ebook img

q-Schur algebras and Quantized Enveloping Algebras [Ph.D. thesis] PDF

131 Pages·1996·0.7 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview q-Schur algebras and Quantized Enveloping Algebras [Ph.D. thesis]

Contents Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 x1: Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1 The Quantized Enveloping Algebra . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Schur Algebras and q-Schur Algebras . . . . . . . . . . . . . . . . . . . . . . 12 1.3 Coxeter Systems and their Properties . . . . . . . . . . . . . . . . . . . . . . 15 1.4 Combinatorics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 x2: A New Setting for the q-Schur Algebra . . . . . . . . . . . . . . . . . 24 2.1 The classical Schur algebra as a subspace of tensor matrix space . . . . . . . . . . 24 2.2 The v-Schur algebra as a subspace of tensor matrix space . . . . . . . . . . . . . 28 2.3 On certain subalgebras of the q-Schur algebra . . . . . . . . . . . . . . . . . . . 44 x3: A Straightening Formula for Quantized Codeterminants . . . . . . . . . 47 3.0 Conventions and Review of x2 . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.1 Hecke algebras and codeterminants of dominant shape . . . . . . . . . . . . . . 48 3.2 The Quantized Straightening Formula . . . . . . . . . . . . . . . . . . . . . . 55 x4: q-Schur Algebras as Quotients of Quantized Enveloping Algebras . . . . . 63 4.0 Conventions and Review of x3 . . . . . . . . . . . . . . . . . . . . . . . . . 63 (cid:0) 0 + 4.1 The restriction of (cid:18) to U , U and U . . . . . . . . . . . . . . . . . . . . . 64 4.2 Codeterminants, explicit surjectivity and ker ((cid:18)) . . . . . . . . . . . . . . . . . 73 1 x5: q-Weyl modules and q-codeterminants . . . . . . . . . . . . . . . . . 78 5.1 Quantized Left Weyl Modules . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.2 Quantized Right Weyl Modules . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.3 q-Codeterminants and q-Weyl modules . . . . . . . . . . . . . . . . . . . . . . 90 5.4 Remarkson the case n<r . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 x6: Cellular inverse limits of q-Schur algebras . . . . . . . . . . . . . . . 96 6.1 The strong straightening result . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.2 Cellular algebras and quasi-hereditary algebras . . . . . . . . . . . . . . . . . . 99 6.3 Epimorphismsbetween v-Schur algebras . . . . . . . . . . . . . . . . . . . . 105 6.4 Cellular inverse limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 2 Acknowledgements Above all, I would like to thank my supervisor, Professor R.W. Carter, for introducing me to suchaninterestingarea,forteachingmetowritegoodmathematics,andformakingsomanyhelpful commentsand corrections to earlier drafts of this thesis. I alsothank the Mathematics Institute for providingan excellent workingatmosphere,without which I would not have been able to make so much progress so quickly. I would like to thank all myfriends and colleagues there, especiallyJohn Cockerton and Robert Marsh, for manyinteresting discussions. I am grateful to Professor S. Donkin, Professor R.C. King and Professor G.I. Lehrer for their interest in my research and for their helpful and encouraging comments during the preparation of this thesis. Finally, I would like to thank the Engineering and Physical Sciences Research Council for funding my research. Declaration The material in Chapter 1 is expository. The material in Chapters 2, 3, 4, 5 and 6 is to the best of my knowledge original,except where otherwise indicated. 3 Summary The main aimof this thesis is to investigate the relationship between the quantized enveloping algebra U(gln) (corresponding to the Lie algebra gln) and the q-Schur algebra, Sq(n;r). It was shown in [BLM] that there is a surjective algebra homomorphism (cid:0)1 (cid:18)r :U(gln)!Z[v;v ](cid:10)Sq(n;r); 2 where q =v . x1 is devoted to background material. In x2, we show explicitly how to embed the q-Schur algebra into the r-th tensor power of a suitablen(cid:2)n matrixring. Thisgives a product rulefor the q-Schur algebra withsimilarproperties toSchur'sproductrulefortheunquantizedSchuralgebra. Acorollaryofthisisthatwecandescribe, in x2.3, a certain family of subalgebras of the q-Schur algebra. In x3, we use the product ruleof x2 to prove a q-analogue of Woodcock's straightening formula for codeterminants. Thisgives a basis of \standard quantized codeterminants"for Sq(n;r) which is heavily used in chapters 4, 5 and 6. In x4, we use the theory of quantized codeterminants developed in x3 to describe preimages under the homomorphism(cid:18)r and the kernel of (cid:18)r. In x5, we use the resultsof x3 and x4 to linkthe representation theories of U(gln) and Sq(n;r). We also obtain a simpli(cid:12)ed proof of Dipper and James' \semistandard basis theorem" for q-Weyl modules of q-Schur algebras. In x6, we show how to make the set of q-Schur algebras Sq(n;r) (for a (cid:12)xed n) into an inverse system. Weprovethattheresultinginverselimit,Sbv(n),isacellularalgebrawhichiscloselyrelated to the quantized enveloping algebra U(sln) and Lusztig's algebra U_. 4 1. Preliminaries Inthischapter,weintroducethenecessarybackgroundmaterialfortherestofthisthesis. Most of this material is expository. In x1.1, we introduce the quantized enveloping algebra, and in x1.2, we introducethe Schuralgebras andq-Schur algebras. In x1.3, westate somewellknown properties of Coxeter systems,which we use to analyse symmetricgroups and their associated Hecke algebras. Finally, x1.4 is devoted to combinatoric de(cid:12)nitions. The symbols q and v always represent indeterminates unless stated otherwise, and are related 2 (cid:0)1 via v =q. Throughout the thesis, we denote Z[v;v ], the ring of Laurent polynomialsover Z,by A. x1.1 The Quantized Enveloping Algebra 1.1.1 De(cid:12)nition of the Quantized Enveloping Algebra We now de(cid:12)ne the algebra U(gln) over Q(v) as in [D4]. It is generated by elements (cid:0)1 Ei;Fi;Kj;Kj ; (where 1(cid:20)i(cid:20)n(cid:0)1 and 1(cid:20)j (cid:20)n) subject to the following relations: KiKj =KjKi; (1) (cid:0)1 KiKi =1; (2) + (cid:15) (i;j) KiEj =v EjKi; (3) (cid:15)(cid:0)(i;j) KiFj =v FjKi; (4) (cid:0)1 (cid:0)1 KiKi+1(cid:0)Ki Ki+1 EiFj (cid:0)FjEi =(cid:14)ij v(cid:0)v(cid:0)1 ; (5) EiEj =EjEi if ji(cid:0)jj>1; (6) FiFj =FjFi if ji(cid:0)jj>1; (7) 2 (cid:0)1 2 EiEj (cid:0)(v+v )EiEjEi+EjEi =0 if ji(cid:0)jj=1; (8) 2 (cid:0)1 2 FjFi(cid:0)(v+v )FjFiFj +FiFj =0 if ji(cid:0)jj=1: (9) Here, ( 1 if j =i; + (cid:15) (i;j):= (cid:0)1 if j =i(cid:0)1; 0 otherwise; 5 and ( 1 if j =i(cid:0)1; (cid:0) (cid:15) (i;j):= (cid:0)1 if j =i; 0 otherwise. The algebra is also equipped with two coassociative comultiplications. One, (cid:1) : U ! U (cid:10)U, has the following e(cid:11)ect on the generators: (cid:0)1 (cid:1)(Ei)=1(cid:10)Ei+Ei(cid:10)KiKi+1; (cid:0)1 (cid:1)(Fi)=Ki Ki+1(cid:10)Fi+Fi(cid:10)1; (cid:1)(Ki)=Ki(cid:10)Ki; (cid:0)1 (cid:0)1 (cid:0)1 (cid:1)(Ki )=Ki (cid:10)Ki : 0 The other map, (cid:1) :U !U (cid:10)U, is de(cid:12)ned by 0 (cid:0)1 (cid:1)(Ei)=KiKi+1(cid:10)Ei+Ei(cid:10)1; 0 (cid:0)1 (cid:1)(Fi)=1(cid:10)Fi+Fi(cid:10)Ki Ki+1; 0 (cid:1)(Ki)=Ki(cid:10)Ki; 0 (cid:0)1 (cid:0)1 (cid:0)1 (cid:1)(Ki )=Ki (cid:10)Ki : 0 We will not be using (cid:1) in this thesis, but we include it for completeness because many authors prefer it to (cid:1). 0 The maps (cid:1) and (cid:1) are also algebra homomorphisms. This means that if M is a U-module, (cid:10)r we can make M into a U-module via r(cid:0)1 u:(m1(cid:10)(cid:1)(cid:1)(cid:1)(cid:10)mr)=(cid:1) (u)(m1(cid:10)(cid:1)(cid:1)(cid:1)(cid:10)mr): r(cid:0)1 This is well-de(cid:12)ned because (cid:1) is coassociative. Note that (cid:1) is an algebra homomorphismU ! (cid:10)r r(cid:0)1 U . It may be checked by a simple inductive argument that the e(cid:11)ect of (cid:1) on the generators (cid:0)1 Ei;Fi;Ki;Ki is as follows: r(cid:0)1 (cid:0)1 (cid:1) (Ei)=(1(cid:10)(cid:1)(cid:1)(cid:1)(cid:10)1(cid:10)Ei)+(1(cid:10)(cid:1)(cid:1)(cid:1)(cid:10)1(cid:10)Ei(cid:10)KiKi+1)+(cid:1)(cid:1)(cid:1) (cid:0)1 (cid:0)1 (cid:1)(cid:1)(cid:1)+(Ei(cid:10)KiKi+1(cid:10)(cid:1)(cid:1)(cid:1)(cid:10)KiKi+1); r(cid:0)1 (cid:0)1 (cid:0)1 (cid:0)1 (cid:0)1 (cid:1) (Fi)=(Ki Ki+1(cid:10)(cid:1)(cid:1)(cid:1)(cid:10)Ki Ki+1(cid:10)Fi)+(Ki Ki+1(cid:10)(cid:1)(cid:1)(cid:1)(cid:10)Ki Ki+1(cid:10)Fi(cid:10)1)+(cid:1)(cid:1)(cid:1) (cid:1)(cid:1)(cid:1)+(Fi(cid:10)1(cid:10)(cid:1)(cid:1)(cid:1)(cid:10)1); r(cid:0)1 (cid:1) (Ki)=Ki(cid:10)(cid:1)(cid:1)(cid:1)(cid:10)Ki; r(cid:0)1 (cid:0)1 (cid:0)1 (cid:0)1 (cid:1) (Ki )=Ki (cid:10)(cid:1)(cid:1)(cid:1)(cid:10)Ki : We introduce certain elements of Q(v), as follows. 6 We willde(cid:12)ne the quantum integer [a], where a is a nonnegative integer, to be a (cid:0)a v (cid:0)v : v(cid:0)v(cid:0)1 We also de(cid:12)ne quantized factorials by Ya [a]!:= [k]; k=1 and quantized binomial coe(cid:14)cients by h i a [a]! := : b [b]![a(cid:0)b]! Note that when v is specialised to 1, these become ordinary integers, factorials and binomial coe(cid:14)cients, respectively. (c) If X is an element of U and c is a nonnegative integer, then the divided power X is de(cid:12)ned to be c X : [c]! Sometimes,itisconvenienttoworkwithanintegralformofU(gln),whichisdenotedbyUA(gln), or (when the context is clear) by U. This is an A-algebra which is generated by the elements of U(gln) given by (c) Ei (1(cid:20)i<n; c2N) (10) (c) Fi (1(cid:20)i<n; c2N) (11) Kj (1(cid:20)j (cid:20)n) (12) (cid:20) (cid:21) Kj;0 (1(cid:20)j (cid:20)n; t2N): (13) t Here, (cid:20)Ki;c(cid:21) Yt Kivc(cid:0)s+1(cid:0)Ki(cid:0)1v(cid:0)c+s(cid:0)1 := : t vs(cid:0)v(cid:0)s s=1 (cid:0) TheA-algebraUA isgenerated by theelementsin(11) subject torelationsofform(7) and (9). 0 The A-algebra UA is generated by the elements in (12) and (13), subject to relations of form (1) and (2). + TheA-algebraUA isgeneratedbytheelementsin(10),subjecttorelationsofform(6)and(8). It is known (see [L3, x3.2]) that U (cid:24)=U(cid:0)(cid:10)U0(cid:10)U+ as A-modules. A good reference for the general theory of quantized enveloping algebras is [L3]. 7 1.1.2 Root systems and root vectors We now state without proof some properties of root systems. The general theory of these can be found in any good text on Lie algebras. Associated with the Lie algebra sln, or (in our case) gln, is a certain collection of vectors in (n(cid:0)1)-dimensional Euclidean space known as a root system of type An(cid:0)1. It is well-known that this root system contains an independent subset (the fundamental roots) f(cid:11)1;:::;(cid:11)n(cid:0)1g such that any other root is of form (cid:11)=(cid:11)i+(cid:11)i+1+(cid:1)(cid:1)(cid:1)+(cid:11)j (1(cid:20)i(cid:20)j <n) or of form (cid:11)=(cid:0)(cid:11)i(cid:0)(cid:11)i+1(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:11)j (1(cid:20)i(cid:20)j <n): In the (cid:12)rst case, the root (cid:11) is called positive, and in the second case, the root (cid:11) is called negative. + (cid:0) Denote these two sets of roots by (cid:8) and (cid:8) , respectively. We willalso write (cid:11)(i;j+1) to denote the positive root (cid:11)i+(cid:11)i+1+(cid:1)(cid:1)(cid:1)+(cid:11)j. We de(cid:12)ne the height, h((cid:11)), of (cid:11)=(cid:11)(i;j) to be j(cid:0)i. Following [L2, x2.2], we de(cid:12)ne the function g((cid:11)(i;j)) =j(cid:0)1. (The function g (cid:12)nds the index of the highest fundamental root occurring with nonzero coe(cid:14)cient in its argument.) + + The bilinear map ( ; ):(cid:8) (cid:2)(cid:8) !Zis de(cid:12)ned to satisfy ( 2 if i=j; ((cid:11)i;(cid:11)j):= (cid:0)1 if ji(cid:0)jj=1; 0 otherwise. + Associated to each positive root (cid:11) in gln, we de(cid:12)ne an element E(cid:11) in U and an element F(cid:11) (cid:0) in U . Let (cid:11) = (cid:11)i +(cid:11)i+1 +(cid:1)(cid:1)(cid:1)+(cid:11)j be a (typical) positive root in type An(cid:0)1, where the (cid:11)i are, as usual,the fundamentalroots. If i=j, we de(cid:12)ne E(cid:11) :=Ei and F(cid:11) :=Fi. If i6=j, welet (cid:13) =(cid:11)(cid:0)(cid:11)j and (cid:12) =(cid:11)(cid:0)(cid:11)i and de(cid:12)ne, by induction on j(cid:0)i, (cid:0)1 E(cid:11) :=E(cid:13)Ej (cid:0)v EjE(cid:13) and (cid:0)1 F(cid:11) :=F(cid:12)Fi(cid:0)v FiF(cid:12): We also order the elements E(cid:11) and the elements F(cid:11) as follows. TheelementE(cid:11)(i;j) precedes(orappearstotheleftof)theelementE(cid:11)(k;l) ifi>kor(i=kand j >l). We denote by (cid:12)N;:::;(cid:12)2;(cid:12)1 the sequence of positiveroots correspondingto thissequence of root vectors. 8 TheelementF(cid:11)(i;j) precedes(orappearsto theleftof) theelementF(cid:11)(k;l) ifj <l or(j =l and i<k). We denote by (cid:13)N;:::;(cid:13)2;(cid:13)1 the sequence of positiveroots correspondingto this sequence of root vectors. Example Let n=4. In this case, the positive roots are (cid:11)1; (cid:11)1+(cid:11)2; (cid:11)1+(cid:11)2+(cid:11)3; (cid:11)2; (cid:11)2+(cid:11)3; (cid:11)3: The ordering on the elements E(cid:11) corresponds to the ordering (cid:11)(3;4)<(cid:11)(2;4)<(cid:11)(2;3)<(cid:11)(1;4)<(cid:11)(1;3)<(cid:11)(1;2) on the positive roots, and the ordering on the elements F(cid:11) corresponds to the ordering (cid:11)(1;2)<(cid:11)(1;3)<(cid:11)(2;3)<(cid:11)(1;4)<(cid:11)(2;4)<(cid:11)(3;4) on the positive roots. 1.1.3 Basis theorems for Quantized Enveloping Algebras In this section, we work with the integral form U = UA. The aim is to de(cid:12)ne a Poincar(cid:19)e- Birkho(cid:11)-Witt type basis for U by using the elements E(cid:11) and F(cid:11) which were introduced in x1.1.2. Lemma 1.1 + + + + + De(cid:12)ne : U ! U by (Ei) := En(cid:0)i. Then extends naturally to an A-algebra + + + isomorphism :U !U . (cid:0) (cid:0) (cid:0) (cid:0) (cid:0) De(cid:12)ne : U ! U by (Fi) := Fn(cid:0)i. Then extends naturally to an A-algebra (cid:0) (cid:0) (cid:0) isomorphism :U !U . Proof + The map is self-inverse, and preserves the relations (6) and (8). (cid:0) The map is self-inverse, and preserves the relations (7) and (9). Lemma 1.2 (cid:0) (cid:0) + (cid:0) There is an A-algebra isomorphism! :U !U given by ! (Fi)=Ei. + + (cid:0) + There is an A-algebra isomorphism! :U !U given by ! (Ei)=Fi. (cid:0) + Proof Since ! and ! are mutual inverses, and they are clearly surjective, it su(cid:14)ces to check that each one preserves the relations. This is immediate from the nature of the relations (6), (7), (8) and (9). 9 Lemma 1.3 + (cid:0) (i) (! (F(cid:11)(i;j)))=E(cid:11)(n+1(cid:0)j;n+1(cid:0)i). + (cid:0) (ii) F(cid:11) precedes F(cid:12) in the ordering on the elements F(cid:13) if and only if (! (F(cid:11))) precedes + (cid:0) (! (F(cid:12))) in the ordering on the E(cid:13). Proof We (cid:12)rst prove (i), using induction on h = h((cid:11)). The case h = 1 follows from the de(cid:12)nition of (cid:0) ! . (cid:0)1 For the general case, F(cid:11)(i;j) = F(cid:11)(i+1;j)F(cid:11)(i;i+1) (cid:0) v F(cid:11)(i;i+1)F(cid:11)(i+1;j), by de(cid:12)nition. By induction, we have + (cid:0) (cid:0)1 (! (F(cid:11)(i;j)))=E(cid:11)(n(cid:0)j+1;n(cid:0)i)E(cid:11)(n(cid:0)i;n(cid:0)i+1)(cid:0)v E(cid:11)(n(cid:0)i;n(cid:0)i+1)E(cid:11)(n(cid:0)i;n(cid:0)j+1); + (cid:0) because ! is an algebra isomorphism. The result now follows from the de(cid:12)ntion of E(cid:11)(n(cid:0)j+1;n(cid:0)i+1): The proof of (ii) is immediatefrom the claimof (i) and the de(cid:12)nitions of the two orders. De(cid:12)nition De(cid:12)ne V(cid:0) to be the A-algebra given by generators fFb(cid:11)(c) :(cid:11)2(cid:8)+;c2Z(cid:21)0g (where F(cid:11)(0) =1) and relations (cid:20) (cid:21) Fb(cid:11)(c)Fb(cid:11)(b) = c+b Fb(cid:11)(c+b); (14) c Fb(cid:11)(ci)Fb(cid:11)(b) =Fb(cid:11)(b)Fb(cid:11)(ci) if ((cid:11);(cid:11)i)=0 and i<g((cid:11)); (15) X Fb(cid:11)(b)Fb(cid:11)(c0) = v(cid:0)j(cid:0)(c(cid:0)j)(b(cid:0)j)Fb(cid:11)(c0(cid:0)j)Fb(cid:11)(j+)(cid:11)0Fb(cid:11)(b(cid:0)j); (16) j(cid:21)0;j(cid:20)c;j(cid:20)b vcbFb(cid:11)(c0)Fb(cid:11)(b+)(cid:11)0 =Fb(cid:11)(b+)(cid:11)0Fb(cid:11)(c0); (17) vcbFb(cid:11)(b+)(cid:11)0Fb(cid:11)(c) =Fb(cid:11)(c)Fb(cid:11)(b+)(cid:11)0: (18) 0 The relations (16), (17) and (18) are each subject to the restrictions that ((cid:11);(cid:11)) = (cid:0)1 and 0 0 0 either ((cid:11) =(cid:11)i and i<g((cid:11))) or (h((cid:11))=h((cid:11))+1 and g((cid:11))=g((cid:11))). 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.