Putnam and Beyond Ra˘zvan Gelca Titu Andreescu Putnam and Beyond Ra˘zvanGelca TituAndreescu TexasTechUniversity UniversityofTexasatDallas DepartmentofMathematicsandStatistics SchoolofNaturalSciencesandMathematics MA229 2601NorthFloydRoad Lubbock,TX79409 Richardson,TX75080 USA USA [email protected] [email protected] CoverdesignbyMaryBurgess. LibraryofCongressControlNumber:2007923582 ISBN-13:978-0-387-25765-5 e-ISBN-13:978-0-387-68445-1 Printedonacid-freepaper. (cid:1)c2007SpringerScience+BusinessMedia,LLC All rights reserved. This work may not be translated or copied in whole or in part without the written permission ofthepublisher(SpringerScience+BusinessMediaLLC,233SpringStreet,NewYork,NY10013,USA)andthe author,exceptforbriefexcerptsinconnectionwithreviewsorscholarlyanalysis.Useinconnectionwithanyformof informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdevelopedisforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarksandsimilarterms,eveniftheyarenotidentified assuch,isnottobetakenasanexpressionofopinionastowhetherornottheyaresubjecttoproprietaryrights. 9 8 7 6 5 4 3 2 1 springer.com (JLS/HP) Lifeisgoodforonlytwothings,discovering mathematicsandteachingmathematics. SiméonPoisson Contents Preface ............................................................ xi AStudyGuide ...................................................... xv 1 MethodsofProof ................................................ 1 1.1 ArgumentbyContradiction ...................................... 1 1.2 MathematicalInduction ......................................... 3 1.3 ThePigeonholePrinciple........................................ 11 1.4 OrderedSetsandExtremalElements .............................. 14 1.5 InvariantsandSemi-Invariants ................................... 19 2 Algebra ........................................................ 25 2.1 IdentitiesandInequalities ....................................... 25 2.1.1 AlgebraicIdentities....................................... 25 2.1.2 x2 ≥ 0.................................................. 28 2.1.3 TheCauchy–SchwarzInequality............................ 32 2.1.4 TheTriangleInequality ................................... 36 2.1.5 TheArithmeticMean–GeometricMeanInequality............. 39 2.1.6 Sturm’sPrinciple......................................... 42 2.1.7 OtherInequalities ........................................ 45 2.2 Polynomials................................................... 45 2.2.1 AWarmup .............................................. 45 2.2.2 Viète’sRelations ......................................... 47 2.2.3 TheDerivativeofaPolynomial............................. 52 2.2.4 TheLocationoftheZerosofaPolynomial ................... 54 2.2.5 IrreduciblePolynomials ................................... 56 2.2.6 ChebyshevPolynomials ................................... 58 viii Contents 2.3 LinearAlgebra................................................. 61 2.3.1 OperationswithMatrices .................................. 61 2.3.2 Determinants ............................................ 63 2.3.3 TheInverseofaMatrix ................................... 69 2.3.4 SystemsofLinearEquations ............................... 73 2.3.5 VectorSpaces,LinearCombinationsofVectors,Bases ......... 77 2.3.6 LinearTransformations,Eigenvalues,Eigenvectors ............ 79 2.3.7 TheCayley–HamiltonandPerron–FrobeniusTheorems ........ 83 2.4 AbstractAlgebra ............................................... 87 2.4.1 BinaryOperations........................................ 87 2.4.2 Groups ................................................. 90 2.4.3 Rings .................................................. 95 3 RealAnalysis ................................................... 97 3.1 SequencesandSeries ........................................... 98 3.1.1 SearchforaPattern....................................... 98 3.1.2 LinearRecursiveSequences ............................... 100 3.1.3 LimitsofSequences ...................................... 104 3.1.4 MoreAboutLimitsofSequences ........................... 111 3.1.5 Series .................................................. 117 3.1.6 TelescopicSeriesandProducts ............................. 120 3.2 Continuity,Derivatives,andIntegrals ............................. 125 3.2.1 LimitsofFunctions....................................... 125 3.2.2 ContinuousFunctions..................................... 128 3.2.3 TheIntermediateValueProperty............................ 131 3.2.4 DerivativesandTheirApplications.......................... 134 3.2.5 TheMeanValueTheorem ................................. 138 3.2.6 ConvexFunctions ........................................ 142 3.2.7 IndefiniteIntegrals ....................................... 147 3.2.8 DefiniteIntegrals......................................... 150 3.2.9 RiemannSums .......................................... 153 3.2.10 InequalitiesforIntegrals................................... 156 3.2.11 TaylorandFourierSeries .................................. 159 3.3 MultivariableDifferentialandIntegralCalculus..................... 167 3.3.1 PartialDerivativesandTheirApplications.................... 167 3.3.2 MultivariableIntegrals .................................... 174 3.3.3 TheManyVersionsofStokes’Theorem...................... 179 3.4 EquationswithFunctionsasUnknowns............................ 185 3.4.1 FunctionalEquations ..................................... 185 3.4.2 OrdinaryDifferentialEquationsoftheFirstOrder ............. 191 Contents ix 3.4.3 OrdinaryDifferentialEquationsofHigherOrder .............. 195 3.4.4 ProblemsSolvedwithTechniquesofDifferentialEquations ..... 198 4 GeometryandTrigonometry ...................................... 201 4.1 Geometry..................................................... 201 4.1.1 Vectors ................................................. 201 4.1.2 TheCoordinateGeometryofLinesandCircles................ 206 4.1.3 ConicsandOtherCurvesinthePlane........................ 212 4.1.4 CoordinateGeometryinThreeandMoreDimensions .......... 219 4.1.5 IntegralsinGeometry..................................... 225 4.1.6 OtherGeometryProblems ................................. 228 4.2 Trigonometry.................................................. 231 4.2.1 TrigonometricIdentities ................................... 231 4.2.2 Euler’sFormula.......................................... 235 4.2.3 TrigonometricSubstitutions................................ 238 4.2.4 TelescopicSumsandProductsinTrigonometry ............... 242 5 NumberTheory ................................................. 245 5.1 Integer-ValuedSequencesandFunctions........................... 245 5.1.1 SomeGeneralProblems................................... 245 5.1.2 Fermat’sInfiniteDescentPrinciple.......................... 248 5.1.3 TheGreatestIntegerFunction .............................. 250 5.2 Arithmetic .................................................... 253 5.2.1 FactorizationandDivisibility .............................. 253 5.2.2 PrimeNumbers .......................................... 254 5.2.3 ModularArithmetic....................................... 258 5.2.4 Fermat’sLittleTheorem................................... 260 5.2.5 Wilson’sTheorem........................................ 264 5.2.6 Euler’sTotientFunction................................... 265 5.2.7 TheChineseRemainderTheorem........................... 268 5.3 DiophantineEquations.......................................... 270 5.3.1 LinearDiophantineEquations .............................. 270 5.3.2 TheEquationofPythagoras................................ 274 5.3.3 Pell’sEquation .......................................... 276 5.3.4 OtherDiophantineEquations............................... 279 6 CombinatoricsandProbability .................................... 281 6.1 CombinatorialArgumentsinSetTheoryandGeometry............... 281 6.1.1 SetTheoryandCombinatoricsofSets ....................... 281 6.1.2 Permutations ............................................ 283 6.1.3 CombinatorialGeometry .................................. 286 x Contents 6.1.4 Euler’sFormulaforPlanarGraphs .......................... 289 6.1.5 RamseyTheory .......................................... 291 6.2 BinomialCoefficientsandCountingMethods....................... 294 6.2.1 CombinatorialIdentities................................... 294 6.2.2 GeneratingFunctions ..................................... 298 6.2.3 CountingStrategies....................................... 302 6.2.4 TheInclusion–ExclusionPrinciple .......................... 308 6.3 Probability .................................................... 310 6.3.1 EquallyLikelyCases ..................................... 310 6.3.2 EstablishingRelationsAmongProbabilities .................. 314 6.3.3 GeometricProbabilities ................................... 318 Solutions MethodsofProof.................................................... 323 Algebra............................................................ 359 RealAnalysis ....................................................... 459 GeometryandTrigonometry.......................................... 603 NumberTheory..................................................... 673 CombinatoricsandProbability ........................................ 727 IndexofNotation ................................................... 791 Index.............................................................. 795 Preface Aproblembookatthecollegelevel. AstudyguideforthePutnamcompetition. Abridge betweenhighschoolproblemsolvingandmathematicalresearch. Afriendlyintroduction tofundamentalconceptsandresults. Allthesedesiresgavelifetothepagesthatfollow. TheWilliamLowellPutnamMathematicalCompetitionisthemostprestigiousmath- ematics competition at the undergraduate level in the world. Historically, this annual event began in 1938, following a suggestion of William Lowell Putnam, who realized themeritsofanintellectualintercollegiatecompetition. Nowadays,over2500students frommorethan300collegesanduniversitiesintheUnitedStatesandCanadatakepart in it. The name Putnam has become synonymous with excellence in undergraduate mathematics. UsingthePutnamcompetitionasasymbol, welaythefoundationsofhighermath- ematics from a unitary, problem-based perspective. As such, Putnam and Beyond is a journey through the world of college mathematics, providing a link between the stim- ulating problems of the high school years and the demanding problems of scientific investigation. Itgivesmotivatedstudentsachancetolearnconceptsandacquirestrate- gies,honetheirskillsandtesttheirknowledge,seekconnections,anddiscoverrealworld applications. Itsultimategoalistobuildtheappropriatebackgroundforgraduatestudies, whetherinmathematicsorappliedsciences. Ourpointofviewisthatinmathematicsitismoreimportanttounderstandwhythan toknowhow. Becauseofthisweinsistonproofsandreasoning. Afterall,mathematics means, as the Romanian mathematician Grigore Moisil once said, “correct reasoning.’’ Thewaysofmathematicalthinkingareuniversalintoday’sscience. Putnam and Beyond targets primarily Putnam training sessions, problem-solving seminars,andmathclubsatthecollegelevel,fillingagapintheundergraduatecurriculum. But it does more than that. Written in the structured manner of a textbook, but with strongemphasisonproblemsandindividualwork,itcoverswhatwethinkarethemost importanttopicsandtechniquesinundergraduatemathematics,broughttogetherwithin the confines of a single book in order to strengthen one’s belief in the unitary nature of xii Preface mathematics. Itisassumedthatthereaderpossessesamoderatebackground,familiarity withthesubject,andacertainlevelofsophistication,forwhatwecoverreachesbeyond theusualtextbook,bothindifficultyandindepth. Whenorganizingthematerial,wewere inspired by Georgia O’Keeffe’s words: “Details are confusing. It is only by selection, byelimination,byemphasisthatwegetattherealmeaningofthings.’’ The book can be used to enhance the teaching of any undergraduate mathematics course, since it broadens the database of problems for courses in real analysis, linear algebra, trigonometry, analytical geometry, differential equations, number theory, com- binatorics,andprobability. Moreover,itcanbeusedbygraduatestudentsandeducators aliketoexpandtheirmathematicalhorizons,formanyconceptsofmoreadvancedmath- ematicscanbefoundheredisguisedinelementarylanguage,suchastheGauss–Bonnet theorem, the linear propagation of errors in quantum mechanics, knot invariants, or the Heisenberg group. The way of thinking nurtured in this book opens the door for true scientificinvestigation. As for the problems, they are in the spirit of mathematics competitions. Recall that the Putnam competition has two parts, each consisting of six problems, numberedA1 throughA6,andB1throughB6. Itiscustomarytolisttheproblemsinincreasingorder ofdifficulty,withA1andB1theeasiest,andA6andB6thehardest. Wekeepthesame ascending pattern but span a range fromA0 to B7. This means that we start with some inviting problems below the difficulty of the test, then move forward into the depths of mathematics. As sources of problems and ideas we used the Putnam exam itself, the Interna- tionalCompetitioninMathematicsforUniversityStudents,theInternationalMathemat- ical Olympiad, national contests from the United States of America, Romania, Rus- sia, China, India, Bulgaria, mathematics journals such as the American Mathemati- cal Monthly, Mathematics Magazine, Revista Matematica˘ din Timis¸oara (Timis¸oara Mathematics Gazette), Gazeta Matematica˘ (Mathematics Gazette, Bucharest), Kvant (Quantum),Ko˝zépiskolaiMatematikaiLapok(MathematicalMagazineforHighSchools (Budapest)), and a very rich collection of Romanian publications. Many problems are original contributions of the authors. Whenever possible, we give the historical back- groundandindicatethesourceandauthoroftheproblem. Someofoursourcesarehard tofind;thisiswhyweofferyoutheirmostbeautifulproblems. Othersourcesarewidely circulated, and by selecting some of their most representative problems we bring them toyourattention. Hereisabriefdescriptionofthecontentsofthebook. Thefirstchapterisintroductory, giving an overview of methods widely used in proofs. The other five chapters reflect areasofmathematics: algebra,realanalysis,geometryandtrigonometry,numbertheory, combinatoricsandprobability. Theemphasisisplacedonthefirsttwoofthesechapters, sincetheyoccupythelargestpartoftheundergraduatecurriculum. Withineachchapter,problemsareclusteredbytopic. Wealwaysofferabrieftheoret- icalbackgroundillustratedbyoneormoredetailedexamples. Severalproblemsareleft
Description: