ebook img

Pythagorean Triples, Complex Numbers, Abelian Groups and PDF

121 Pages·2015·0.55 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Pythagorean Triples, Complex Numbers, Abelian Groups and

Pythagorean Triples, Complex Numbers, Abelian Groups and Prime Numbers AmnonYekutieli DepartmentofMathematics BenGurionUniversity email:[email protected] Notesavailableat http://www.math.bgu.ac.il/~amyekut/lectures written7June2015 AmnonYekutieli(BGU) PythagoreanTriples 1/28 c b a 1.PythagoreanTriples 1. PythagoreanTriples APythagoreantripleisatriple(a,b,c)ofpositiveintegers,satisfying (1.1) a2+b2 = c2. Thereasonforthenameis,ofcourse,becausethesearethesidesofaright angledtriangle: AmnonYekutieli(BGU) PythagoreanTriples 2/28 c b a 1.PythagoreanTriples 1. PythagoreanTriples APythagoreantripleisatriple(a,b,c)ofpositiveintegers,satisfying (1.1) a2+b2 = c2. Thereasonforthenameis,ofcourse,becausethesearethesidesofaright angledtriangle: AmnonYekutieli(BGU) PythagoreanTriples 2/28 c b a 1.PythagoreanTriples 1. PythagoreanTriples APythagoreantripleisatriple(a,b,c)ofpositiveintegers,satisfying (1.1) a2+b2 = c2. Thereasonforthenameis,ofcourse,becausethesearethesidesofaright angledtriangle: AmnonYekutieli(BGU) PythagoreanTriples 2/28 1.PythagoreanTriples 1. PythagoreanTriples APythagoreantripleisatriple(a,b,c)ofpositiveintegers,satisfying (1.1) a2+b2 = c2. Thereasonforthenameis,ofcourse,becausethesearethesidesofaright angledtriangle: c b a AmnonYekutieli(BGU) PythagoreanTriples 2/28 1.PythagoreanTriples Wesaythatthetriples(a,b,c)and(a(cid:48),b(cid:48),c(cid:48))areequivalentifthe correspondingtrianglesaresimilar. Thismeansthatthereisapositivenumberr,suchthat (a(cid:48),b(cid:48),c(cid:48)) = (ra,rb,rc) or (a(cid:48),b(cid:48),c(cid:48)) = (rb,ra,rc). Clearlyr isrational. Wesaythatthetriple(a,b,c)isreducedifthegreatestcommondivisorof thesenumbersis1. Thetripleiscalledorderedifa ≤ b. Itiseasytoseethatanytriple(a,b,c)isequivalenttoexactlyonereduced orderedtriple(a(cid:48),b(cid:48),c(cid:48)). Exercise1.2. Let(a,b,c)beareducedorderedtriple. Thenc isodd,and a < b. AmnonYekutieli(BGU) PythagoreanTriples 3/28 1.PythagoreanTriples Wesaythatthetriples(a,b,c)and(a(cid:48),b(cid:48),c(cid:48))areequivalentifthe correspondingtrianglesaresimilar. Thismeansthatthereisapositivenumberr,suchthat (a(cid:48),b(cid:48),c(cid:48)) = (ra,rb,rc) or (a(cid:48),b(cid:48),c(cid:48)) = (rb,ra,rc). Clearlyr isrational. Wesaythatthetriple(a,b,c)isreducedifthegreatestcommondivisorof thesenumbersis1. Thetripleiscalledorderedifa ≤ b. Itiseasytoseethatanytriple(a,b,c)isequivalenttoexactlyonereduced orderedtriple(a(cid:48),b(cid:48),c(cid:48)). Exercise1.2. Let(a,b,c)beareducedorderedtriple. Thenc isodd,and a < b. AmnonYekutieli(BGU) PythagoreanTriples 3/28 1.PythagoreanTriples Wesaythatthetriples(a,b,c)and(a(cid:48),b(cid:48),c(cid:48))areequivalentifthe correspondingtrianglesaresimilar. Thismeansthatthereisapositivenumberr,suchthat (a(cid:48),b(cid:48),c(cid:48)) = (ra,rb,rc) or (a(cid:48),b(cid:48),c(cid:48)) = (rb,ra,rc). Clearlyr isrational. Wesaythatthetriple(a,b,c)isreducedifthegreatestcommondivisorof thesenumbersis1. Thetripleiscalledorderedifa ≤ b. Itiseasytoseethatanytriple(a,b,c)isequivalenttoexactlyonereduced orderedtriple(a(cid:48),b(cid:48),c(cid:48)). Exercise1.2. Let(a,b,c)beareducedorderedtriple. Thenc isodd,and a < b. AmnonYekutieli(BGU) PythagoreanTriples 3/28 1.PythagoreanTriples Wesaythatthetriples(a,b,c)and(a(cid:48),b(cid:48),c(cid:48))areequivalentifthe correspondingtrianglesaresimilar. Thismeansthatthereisapositivenumberr,suchthat (a(cid:48),b(cid:48),c(cid:48)) = (ra,rb,rc) or (a(cid:48),b(cid:48),c(cid:48)) = (rb,ra,rc). Clearlyr isrational. Wesaythatthetriple(a,b,c)isreducedifthegreatestcommondivisorof thesenumbersis1. Thetripleiscalledorderedifa ≤ b. Itiseasytoseethatanytriple(a,b,c)isequivalenttoexactlyonereduced orderedtriple(a(cid:48),b(cid:48),c(cid:48)). Exercise1.2. Let(a,b,c)beareducedorderedtriple. Thenc isodd,and a < b. AmnonYekutieli(BGU) PythagoreanTriples 3/28 1.PythagoreanTriples Wesaythatthetriples(a,b,c)and(a(cid:48),b(cid:48),c(cid:48))areequivalentifthe correspondingtrianglesaresimilar. Thismeansthatthereisapositivenumberr,suchthat (a(cid:48),b(cid:48),c(cid:48)) = (ra,rb,rc) or (a(cid:48),b(cid:48),c(cid:48)) = (rb,ra,rc). Clearlyr isrational. Wesaythatthetriple(a,b,c)isreducedifthegreatestcommondivisorof thesenumbersis1. Thetripleiscalledorderedifa ≤ b. Itiseasytoseethatanytriple(a,b,c)isequivalenttoexactlyonereduced orderedtriple(a(cid:48),b(cid:48),c(cid:48)). Exercise1.2. Let(a,b,c)beareducedorderedtriple. Thenc isodd,and a < b. AmnonYekutieli(BGU) PythagoreanTriples 3/28

Description:
Pythagorean Triples, Complex Numbers, Abelian Groups and Prime Numbers Amnon Yekutieli Department of Mathematics Ben Gurion University email:[email protected]
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.