nickel,R.AlkoferandJ. Wambach,Phys.Rev.D 74(2006)114015[arXiv:hep-ph/0609198]. 61. D. Nickel,R.AlkoferandJ. Wambach,Phys.Rev.D 77(2008)114010[arXiv:0802.3187[hep-ph]]. 62. M.S.Bhagwatetal.,Phys.Rev.C68(2003)015203 [arXiv:nucl-th/0304003]. 63. R.Alkofer,D.Horvatic,B.-J.Schaefer,inpreparation.