ebook img

q-series and tails of colored Jones polynomials PDF

0.17 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview q-series and tails of colored Jones polynomials

q-SERIES AND TAILS OF COLORED JONES POLYNOMIALS 6 1 PAUL BEIRNEAND ROBERTOSBURN 0 2 Abstract. WeextendthetableofGaroufalidis, LˆeandZagierconcerningconjecturalRogers- g Ramanujan type identities for tails of colored Jones polynomials to all alternating knots up to u 10 crossings. Wethen provethese new identities using q-series techniques. A 0 3 ] 1. Introduction T N The colored Jones polynomial J (K;q) for a knot K is an important quantum invariant of N . knots. Here, we use the normalization J (K;q) = 1 for the unknot K, J (K;q) = 1 for all h N 1 t knots K and J2(K;q) is the Jones polynomial of K. Thetail of JN(K;q) is a power series whose a first N coefficients agree (up to a common sign) with the first N coefficients for J (K;q) for m N all N ≥ 1. If K is an alternating knot, then the tail exists and equals an explicit q-multisum [ Φ (q) (see [1], [3], [5]). K 2 Recently, Garoufalidis and Lˆe (with Zagier) presented a table (see Table 6 in [5]) of 43 conjec- v turalRogers-Ramanujan typeidentities between thetails Φ (q)andproductsof theta functions 7 K 7 and/or false theta functions. Thistable consisted of the following knots K: all alternating knots 5 up to 8 , the twist knots K , p > 0 or p < 0, the torus knots T(2,p), p > 0, each of their mirror 4 p 5 knots −K and −8 . For example, if we define for a positive integer b 0 5 . 1 60 hb = hb(q) = Xǫb(n)qbn(n2+1)−n n∈Z 1 : where v i X (−1)n if b is odd, r  a ǫb(n)=  1 if b is even and n ≥ 0, −1 if b is even and n < 0  and n (a) = (a;q) = (1−aqk−1), n n Y k=1 valid for n ∈ N∪{∞}, then Date: August 31, 2016. 2010 Mathematics Subject Classification. Primary: 33D15; Secondary: 05A30, 57M25. Key words and phrases. q-series identities, colored Jones polynomial, tails. 1 2 PAULBEIRNEANDROBERTOSBURN q3a2+2a+b2+bg+ac+ad+ae+af+ag+cd+de+ef+fg+c+d+e+f+g Φ (q) =(q)7 72 ∞ X (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) a b c d e f g b+g a+c a+d a+e a+f a+g a,b,c,d,e,f,g≥0 ? =h . 6 (1.1) Note that h = 0, h = 1 and h = (q) . In general, h is a theta function if b is odd and a 1 2 3 ∞ b false theta function if b is even. Using q-series techniques, Keilthy and the second author [10] proved not only (1.1), but all of the remaining conjectural identities in [5]. The purpose of this paper is to extend the table of Garoufalidis, Lˆe and Zagier to include all alternating knots up to 10 crossings. This is done in Tables 1 and 2 below. One immediately observes that their table is not “complete” in the sense that there exist knots K such that ΦK(q) 6= ΦK′(q) for any knot K′ in Table 6 of [5]. For example, Φ87(q) = h3h5. Our main result is the following. Theorem 1.1. The identities in Tables 1 and 2 are true. K Φ (q) Φ (q) K Φ (q) Φ (q) K Φ (q) Φ (q) K −K K −K K −K 8 h h h 9 h h h 9 ? ? 6 3 4 5 6 3 6 4 24 8 h h h2 9 h h h 9 h3 ? 7 3 5 3 7 3 4 6 25 3 8 h h h2 9 h h h2 9 h2h h3 8 3 5 3 8 3 6 3 26 3 4 3 8 h h h h 9 h h h 9 h3 h2h 9 3 4 3 4 9 4 5 4 27 3 3 4 8 ? h2 9 h2 h 9 ? ? 10 3 10 4 5 28 8 h h h h 9 h h h2 9 ? ? 11 3 4 3 4 11 4 5 3 29 8 h h h h 9 h h h h 9 h3 ? 12 3 4 3 4 12 3 4 3 5 30 3 8 h2h h2 9 h2 h h 9 h4 h3 13 3 4 3 13 4 3 4 31 3 3 8 h h h3 9 h2h h2 9 ? ? 14 3 4 3 14 3 5 3 32 8 h3 ? 9 h h h h 9 ? ? 15 3 15 3 4 3 5 33 8 ? ? 9 h ? 9 ? ? 16 16 4 34 8 ? ? 9 h2 h2h 9 ? h 17 17 3 3 5 35 3 8 ? ? 9 h h h2 9 ? h2 18 18 3 4 4 36 3 9 h 1 9 h h h3 9 h3 ? 1 9 19 3 5 3 37 3 9 h h 9 h2 h h2 9 ? ? 2 8 3 20 3 3 4 38 9 h h 9 h h h2h 9 ? ? 3 7 4 21 3 4 3 4 39 9 h h 9 ? h2 9 ? ? 4 6 5 22 3 40 9 h h h 9 h2 h3 9 ? ? 5 3 4 6 23 4 3 41 Table 1. Unfortunately, we were unable to find similar identities not only in each case labelled “?” in Tables 1 and 2, but for any alternating knot (or its mirror) from 10 to 10 . This is also the 79 123 situation for 8 where although one has (after q-theoretic simplification or the methods in [8]) 5 qa2+a+b2+b(q) Φ (q) = (q)2 a+b, (1.2) 85 ∞ X (q)2(q)2 a,b≥0 a b q-SERIES AND TAILS OF COLORED JONES POLYNOMIALS 3 K Φ (q) Φ (q) K Φ (q) Φ (q) K Φ (q) Φ (q) K −K K −K K −K 10 h h 10 h h h2h 10 ? h3 1 9 3 27 3 5 3 4 53 3 10 ? h 10 h h h h2 10 ? h2 2 3 28 3 4 5 3 54 3 10 h h 10 h h2 h h 10 ? h3 3 7 5 29 3 4 3 4 55 3 10 ? h 10 h h2 h3 10 ? h h 4 3 30 3 4 3 56 3 4 10 h h h2 10 h h h2h 10 ? h2h 5 3 7 3 31 3 5 3 4 57 3 4 10 h h h 10 ? h3 10 ? h3 6 3 6 5 32 3 58 3 10 h h h h 10 ? h2h 10 ? h3 7 3 6 3 4 33 3 4 59 3 10 h h h 10 h h h2 10 ? h3 8 3 5 6 34 3 7 3 60 3 10 h h h h 10 h h h h 10 ? h 9 3 6 3 4 35 3 6 3 4 61 3 10 h2h h2 10 h h h3 10 ? h2 10 3 6 3 36 3 6 3 62 3 10 h h h 10 h h h h 10 ? h h 11 4 5 5 37 3 5 3 5 63 3 4 10 h h h h 10 ? h3 10 ? h h 12 3 5 3 5 38 3 64 3 4 10 h h h h 10 h h h2h 10 ? h2h 13 4 5 3 4 39 3 4 3 5 65 3 4 10 h2h h h 10 ? h2h 10 ? ? 14 3 5 3 4 40 3 4 66 10 h2 h2 10 h h2 h3 10 ? h3 15 5 3 41 3 4 3 67 3 10 h h h h 10 h2h ? 10 ? h2 16 4 5 3 4 42 3 4 68 3 10 ? h h 10 h2h h2h 10 ? ? 17 3 5 43 3 4 3 4 69 10 h2h h h 10 h3h h4 10 ? h h 18 3 5 3 4 44 3 4 3 70 3 4 10 h h h h2 10 h4 h4 10 ? h2h 19 3 4 5 3 45 3 3 71 3 4 10 h h h 10 ? h 10 h h ? 20 7 3 4 46 3 72 3 4 10 h h h h 10 ? h2 10 ? h2h 21 3 6 3 4 47 3 73 3 4 10 h h h h 10 ? h h 10 ? h h 22 3 4 4 5 48 3 5 74 3 4 10 h h h2h 10 ? h2h 10 ? ? 23 3 5 3 4 49 3 5 75 10 h h h h 10 ? h h 10 ? h 24 4 5 3 4 50 3 4 76 5 10 h h2 h h 10 ? h2h 10 ? h h 25 3 4 3 4 51 3 4 77 3 5 10 h h2 h h 10 ? h3 10 ? ? 26 3 4 3 4 52 3 78 Table 2. themodular(or false theta, mock/mixed mock, quantummodular)propertiesof the doublesum in(1.2)arenotclear. Thedifficultyinfindingniceidentitiesforthesetails isduetothestructure of their reduced Tait graphs (see [6]). Another approach to Theorem 1.1 is to utilize the skein- theoretic techniques in [2], [4] and [9]. It would be of considerable interest to investigate the connection between skein theory and q-series to gain a better understanding of these unknown cases and of a general framework. It would also be desirable to study q-series identities in other settings which arise from knot theory. For example, the q-multisum Φ (q) occurs as the “0-limit” of J (K;q) (see Theorem K N 2 in [5]). Garoufalidis and Lˆe have also obtained an explicit formula (see Theorem 3 in [5]) for the “1-limit” of J (K;q). Finally, do tails exist (in some appropriate sense) for generalizations N of J (K;q) (see [7], [11]–[13])? N The paper is organized as follows. In Section 2, we recall the necessary background from [10]. In Section 3, we prove Theorem 1.1. 4 PAULBEIRNEANDROBERTOSBURN 2. Preliminaries We first recall six q-series identities (see (2.1)–(2.3), Lemma 2.1, (4.3) and the proof of (4.1) in [10]). Namely, ∞ tn 1 = , (2.1) X (q) (t) n ∞ n=0 ∞ (−1)ntnqn(n−1)/2 = (t) , (2.2) ∞ X (q) n n=0 ∞ qn2+An 1 = (2.3) X (q) (q) (q) n n+A ∞ n=0 for any integer A, (−1)nqm2+m+mn+n(n2+1) = h , (2.4) X (q) (q) 4 m n m,n≥0 (−1)l+nq3l(l2+1)+m2+m+n(n2+1)+2lm+ln+mn = h (2.5) X (q) (q) (q) 5 l m n l,m,n≥0 and n−1 n−2 k k n−1k−1 qna(a2+1)−a+akP=1ck 1 nP−2 Pk ijq12kP=1(cid:0)jP=1ij(cid:1)(cid:0)1+jP=1ij(cid:1)+kP=2jP=1ckij (−1)na = (−1)k=1j=1 X n−1 (q) X n−2 n−2 ∞ a≥0 (q)akQ=1(q)a+ck i1,...,in−2≥0 kQ=1(q)ik kQ=1(q)ck+Pk ij j=1 (2.6) for any n > 2 and integers c . k Let K be an alternating knot with c crossings and T its associated Tait graph. The reduced K Tait graph T′ is obtained from T by replacing every set of two edges that connect the same K K two vertices by a single edge. The tail Φ (q) is given by K Φ (q) = (q)c S (q) (2.7) K ∞ K where S (q) is an explicitly constructed q-multisum (see pages 261–264 in [10]). Now, by K Theorem2in[2],ifT′ isthesameasT′ fortwoalternatingknotsK andL,thenΦ (q) = Φ (q). K L K L Thus, by comparing the reduced Tait graphs for those knots in Table 1 of [10] and Tables 1 and 2 above, it suffices to verify the conjectural identities in the following cases: 8 , 8 , −9 , 9 , 7 13 5 14 −9 , −9 , −9 , 9 , 10 , −10 , 10 , 10 , 10 , 10 , 10 , 10 . Note that Corollary 2 in [5] 17 20 27 31 5 8 10 15 19 26 28 44 is false as stated since T′ ∼= T′ , but Φ (q)6= Φ (q). 86 924 86 924 The strategy for proving Theorem 1.1 is now as follows. For each of the 16 cases, we first compute S (q) using the methods from [10]. We then employ (2.1)–(2.6) to reduce this q- K multisum to (1.1) or one of the following key identities proven in [10]: q-SERIES AND TAILS OF COLORED JONES POLYNOMIALS 5 S (q) := (−1)a qa(5a2+3)+ab+ac+ad+ae+bc+cd+de+b+c+d+e = 1 h , (2.8) 51 X (q) (q) (q) (q) (q) (q) (q) (q) (q) (q)5 5 a b c d e a+b a+c a+d a+e ∞ a,b,c,d,e≥0 S (q) := (−1)e q2f2+f+e(3e2+1)+ab+af+bc+bf+cd+ce+cf+de+a+b+c+d = 1 h , 62 X (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q)5 4 a b c d e f a+f b+f c+e c+f d+e ∞ a,b,c,d,e,f≥0 (2.9) S (q) := (−1)a qa(7a2+5)+ab+ac+ad+ae+af+ag+bc+cd+de+ef+fg+b+c+d+e+f+g 71 X (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) a b c d e f g a+b a+c a+d a+e a+f a+g a,b,c,d,e,f,g≥0 1 = h , (q)7 7 ∞ (2.10) q2f2+f+2g2+g+ab+ag+bc+bg+cd+cf+cg+de+df+ef+a+b+c+d+e S (q):= 74 X (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) a b c d e f g a+g b+g c+f c+g d+f e+f a,b,c,d,e,f,g≥0 (2.11) 1 = h2, (q)7 4 ∞ q3e2+e+3f2+f+3g2+g+ab+ad+ae+af+bf+cd+cg+de+dg+a+b+c S (q):= (−1)e+f+g 2 2 2 2 2 2 77 X (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) a b c d e f g a+e d+e a+f b+f c+g a,b,c,d,e,f,g≥0 qd × (q) d+g 1 = , (q)4 ∞ (2.12) S (q):= (−1)bq3a2+2a+b(3b2+1)+ad+ae+af+ag+ah+bc+bd+cd+de+ef+fg+gh+c+d+e+f 82 X (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) a b c d e f g h b+c b+d a+d a+e a+f a,b,c,d,e,f,g,h≥0 qg+h × (q) (q) a+g a+h 1 = h (q)7 6 ∞ (2.13) and 6 PAULBEIRNEANDROBERTOSBURN S (q):= (−1)gqg(5g2+3)+h(2h+1)+ab+ah+bc+bh+cd+cg+ch+de+dg+ef+eg+fg+a+b+c+d −84 X (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) a b c d e f g h a+h b+h c+g c+h d+g a,b,c,d,e,f,g,h≥0 qe+f × (q) (q) e+g f+g 1 = h h . (q)8 4 5 ∞ (2.14) 3. Proof of Theorem 1.1 Proof of Theorem 1.1. We give full details for 8 , −9 and −10 . As the remaining cases are 7 5 8 handled similarly, we sketch their proofs. For Φ (q), it suffices to prove 87 S (q) := (−1)h+i qi(5i2+3)+h(3h2+1)+g2+ab+ag+ah+bc+bh+bi+cd+ci+de+di+ei+a+b+c 87 X (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) a b c d e g h i a+g a+h b+h b+i c+i a,b,c,d,e,g,h,i≥0 qd+e × (q) (q) d+i e+i 1 = h . (q)7 5 ∞ (3.1) We now have S (q)= 1 (−1)h+i qi(5i2+3)+h(3h2+1)+ab+ah+bc+bh+bi+cd+ci+de+di+ei+a+b+c 87 (q) X (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) ∞ a b c d e h i a+h b+h b+i c+i d+i a,b,c,d,e,h,i≥0 qd+e × (q) e+i (evaluate the g-sum with (2.3)) = 1 (−1)h+i qi(5i2+3)+h(h2+1)+ab+ah+bc+bi+cd+ci+de+di+ei+a+b+c+d+e (q)2 X (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) ∞ a b c d e h i b+h b+i c+i d+i e+i a,b,c,d,e,h,i≥0 (apply (2.6) to the h-sum with n = 3) = 1 (−1)i qi(5i2+3)+bc+bi+cd+ci+de+di+ei+b+c+d+e (q)2 X (q) (q) (q) (q) (q) (q) (q) (q) (q) ∞ b c d e i b+i c+i d+i e+i b,c,d,e,i≥0 (evaluate the a-sum with (2.1), simplify, then use (2.2) for the h-sum). Thus, (3.1) then follows from (2.8) after letting i → a. For Φ (q), it suffices to prove 813 q-SERIES AND TAILS OF COLORED JONES POLYNOMIALS 7 qg(3g+1)+(3h+1)+i(2i+1)+af+ag+ci+cd+de+di+ef+eh+ei S (q) := (−1)g+h 2 2 813 X (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) a c d e f g h i a+g c+i d+i e+i e+h a,c,d,e,f,g,h,i≥0 qfh+fg+a+c+d+e+f × (q) (q) f+h f+g 1 = h . (q)6 4 ∞ (3.2) Apply (2.6) with n = 3 to the g-sum, (2.1) to the a-sum, then simplify and (2.2) to the g-sum to obtain S (q) = 1 (−1)h qh(3h2+1)+i(2i+1)+ci+cd+de+di+ef+eh+ei+fh+c+d+e+f . 813 (q) X (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) ∞ c d e f h i c+i d+i e+i e+h f+h c,d,e,f,h,i≥0 Thus, (3.2) then follows from (2.9) upon (c,d,e,f,h,i) → (a,b,c,d,e,f). For Φ (q), it suffices to prove −95 qh(2h+1)+j(3j+2)+ab+ag+ah+aj+bc+bh+ch+de+dj+ef+ej+fg+fj+gj+a+b+c S (q) := −95 X (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) a b c d e f g h j a+h a+j b+h c+h d+j a,b,c,d,e,f,g,h,j≥0 qd+e+f+g × (q) (q) (q) e+j f+j g+j 1 = h h . (q)9 4 6 ∞ (3.3) We now have 1 qs2+s+st+t(t2+1)+bs+c(s+t)+j(3j+2)+ab+ag+aj+bc+de+dj+ef+ej+fg S (q) = −95 (q) X (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) ∞ a b c d e f g j s t a+j d+j s+a a,b,c,d,e,f,g,j,s,t≥0 qfj+gj+a+b+c+d+e+f+g × (q) (q) (q) (q) s+t+b e+j f+j g+j (apply (2.6) to the h-sum with n = 4) 1 qs2+s+st+t(t2+1)+bs+j(3j+2)+ab+ag+aj+de+dj+ef+ej+fg+fj+gj+a+b+d+e = (q)2 X (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) ∞ a b d e f g j s t a+j d+j e+j f+j g+j a,b,d,e,f,g,j,s,t≥0 qf+g × (q) s+a (evaluate the c-sum with (2.1) and simplify) 8 PAULBEIRNEANDROBERTOSBURN 1 qj(3j+2)+ag+aj+de+dj+ef+ej+fg+fj+gj+a+d+e+f+g = h (q)3 4 X (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) ∞ a d e f f g j a+j d+j e+j f+j g+j a,d,e,g,j≥0 (evaluate the b-sum with (2.1), simplify, then apply (2.4) to the st-sum). Now, (3.3) follows from first applying (2.3) the b-sum in (1.1), then letting (a,d,e,f,g,j) → (c,g,f,e,d,a). For Φ (q), it suffices to prove 914 S (q):= (−1)h+i+j qh(3h2+1)+i(3i2+1)+j(5j2+3)+ab+ag+ah+ai+bc+bi+bj+cd+cj+de+dj+ej 914 X (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) a b c d e g h i j a+h a+i b+i b+j a,b,c,d,e,g,h,i,j≥0 qgh+a+b+c+d+e+g × (q) (q) (q) (q) c+j d+j e+j g+h 1 = h . (q)7 5 ∞ (3.4) First, apply (2.6) with n = 3 to the h-sum, (2.1) to the g-sum, simplify and (2.2) to the h-sum, then (2.6) with n = 3 to the i-sum, (2.1) to the a-sum, simplify and (2.2) to the i-sum to obtain S (q)= 1 (−1)j qj(5j2+3)+bc+bj+cd+cj+de+dj+ej+b+c+d+e . 914 (q)2 X (q) (q) (q) (q) (q) (q) (q) (q) (q) ∞ b c d e j b+j c+j d+j e+j b,c,d,e,j Thus, (3.4) follows from (2.8) after j → a. For Φ (q), it suffices to prove −917 S (q) := (−1)h+i+j qh(3h2+1)+i(5i2+3)+j(3j2+1)+ab+aj+bc+bi+bj+cd+ci+de+di+ef −917 X (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) a b c d e f h i j a+j b+i b+j c+i a,b,c,d,e,f,h,i,j≥0 qeh+ei+fh+a+b+c+d+e+f × (q) (q) (q) (q) d+i e+h e+i f+h 1 = h . (q)7 5 ∞ (3.5) First, apply (2.6) with n= 3 to the h-sum, (2.1) to the f-sum, simplify and (2.3) to the h-sum, then (2.6) with n = 3 to the j-sum, (2.1) to the a-sum, simplify and (2.3) to the j-sum to get S (q) = 1 (−1)i qi(5i2+3)+bc+bi+cd+ci+de+di+ei+b+c+d+e . −917 (q)2 X (q) (q) (q) (q) (q) (q) (q) (q) (q) ∞ b c d e i b+i c+i d+i e+i b,c,d,e,i≥0 Thus, (3.5) follows from (2.8) after i → a. For Φ (q), it suffices to prove −920 q-SERIES AND TAILS OF COLORED JONES POLYNOMIALS 9 S (q) := (−1)hqh(3h2+1)+i(2i+1)+j(2j+1)+ab+ah+bc+bh+bi+cd+ci+de+di+dj+ef+ej −920 X (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) a b c d e f h i j a+h b+h b+i c+i a,b,c,d,e,f,h,i,j≥0 qfj+a+b+c+d+e+f × (q) (q) (q) (q) d+i d+j e+j f+j 1 = h2. (q)8 4 ∞ (3.6) Apply (2.6) with n = 3 to the h-sum, (2.1) to the a-sum and simplify, then (2.2) to the h-sum to obtain 1 qi(2i+1)+j(2j+1)+bc+bi+cd+ci+de+di+dj+ef+ej+fj+b+c+d+e+f S (q) = . −920 (q) X (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) ∞ b c d e f i j b+i c+i d+i d+j e+j f+j b,c,d,e,f,i,j≥0 Now, (3.6) follows from (2.11) after the substitution (b,c,d,e,f,i,j) → (a,b,c,d,e,g,f). For Φ (q), it suffices to prove −927 S (q) := (−1)f+h qf(3f2+1)+g(2g+1)+h(3h2+1)+i2+ab+af+bc+bf+bg+cd+cg+de+dg+dh −927 X (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) a b c d e f g h i a+f b+f b+g c+g a,b,c,d,e,f,g,h,i≥0 qeh+ei+a+b+c+d+e × (q) (q) (q) (q) d+g d+h e+h e+i 1 = h . (q)7 4 ∞ (3.7) Apply (2.3) to the i-sum, (2.6) with n = 3 to the f-sum, (2.1) to the a-sum, simplify and (2.2) to the f-sum to obtain S = 1 (−1)h qg(2g+1)+h(3h2+1)+bc+bg+cd+cg+de+dg+dh+eh+b+c+d+e . −927 (q)2 X (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) ∞ b c d e g h b+g c+g d+g d+h e+h b,c,d,e,g,h≥0 Now, (3.7) follows from (2.9) after letting (b,c,d,e,g,h) → (a,b,c,d,f,e). For Φ (q), it suffices to prove 931 10 PAULBEIRNEANDROBERTOSBURN qg(3g+1)+h(3h+1)+i(3i+1)+j(3j+1)+ab+af+ag+aj+bc+bg+bh S (q):= (−1)g+h+i+j 2 2 2 2 931 X (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) a b c e f g h i j a+g a+j b+g a,b,c,e,f,g,h,i,j≥0 qch+ef+ei+fi+fj+a+b+c+e+f × (q) (q) (q) (q) (q) b+h c+h e+i f+i f+j 1 = . (q)5 ∞ (3.8) Apply (2.6) with n = 3 to the h-sum, (2.1) to the c-sum, simplify and (2.2) to the h-sum to obtain S (q) = 1 (−1)g+i+j qg(3g2+1)+i(3i2+1)+j(3j2+1)+ab+af+ag+aj+bg+ef+ei+fi+fj+a 931 (q) X (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) ∞ a b e f g i j a+g a+j b+g e+i f+i a,b,e,f,g,i,j≥0 qb+e+f × . (q) f+j Now, (3.8) follows from (2.12) after letting (a,b,e,f,g,i,j) → (a,b,c,d,f,g,e). For Φ (q), it suffices to prove 105 S (q):= (−1)j+kqj(3j2+1)+k(7k2+5)+i2+ab+ai+aj+bc+bj+bk+cd+ck+de+dk+ef+ek+fg 105 X (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) a b c d e f g i j k a+i a+j b+j a,b,c,d,e,f,g,i,j,k≥0 qfk+gk+a+b+c+d+e+f+g × (q) (q) (q) (q) (q) (q) b+k c+k d+k e+k f+k g+k 1 = h . (q)9 7 ∞ (3.9) Apply (2.3) to the i-sum, (2.6) with n = 3 to the j-sum, (2.1) to the a-sum and simplify, then (2.2) to the j-sum to obtain S (q) = 1 (−1)k qk(7k2+5)+bc+bk+cd+ck+de+dk+ef+ek+fg+fk+gk+b+c+d+e+f 105 (q)2 X (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) (q) ∞ b c d e f g k b+k c+k d+k e+k f+k b,c,d,e,f,g,k≥0 qg × . (q) g+k Now, (3.9) follows from (2.10) after letting k → a. For Φ (q), it suffices to prove −108

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.