sensors Article Pulsed Eddy Current Sensing for Critical Pipe Condition Assessment NalikaUlapane* ID,AlenAlempijevic ID,TeresaVidalCalleja ID andJaimeVallsMiro ID CentreforAutonomousSystems(CB11.09.300),FacultyofEngineeringandInformationTechnology, UniversityofTechnologySydney,15Broadway,Ultimo,NSW2007,Australia; [email protected](A.A.);[email protected](T.V.C.); [email protected](J.V.M.) * Correspondence:[email protected]@gmail.com; Tel.:+61-2-9514-1219or+61-4-0451-2441 Received:1August2017;Accepted:20September2017;Published:26September2017 Abstract: PulsedEddyCurrent(PEC)sensingisusedforNon-DestructiveEvaluation(NDE)ofthe structuralintegrityofmetallicstructuresintheaircraft,railway,oilandgassectors. Urbanwater utilities also have extensive large ferromagnetic structures in the form of critical pressure pipe systemsmadeofgreycastiron,ductilecastironandmildsteel. Theassociatedmaterialproperties renderNDEofthesepipesbymeansofelectromagneticsensinganecessity. InrecentyearsPEC sensinghasestablisheditselfasastate-of-the-artNDEtechniqueinthecriticalwaterpipesector. ThispaperpresentsadvancementstoPECinspectioninviewofthespecificinformationdemanded fromwaterutilitiesalongwiththechallengesencounteredinthissector. Operatingprinciplesofthe sensorarchitecturesuitableforapplicationoncriticalpipesarepresentedwiththeassociatedsensor designandcalibrationstrategy. AGaussianprocess-basedapproachisappliedtomodelafunctional relationshipbetweenaPECsignalfeatureandcriticalpipewallthickness. Acasestudydemonstrates thesensor’sbehaviouronagreycastironpipeanddiscussestheimplicationsoftheobservedresults andchallengesrelatingtothisapplication. Keywords: criticalpipes;eddycurrents;Gaussianprocess;NDE;NDT;PEC;sensors 1. Introduction PulsedEddyCurrent(PEC)sensingisconsideredasthemostversatilememberofthefamily of Eddy Current (EC) Non-Destructive Evaluation (NDE) techniques. PEC signals are known to possessabroadfrequencyspectrumenablingthemtopenetrateintodifferentdepthsandtoprovide informationaboutthegeometryofthetestpiecebeingevaluated[1]. ThiscapabilityhasmadePEC sensingapopularNDEtechniqueforferromagneticmaterialinspectioninresearchandcommercial domains[2–5]. Criticalpipesarelargediameter(usually≥300mm)pressurizedpipesownedand managedbywaterutilitiesthroughouttheworldforthepurposeofdistributingconsumablefresh watertocustomers. Globally,mosturbanwaterutilitieshaveextensivelarge,criticalpressurepipe systems,partsofwhichhavebeeninserviceforoveracentury[6–8]. Sincetheseagedpipesarefound intheformofthreeferromagneticmaterials,namelygreycastiron,ductilecastironandmildsteel, NDEofthesepipesbymeansofelectromagneticsensingisanecessity. WaterutilitiesundertakeNDE toascertainthestructuralintegrityoftheirassetsandmakecrucialdecisionsonpipemaintenance andrenewaltopreventcostlyandcatastrophicpipefailures. Motivatedbythisneedanapproachto effectivelyemployPECsensingforNDEofcriticalpipesispresentedandtheunderlyingchallenges relatedtotheapplicationarediscussed. The work in [9] provides a comprehensive review of state-of-the-art inspection technologies usedforconditionassessmentofpipes. Providedthatwaterutilitiesdrivetowardsestimatingstress Sensors2017,17,2208;doi:10.3390/s17102208 www.mdpi.com/journal/sensors Sensors2017,17,2208 2of25 concentrationonpipewallsinordertopredictfailures,thecriticalpieceofinputinformationrequired forthatisadensemapoftheremainingpipewallthickness[10]. PECsensingthereforehashigher preferenceforthisapplicationasitiscapableofdirectlymeasuringtheremainingthicknessofhealthy materialandproducingdensemapswhileexhibitinglowsensitivitytotuberculationformedonaged criticalpipesintheformofcorrosionandgraphitisation. Inaddition,itisnotsensitivetoinsulated protectionpresentintheformofinternalcementliningshouldsensingbeundertakenfrominsidethe pipe[11–13]. Sincecriticalpipematerialsareferromagnetic,recentworksinvestigatingPECsensing offerromagneticmaterialthickness[2–5]closelyrelatetotheworkofthispaper. Acommonalityin thoseworksisusingtheconcentrically-woundexciter-detectorcoil-basedPECsensorarchitecture, whichhasbeendeemedtohavebettersensitivityforferromagneticmaterialthicknessquantification. Althoughthereareothersensorarchitectureshavingmagneticsensorsforsignalreceptionasin[14–18], theyhavetypicallybeenusedonnon-ferromagneticmaterials. Recentworkin[19,20]hasreported preliminaryworkexplicitlyonferromagneticpipeinspection. Theworkin[19]introducesanovel sensor design integrated with a distributed EC inspection system, while [20] presents a study of applyingpulsedremotefieldeddycurrentsforinternalinspectionofpipes. Thosetechniquesfocuson defectdetectionandhaveproducedpromisingresults. However,theyrequirefurtherworktobeable todeliverquantifiedremainingwallthicknessintheformofdensemaps,whichisthecriticalpieceof informationdemandedbywaterutilities. Derivingfromtheworkof[2–5],thispaperexploitstheexciter-detectorcoil-basedPECsensor architecturetoinspectcriticalpipesbyestimatingremainingwallthicknessusingatimedomainsignal decayrate-basedfeature. Thesignalfeatureisderivedfromtheanalyticalmodelproposedin[3]for PECsignalsresultingfromthisarchitecture. Although[2–5]haveanalysedPECsensorperformance onstandardsteelssuchasQ235andA3undercontrolledexperiments, theirworkonapplications relatingtocriticalpipeinspectionislacking. Work specifically related to critical pipe inspection can be found in [11,21]. A study of the designofaPECsensorthatachievessignalsensitivitytogreycastironthicknessispresentedin[11]. However,in[11],thesensor’sperformancewasnotevaluatedonactualpipes. Ontheotherhand,[21] studiestheuseoftheGaussianProcess(GP)[22]toinfergreycastironpipewallthicknessbyexploiting multiplefeaturesextractedbyaveragingregionsofthesignalsproducedbyacommercialPECsensor. Theapplicabilityoftheresultsin[21]islimitedtothespecificcommercialsensor. Althoughthese tworeferencesformthebasisforthispaper,themaincontributionhereisthein-depthstudyofgeneral PECsensingappliedtocriticalpipeassessment. Morespecifically,itstudiestheelectricalandmagnetic propertiesofacriticalpipematerial,andbasedonthequantificationofthesepropertiesitproposesthe sensordesign,sensorexcitation,signalacquisitionandcalibrationstrategiessuitableforsuchmaterials. Finally,itproposesaGP-basedapproachtomodelthefunctionalrelationshipbetweenaPECsignal featureandmaterialthickness,whichissuitableforcriticalpipewallthicknessprediction. The outline of this paper is as follows: Section 2 contains the theoretical formulation, which presents the PEC sensor operating principles with respect to ferromagnetic material thickness estimation,andtheGP-basedapproachtomodelthefunctionalrelationshipbetweenasignalfeature andpipewallthickness. Section3presentsPECsensordesignprincipleswithparticularreference to grey cast iron pipe assessment. Section 4 presents the experimental evaluation of the designed sensor’sperformance. Acasestudydepictingthesensor’sperformancewhenusingGPtoestimate wallthicknessofagreycastironpipeisalsopresented. Section5concludesthispaperbydiscussing theimplicationsofobservedresultsandsummarisingviablepracticesandchallengesforexploiting PECsensingforstate-of-the-artconditionassessmentofcriticalpipes. Sensors2017,17,2208 3of25 2. TheoreticalFormulation 2.1. Exciter-DetectorCoil-BasedPECSensorOperatingPrinciple The typical exciter-detector sensor architecture sensitive to ferromagnetic material thickness, asexploitedinthispaperandintheferromagneticmaterialthicknessquantification-relatedworks[2–5], iscomposedoftwoconcentrically-wound,aircored,conductivecircularcoils,asshowninFigure1. Rarer, though also practical, is the use of concentrically-wound rectangular coils [12,21]. In both configurations,onecoilbehavesastheexciter,whiletheotheractsasthedetector,whichcapturesthe signal. TheexcitercoilisexcitedwithavoltagepulsethatcantheoreticallybemodelledasaHeaviside stepfunction. Thepulsedexcitationcausesarapidchangeinthesurroundingmagneticfield;thisin turninduceseddycurrentsinthetestpiecebeingassessed. Theneteffectofinducededdycurrents andtheexcitationpulseinducesauniquetime-varyingvoltageinthedetectorcoil. Itisthisdetector, thecoilvoltage,thatisidentifiedasthePECsignal,whichcarriesinformationaboutthetestpiece. ThetypicalshapeofsuchaPECsignalisanexponentialdecayasshowninFigure2. Figure1.Cross-sectionalviewofatypicalexciter-detectorcoil-basedPECsensor. Figure2.ThetypicalshapeofaPECsignal:inducedvoltageinthedetectorcoil. As done in [3], the decaying part of the time (t) domain PEC signal V(t) can be modelled as aninfinitesummationofexponentialtermsasshowninEquation(1)wheretheb andc termsare i i constantscontaininginformationaboutthepropertiesofthesensorandtheferromagnetictestpiece. ∞ ∑ V(t) = b exp(−c t) (1) i i i=1 Allc ≥0,c (cid:54)= c wheni (cid:54)= jfori,j ∈N. i i j Toderivethesignalfeatureusedinthispaper,weexpressEquation(1)initslogarithmicformas showninEquation(2). (cid:34) ∞ (cid:35) ∑ ln[V(t)] =ln b exp(−c t) (2) i i i=1 Sensors2017,17,2208 4of25 Sinceallc ≥0,Equation(1)becomesasumofexponentialdecays. Therefore,weconsiderthe i laterstageofthesignal(i.e.,t >>0)andapplythepropertiesofthelogsumofexponentials[23]to Equation(2). Fortheregiont >>0,Equation(2)canhencebereducedtothedominantexponentialas: (cid:12) (cid:12) ln[V(t)](cid:12) ≈ln[b1exp(−c1t)] (3) (cid:12) t>>0 wherec isthedominanttimeconstantandb isthecorrespondingcoefficientoftheexponentialterm. 1 1 Expandingtheright-handsideofEquation(3)resultsin: (cid:12) (cid:12) ln[V(t)](cid:12) ≈ −c1t+ln[b1]. (4) (cid:12) t>>0 WenowdefinethesignalfeatureβbytakingthederivativeofEquation(4). (cid:12) dln[V(t)](cid:12) (cid:12) ≈ −c1 (5) dt (cid:12) t>>0 1 β = (6) c 1 Equation(4)suggeststhatthebehaviourofthelaterstageofaPECsignaltakenonaferromagnetic materialshouldapproximateastraightlinewithanegativegradientwhenexpressedinitslogarithmic form. Numerical simulations and experimental results in the subsequent sections validate this approximation. The feature β is the reciprocal of the absolute gradient of the logarithmic signal regionbehavingasastraightline. Inreturn,βextractsthedominanttimeconstantc ,whichdictates 1 the later stage of the signal V(t) expressed in Equation (1). Previous work [4] has noted that this dominanttimeconstantbehavesasc ∝1/(µσd2)whereµ,σandd,whicharemagneticpermeability, 1 electricalconductivityandthicknessoftheinspectedferromagneticmaterialunderthedomainof influenceofthesensor, respectively. Sincethisbehaviourhasbeenreportedonflatplatesandthe focusofthisworkispipewalls,whicharecurved,thebehavioursforlargediameterpipesandthe correspondingsensorgeometryareverifiedthroughFiniteElementAnalysis(FEA)in[12],andithas beenobservedthatthecriticalpipesurfacesbehavethesamewayasflatplatesduetothecurvature beinglowwithrespecttosensordimensions. Thus,βbehavesasβ ∝ µσd2forlargediameterpipes. Therefore,whencalibratedtoaparticularmaterial,βreducestoafunctiondependentonthickness alone,makingitpossibletousetheinverseofthisfunctionforthicknessquantification. Furthermore, simulated and experimental results in this paper suggest that β has a desirable quality of having lowsensitivitytolift-off,making βasuitableoptionforcriticalpipeinspectionapplicationswhere unknownlift-offisaprevalentchallenge. Thenon-linearityofβisparticularlyprevalentinlowerand higherendsofthicknessduetolimitationsinhowhighorhowlowtheexcitationstrengthdeliveredby sensordrivingelectronicscanbe,suggestingthatanon-linear,potentiallynon-parametricmodelling techniquewouldbesuitablefortheapplication. 2.2. GaussianProcessFormulation As established in Section 2.1, once calibrated for a material (i.e., for a particular material having properties µ and σ), thickness d reduces to a non-linear function dependent on β alone. Therefore,estimatingthicknessfromPECsensorsignalscanbeformulatedasanon-linearregression problem. Gaussianprocessmodelsareapowerfultooltosolvesuchregressionproblems. Given the set of β values extracted from PEC signals B = [β ,β ,...,β ]T, where each β is 1 2 m i associated with a noisy value of thickness d in the set D = [d ,d ,...,d ]T, the aim is to find i 1 2 m the underlying function that maps β values to actual thickness. GP is used to learn the thickness Sensors2017,17,2208 5of25 distributionandtopredictthisdistributionforarbitrarypointsβ∗. Inthispaper,thetrainingdataset [B,D]isproducedthroughnumericalsimulationasexplainedinSection4.4. ToapplytheGPframeworktothisregressionproblem,akernelK(B,B)whoseelementsaregiven byk = k(β ,β )hastobeselected. Afterevaluatinganumberofcommonlyusedkernels,thesquared i,j i j exponentialkernelwaschosenforthisworkasitwasfoundtobeeffective. Thiskernelisgivenby: (cid:26) (cid:27) 1 k(β ,β ) = α2exp − (β −β )2 . (7) i j 2η2 i j whereαandηarehyper-parameters. Thesehyper-parameterstogetherwithnoisestandarddeviation σ arelearnedfromthetrainingdata,byminimizingthenegativelogmarginallikelihood: n 1 1 m −logp(D|B,θ) = DTΣ−1D+ log|Σ|+ log(2π) (8) 2 2 2 wherethecovariancefunctionΣisgivenby: Σ = K(B,B)+σ2I (9) n withrespecttoθ = {α,η,σ },where I isthecorrespondingidentitymatrix. n Oncehyper-parametersθ arelearnedfromthetrainingdata,arbitrarypoints β∗ areprovided asinputtotheGPmodeltopredictthecorrespondingthicknessestimateasaGaussianprobability distributionwhosemeanisµ∗ andstandarddeviationisσ∗. µ∗ andσ∗ arecalculatedasfollows: d d d d µ∗ = K(β∗,B)Σ−1D; (10) d (σ∗)2 = α2+σ2−K(β∗,B)Σ−1K(B,β∗). (11) d n 3. ASensorDesignExample Thissectiondetailstheprocedurefordesigninganexciter-detectorcoil-basedPECsensorsuitable forcriticalpipeinspection. Thedesignexampletargetsgreycastironpipeassessment;themaximum thicknessexpectedonpipeswas20mm. Theprocedureincludesthefollowingsteps: (1)identifying electricalandmagneticpropertiesofthepipematerialtobeinspected; (2)numericallysimulating asensortodeterminesuitablesensordimensions;and(3)sensorfabrication. Thefollowingsubsections detailthethreesub-stepsofthedesignprocedure. 3.1. IdentificationofMaterialElectricalandMagneticProperties Since β becomes a function in the form of β ≈ g(µ,σ,d) and predominantly depends on the electromagnetic properties and material thickness, it is in fact heavily independent of sensor dimensions. Practicallimitationsinsensorexcitationandsignalacquisitionelectronicsdictatethose dimensions, and they should be decided upon before fabrication in order to achieve sufficient penetration depth in the ferromagnetic material (grey cast iron in this case). Sensor dimensions aredeterminedinthispaperthroughnumericalsimulation,andtoachievethat,knowingµandσ beforehandisnecessary. Measuring electrical and magnetic properties was done by extracting a coupon (hot tapping [24–26] is a viable option for coupon extraction from on-site critical pipes), making a specimen (dimensions = 3 mm × 2 mm × 2 mm) through Electric Discharge Machining (EDM) wirecutting[27–29](usingcoolingliquid)andfeedingittoaPhysicalPropertyMeasurementSystem (PPMS) [30–32]. An average representation of properties is derived by performing measurements onmultiplespecimens. Atotalof27specimensmadefromcouponsextractedfromequally-spaced locations along a 1 km-long grey cast iron pipeline, with details provided in Table 1, were tested Sensors2017,17,2208 6of25 bymeasuringtheirmagnetizationcurve(i.e., BHcurvewhereBismagneticfluxdensityandHis magneticfiledintensity)andelectricalconductivity. Table1.Specificationsofthegreycastironpipeusedfortheexperimentalworkofthispaper;adapted from[7]. Location VeronaStreet,StrathfieldNSW2135,Australia YearInstalled 1922 NominalPipeDiameter 600mm InternalPipeDiameter 579mm–590mm(withcementlining) ExternalPipeDiameter 662mm–666mm NominalWallThickness 27mm Material Pitcastiron InternalLiner Cement(installedin1964) CementLiningThickness 9.5mm–16.5mm PipeLengths 3.6m Jointing Leadrunjoints(withtar-soakedhempsealants) TotallengthinUseforResearch Approximately1km Sinceelectricalconductivityisknowntovarysignificantlywithtemperature,thedependencewas capturedbymeasuringtheconductivityofeachspecimenacrossarange(220K–350K).Theaverage representationforconductivity(i.e.,2.16×106S/m,approximately)wasobtainedbycomputingthe meanovertemperature(between283Kand313Ktoresembleatmospherictemperaturevariation in Sydney Australia), as well as specimens. Although the average value of σ was considered for simulation,itwasnotablethatσ ofcastironisconsiderablyvariable. ThiscanbeseeninFigure3, whichshowsahistogramofconductivitiesresultingfromallconductivityvalues(1097intotal)between temperatures283Kand313Kcapturedfromall27specimens. Thestandarddeviation(std)ofthis datasetwas0.261×106S/m,and94.8%ofthedatafellwithin±2standarddeviations.Suchavariation in conductivity creates a unique difficulty in calibrating PEC sensors for critical pipe assessment. ConductivitydatafromwhichthestatisticswerecalculatedareprovidedasSupplementaryMaterial. Significantvariationinmagneticpropertieswithinatmospherictemperatureconditionsanda correlation between electrical conductivity and magnetic permeability were not evident from the availabledata;thereforeamagnetizationcurveperspecimenwasmeasuredwhilemagnetizingand demagnetizing. Resultingcurveswereaveragedeventuallyacrosssamples. Figures4and5depict a magnetization curve and conductivity measurements performed on a particular grey cast iron specimen, respectively, and raw data are provided as Supplementary Material. A fine sampling resolutiontomeasurethemagnetizationcurveregioncoveringlowmagneticfieldsisrecommended in order to capture the typical non-linear behaviour present. A sampling interval of 10 A/m was usedwhenmagneticfieldintensity≤100A/m. Therelativepermeabilityvalueµ = 63calculated r fromthelowmagneticfieldregionofthemagnetizationcurveinFigure4(consideringthesensor excitationstrength,highmagneticfieldsarenotexpectedinsidethepipematerial)andtheaveraged conductivityvalue2.16×106 S/mwereusedtonumericallysimulateaPECsensoranddetermine suitabledimensionsfortheapplication,theprocessisdescribedinsubsequentSection3.2. Sensors2017,17,2208 7of25 Figure3.Histogramoftheelectricalconductivityofgreycastironfortemperaturesbetween283Kand 313Kcaptured. Figure4.Ameasuredmagnetizationcurveofaspecimentakenfromagreycastironpipesegment. Figure5.Temperaturevariationoftheelectricalconductivityofgreycastiron. 3.2. NumericalSimulationofthePECSensor Duetothesimplicityofmodelling,andthecommonuseforferromagneticmaterialthickness estimation[2,3,5],acircular-shapedPECsensorhavingconcentrically-woundaircoredcoilsasshown in the cross-section in Figure 1 was selected for this work. For a fixed excitation, the sensor size hasbeenobservedtobeadominantfactorinfluencingthesensor’spenetrationcapability(i.e.,the maximumthicknessofaparticularmaterialtowhichthesensorwillbesensitive)[16].Therefore,before fabrication,thesensorinteractionwithgreycastironwasnumericallysimulatedusingFEA.A2D Sensors2017,17,2208 8of25 axisymmetricmodelofthesensorplacedaboveagreycastiron(showninFigure6)wasdeveloped usingCOMSOLMultiphysics®. TheinputparametersrequiredforsimulationaredefinedinTable2. ThesimulationmodeloutputsthedetectorcoilvoltageV(t)asafunctionofmanyinputvariablesas showninEquation(12). V(t)iscalculatedusingthemagneticvectorpotential,whichisdeterminedby solvingthemagneticvectorpotentialequationshowninEquation(13)foranygivenlocationinthe (cid:126) (cid:126) model,where Aisthemagneticpotentialatanylocation,tistimeand J isthesourcecurrent. s V(t) = f(r ,r ,h ,lo ,n ,σ ,µ ,r ,r ,h ,lo ,n ,σ ,µ ,d,µ,σ,Z ,I ,t) (12) di do d d d d d ei eo e e e e e dl e (cid:126) ∂A ∇2A(cid:126) −µσ = −µ(cid:126)J . (13) s ∂t Figure 6. 2D axisymmetric model of the PEC sensor placed on a cast iron block (developed in COMSOLMultiphysics®). Table2.Parametersrequiredforsimulation. Symbol Description r Innerradiusofdetectorcoildomain di r Outerradiusofdetectorcoildomain do h Heightofdetectorcoildomain d lo Verticaloffsetofthedetectorcoil d n Numberofdetectorcoilturns d d Diameterofthedetectorcoilwire d σ Electricalconductivityofthedetectorcoil d µ Magneticpermeabilityofthedetectorcoil d r Innerradiusofexcitercoil ei reo Outerradiusofexcitercoil he Heightofexcitercoildomain loe Verticaloffsetoftheexcitercoil ne Numberofexcitationcoilturns de Diameteroftheexcitationcoilwire Re Resistanceoftheexcitationcoilwire σe Electricalconductivityoftheexcitercoil µe Magneticpermeabilityoftheexcitercoil d Platethickness σ Electricalconductivityofpipematerial µ Magneticpermeabilityofpipematerial Ie Amplitudeortheexcitationcurrentpulse Z Loadimpedanceconnectedtothedetectorcoil dl Sensors2017,17,2208 9of25 Tonarrowdownthesuitablesetofsensordimensions,theheightsofexciteranddetectorcoils (h andh )andverticaloffsetsofthetwocoils(lo andlo )arefixed. Copperwiresareusedtowind e d e d coils; thus, we use the standard permeability and conductivity of copper (µ , µ , σ and σ ) for e d e d simulation. Inaddition,roughestimatesofpermeability(µ)andelectricalconductivity(σ)ofgreycast ironarerequired. Table3showsthefixedparametersforsimulation. Aspertheestimatedvaluein Section3.1,theapproximatedelectricalconductivityusedforgreycastironwasσ =2.16×106S/m. Since the magnetic properties of grey cast iron are non-linear, the relative permeability value µ =63calculatedfromthelowmagneticfieldregionoftheexperimentally-measuredBHcurvein r Section3.1wasusedtorepresentµ. Theamplitudeoftheexcitationcurrentpulsewasalsoconsidered tobefixedat200mA.Thesensorexcitationcircuitwasdesignedtoproduceavoltagepulsehaving a10-Vamplitudeandcurrentamplitudeof200mA;thus,theexcitercoilresistancewasrequiredtobe R =50Ω. Duetoavailability,standardcopperwireofd = d =0.315mmdiameter(AWG28wire e e d class)waschosentowindbothexciteranddetectorcoils. AsdiscussedinSection3.3,thedetectorcoil outputisdirectlyconnectedtoaninstrumentationamplifierhavinghighinputimpedance. Thisresults intheeffectiveimpedance(Z )feltastheloadbythedetectorcoiltobehigh(indicativeof∞). dl Table3.Fixedparameters(constants)usedforsimulation. Symbol Value he =hd 10mm loe =lod 2mm de =dd 0.315mm σe =σd 5.998×107S/mforcoppercoils µe =µd 4π×10−7H/mforcoppercoils σ 2.16×106S/m µ µ=µrµ0,µr =63,µ0 =4π×10−7H/m Ie 200mA Re 50Ω Z ∞ dl Giventheconstraints,theobjectivewastoselectsuitableinnerandouterradiiofbothexciter anddetectorcoils(i.e.,r ,r ,r andr )alongwiththeirrespectivenumberofcoilturns(i.e.,n and ei eo di do e n )inordertohavecastironthicknesssensitivityfromabout5–20mm. Whileparameterselection d canbeformulatedasanoptimisationproblem,similartotheworkin[19]relatedtoadistributedEC inspectionsystem,solvingitforthiscasewouldrequiretime-consumingstochasticoptimisationdue toderivingclosed-formequationstoperformaquickerconvexoptimisationbeingdifficult. Therefore theparametersinTable4wereselectedthroughsimulationandexperimentallyvalidatedtoyield sufficientsensitivitytothicknesswithbothlowandhighlift-off,asshowninFigure7. Thelaterstage ofallsignalsinFigure7behavesasastraightlinewithanegativegradient;thisbehaviourisexpected aspertheformulationinEquation(4)andvalidatesthestraightlinebehaviourtheorizedinSection2.1. Raw data plotted in Figure 7 and the relevant COMSOL simulation model are provided with the SupplementaryMaterialforinterestedreaderstouseandwithwhichtoexperiment. Table4.EstimatedparametervaluesusedtofabricatethePECsensor. Symbol Value r 25mm di r 28mm do n 300 d r 50mm ei reo 57mm ne 600 Sensors2017,17,2208 10of25 Figure7. Numerically-simulatedsignalsbythe2Daxisymmetricmodelfordifferentgreycastiron thickness with and without lift-off (visualized as ln[V(t)]); sharp rising edges of signals are not discriminableinthemstimescaleandappeartobeoverlapping. Due to operational practicalities, water utilities are interested in robotic tools, which can autonomouslyinspectpipesinternally;adevelopmentrelatedtothepurposeispresentedin[13]. Asin thecasewiththepipeinTable1,criticalpipesusuallyhaveaninsulatedinternalprotection,typically madeofcement. Therefore, wheninspectinginternally, itisnecessaryforPECsensorstoassessa pipewallwitha10–15mmlift-off. Motivatedbythisneed,andforthesensortobesuitableforboth externalandinternalinspection,thedimensionsinTable4werechosenforthesensortobesufficiently sensitivetothicknesswithalift-offrangingfrom2–14mm,asindicatedbythesignalsinFigure7. 3.3. SensorFabrication Figure 8 shows the PEC sensor fabricated using the values provided in Table 4. Both exciter anddetectorcoilswerewoundusingAWG28wireshavinganapproximatediameterof0.315mm. ThesensorcorewasdesignedinSOLIDWORKS©softwareandwas3DprintedusingPolylactide(PLA) biodegradablepolyester.
Description: