ebook img

Pulsed Eddy Current Sensing for Critical Pipe Condition Assessment PDF

25 Pages·2017·15.45 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Pulsed Eddy Current Sensing for Critical Pipe Condition Assessment

sensors Article Pulsed Eddy Current Sensing for Critical Pipe Condition Assessment NalikaUlapane* ID,AlenAlempijevic ID,TeresaVidalCalleja ID andJaimeVallsMiro ID CentreforAutonomousSystems(CB11.09.300),FacultyofEngineeringandInformationTechnology, UniversityofTechnologySydney,15Broadway,Ultimo,NSW2007,Australia; [email protected](A.A.);[email protected](T.V.C.); [email protected](J.V.M.) * Correspondence:[email protected]@gmail.com; Tel.:+61-2-9514-1219or+61-4-0451-2441 Received:1August2017;Accepted:20September2017;Published:26September2017 Abstract: PulsedEddyCurrent(PEC)sensingisusedforNon-DestructiveEvaluation(NDE)ofthe structuralintegrityofmetallicstructuresintheaircraft,railway,oilandgassectors. Urbanwater utilities also have extensive large ferromagnetic structures in the form of critical pressure pipe systemsmadeofgreycastiron,ductilecastironandmildsteel. Theassociatedmaterialproperties renderNDEofthesepipesbymeansofelectromagneticsensinganecessity. InrecentyearsPEC sensinghasestablisheditselfasastate-of-the-artNDEtechniqueinthecriticalwaterpipesector. ThispaperpresentsadvancementstoPECinspectioninviewofthespecificinformationdemanded fromwaterutilitiesalongwiththechallengesencounteredinthissector. Operatingprinciplesofthe sensorarchitecturesuitableforapplicationoncriticalpipesarepresentedwiththeassociatedsensor designandcalibrationstrategy. AGaussianprocess-basedapproachisappliedtomodelafunctional relationshipbetweenaPECsignalfeatureandcriticalpipewallthickness. Acasestudydemonstrates thesensor’sbehaviouronagreycastironpipeanddiscussestheimplicationsoftheobservedresults andchallengesrelatingtothisapplication. Keywords: criticalpipes;eddycurrents;Gaussianprocess;NDE;NDT;PEC;sensors 1. Introduction PulsedEddyCurrent(PEC)sensingisconsideredasthemostversatilememberofthefamily of Eddy Current (EC) Non-Destructive Evaluation (NDE) techniques. PEC signals are known to possessabroadfrequencyspectrumenablingthemtopenetrateintodifferentdepthsandtoprovide informationaboutthegeometryofthetestpiecebeingevaluated[1]. ThiscapabilityhasmadePEC sensingapopularNDEtechniqueforferromagneticmaterialinspectioninresearchandcommercial domains[2–5]. Criticalpipesarelargediameter(usually≥300mm)pressurizedpipesownedand managedbywaterutilitiesthroughouttheworldforthepurposeofdistributingconsumablefresh watertocustomers. Globally,mosturbanwaterutilitieshaveextensivelarge,criticalpressurepipe systems,partsofwhichhavebeeninserviceforoveracentury[6–8]. Sincetheseagedpipesarefound intheformofthreeferromagneticmaterials,namelygreycastiron,ductilecastironandmildsteel, NDEofthesepipesbymeansofelectromagneticsensingisanecessity. WaterutilitiesundertakeNDE toascertainthestructuralintegrityoftheirassetsandmakecrucialdecisionsonpipemaintenance andrenewaltopreventcostlyandcatastrophicpipefailures. Motivatedbythisneedanapproachto effectivelyemployPECsensingforNDEofcriticalpipesispresentedandtheunderlyingchallenges relatedtotheapplicationarediscussed. The work in [9] provides a comprehensive review of state-of-the-art inspection technologies usedforconditionassessmentofpipes. Providedthatwaterutilitiesdrivetowardsestimatingstress Sensors2017,17,2208;doi:10.3390/s17102208 www.mdpi.com/journal/sensors Sensors2017,17,2208 2of25 concentrationonpipewallsinordertopredictfailures,thecriticalpieceofinputinformationrequired forthatisadensemapoftheremainingpipewallthickness[10]. PECsensingthereforehashigher preferenceforthisapplicationasitiscapableofdirectlymeasuringtheremainingthicknessofhealthy materialandproducingdensemapswhileexhibitinglowsensitivitytotuberculationformedonaged criticalpipesintheformofcorrosionandgraphitisation. Inaddition,itisnotsensitivetoinsulated protectionpresentintheformofinternalcementliningshouldsensingbeundertakenfrominsidethe pipe[11–13]. Sincecriticalpipematerialsareferromagnetic,recentworksinvestigatingPECsensing offerromagneticmaterialthickness[2–5]closelyrelatetotheworkofthispaper. Acommonalityin thoseworksisusingtheconcentrically-woundexciter-detectorcoil-basedPECsensorarchitecture, whichhasbeendeemedtohavebettersensitivityforferromagneticmaterialthicknessquantification. Althoughthereareothersensorarchitectureshavingmagneticsensorsforsignalreceptionasin[14–18], theyhavetypicallybeenusedonnon-ferromagneticmaterials. Recentworkin[19,20]hasreported preliminaryworkexplicitlyonferromagneticpipeinspection. Theworkin[19]introducesanovel sensor design integrated with a distributed EC inspection system, while [20] presents a study of applyingpulsedremotefieldeddycurrentsforinternalinspectionofpipes. Thosetechniquesfocuson defectdetectionandhaveproducedpromisingresults. However,theyrequirefurtherworktobeable todeliverquantifiedremainingwallthicknessintheformofdensemaps,whichisthecriticalpieceof informationdemandedbywaterutilities. Derivingfromtheworkof[2–5],thispaperexploitstheexciter-detectorcoil-basedPECsensor architecturetoinspectcriticalpipesbyestimatingremainingwallthicknessusingatimedomainsignal decayrate-basedfeature. Thesignalfeatureisderivedfromtheanalyticalmodelproposedin[3]for PECsignalsresultingfromthisarchitecture. Although[2–5]haveanalysedPECsensorperformance onstandardsteelssuchasQ235andA3undercontrolledexperiments, theirworkonapplications relatingtocriticalpipeinspectionislacking. Work specifically related to critical pipe inspection can be found in [11,21]. A study of the designofaPECsensorthatachievessignalsensitivitytogreycastironthicknessispresentedin[11]. However,in[11],thesensor’sperformancewasnotevaluatedonactualpipes. Ontheotherhand,[21] studiestheuseoftheGaussianProcess(GP)[22]toinfergreycastironpipewallthicknessbyexploiting multiplefeaturesextractedbyaveragingregionsofthesignalsproducedbyacommercialPECsensor. Theapplicabilityoftheresultsin[21]islimitedtothespecificcommercialsensor. Althoughthese tworeferencesformthebasisforthispaper,themaincontributionhereisthein-depthstudyofgeneral PECsensingappliedtocriticalpipeassessment. Morespecifically,itstudiestheelectricalandmagnetic propertiesofacriticalpipematerial,andbasedonthequantificationofthesepropertiesitproposesthe sensordesign,sensorexcitation,signalacquisitionandcalibrationstrategiessuitableforsuchmaterials. Finally,itproposesaGP-basedapproachtomodelthefunctionalrelationshipbetweenaPECsignal featureandmaterialthickness,whichissuitableforcriticalpipewallthicknessprediction. The outline of this paper is as follows: Section 2 contains the theoretical formulation, which presents the PEC sensor operating principles with respect to ferromagnetic material thickness estimation,andtheGP-basedapproachtomodelthefunctionalrelationshipbetweenasignalfeature andpipewallthickness. Section3presentsPECsensordesignprincipleswithparticularreference to grey cast iron pipe assessment. Section 4 presents the experimental evaluation of the designed sensor’sperformance. Acasestudydepictingthesensor’sperformancewhenusingGPtoestimate wallthicknessofagreycastironpipeisalsopresented. Section5concludesthispaperbydiscussing theimplicationsofobservedresultsandsummarisingviablepracticesandchallengesforexploiting PECsensingforstate-of-the-artconditionassessmentofcriticalpipes. Sensors2017,17,2208 3of25 2. TheoreticalFormulation 2.1. Exciter-DetectorCoil-BasedPECSensorOperatingPrinciple The typical exciter-detector sensor architecture sensitive to ferromagnetic material thickness, asexploitedinthispaperandintheferromagneticmaterialthicknessquantification-relatedworks[2–5], iscomposedoftwoconcentrically-wound,aircored,conductivecircularcoils,asshowninFigure1. Rarer, though also practical, is the use of concentrically-wound rectangular coils [12,21]. In both configurations,onecoilbehavesastheexciter,whiletheotheractsasthedetector,whichcapturesthe signal. TheexcitercoilisexcitedwithavoltagepulsethatcantheoreticallybemodelledasaHeaviside stepfunction. Thepulsedexcitationcausesarapidchangeinthesurroundingmagneticfield;thisin turninduceseddycurrentsinthetestpiecebeingassessed. Theneteffectofinducededdycurrents andtheexcitationpulseinducesauniquetime-varyingvoltageinthedetectorcoil. Itisthisdetector, thecoilvoltage,thatisidentifiedasthePECsignal,whichcarriesinformationaboutthetestpiece. ThetypicalshapeofsuchaPECsignalisanexponentialdecayasshowninFigure2. Figure1.Cross-sectionalviewofatypicalexciter-detectorcoil-basedPECsensor. Figure2.ThetypicalshapeofaPECsignal:inducedvoltageinthedetectorcoil. As done in [3], the decaying part of the time (t) domain PEC signal V(t) can be modelled as aninfinitesummationofexponentialtermsasshowninEquation(1)wheretheb andc termsare i i constantscontaininginformationaboutthepropertiesofthesensorandtheferromagnetictestpiece. ∞ ∑ V(t) = b exp(−c t) (1) i i i=1 Allc ≥0,c (cid:54)= c wheni (cid:54)= jfori,j ∈N. i i j Toderivethesignalfeatureusedinthispaper,weexpressEquation(1)initslogarithmicformas showninEquation(2). (cid:34) ∞ (cid:35) ∑ ln[V(t)] =ln b exp(−c t) (2) i i i=1 Sensors2017,17,2208 4of25 Sinceallc ≥0,Equation(1)becomesasumofexponentialdecays. Therefore,weconsiderthe i laterstageofthesignal(i.e.,t >>0)andapplythepropertiesofthelogsumofexponentials[23]to Equation(2). Fortheregiont >>0,Equation(2)canhencebereducedtothedominantexponentialas: (cid:12) (cid:12) ln[V(t)](cid:12) ≈ln[b1exp(−c1t)] (3) (cid:12) t>>0 wherec isthedominanttimeconstantandb isthecorrespondingcoefficientoftheexponentialterm. 1 1 Expandingtheright-handsideofEquation(3)resultsin: (cid:12) (cid:12) ln[V(t)](cid:12) ≈ −c1t+ln[b1]. (4) (cid:12) t>>0 WenowdefinethesignalfeatureβbytakingthederivativeofEquation(4). (cid:12) dln[V(t)](cid:12) (cid:12) ≈ −c1 (5) dt (cid:12) t>>0 1 β = (6) c 1 Equation(4)suggeststhatthebehaviourofthelaterstageofaPECsignaltakenonaferromagnetic materialshouldapproximateastraightlinewithanegativegradientwhenexpressedinitslogarithmic form. Numerical simulations and experimental results in the subsequent sections validate this approximation. The feature β is the reciprocal of the absolute gradient of the logarithmic signal regionbehavingasastraightline. Inreturn,βextractsthedominanttimeconstantc ,whichdictates 1 the later stage of the signal V(t) expressed in Equation (1). Previous work [4] has noted that this dominanttimeconstantbehavesasc ∝1/(µσd2)whereµ,σandd,whicharemagneticpermeability, 1 electricalconductivityandthicknessoftheinspectedferromagneticmaterialunderthedomainof influenceofthesensor, respectively. Sincethisbehaviourhasbeenreportedonflatplatesandthe focusofthisworkispipewalls,whicharecurved,thebehavioursforlargediameterpipesandthe correspondingsensorgeometryareverifiedthroughFiniteElementAnalysis(FEA)in[12],andithas beenobservedthatthecriticalpipesurfacesbehavethesamewayasflatplatesduetothecurvature beinglowwithrespecttosensordimensions. Thus,βbehavesasβ ∝ µσd2forlargediameterpipes. Therefore,whencalibratedtoaparticularmaterial,βreducestoafunctiondependentonthickness alone,makingitpossibletousetheinverseofthisfunctionforthicknessquantification. Furthermore, simulated and experimental results in this paper suggest that β has a desirable quality of having lowsensitivitytolift-off,making βasuitableoptionforcriticalpipeinspectionapplicationswhere unknownlift-offisaprevalentchallenge. Thenon-linearityofβisparticularlyprevalentinlowerand higherendsofthicknessduetolimitationsinhowhighorhowlowtheexcitationstrengthdeliveredby sensordrivingelectronicscanbe,suggestingthatanon-linear,potentiallynon-parametricmodelling techniquewouldbesuitablefortheapplication. 2.2. GaussianProcessFormulation As established in Section 2.1, once calibrated for a material (i.e., for a particular material having properties µ and σ), thickness d reduces to a non-linear function dependent on β alone. Therefore,estimatingthicknessfromPECsensorsignalscanbeformulatedasanon-linearregression problem. Gaussianprocessmodelsareapowerfultooltosolvesuchregressionproblems. Given the set of β values extracted from PEC signals B = [β ,β ,...,β ]T, where each β is 1 2 m i associated with a noisy value of thickness d in the set D = [d ,d ,...,d ]T, the aim is to find i 1 2 m the underlying function that maps β values to actual thickness. GP is used to learn the thickness Sensors2017,17,2208 5of25 distributionandtopredictthisdistributionforarbitrarypointsβ∗. Inthispaper,thetrainingdataset [B,D]isproducedthroughnumericalsimulationasexplainedinSection4.4. ToapplytheGPframeworktothisregressionproblem,akernelK(B,B)whoseelementsaregiven byk = k(β ,β )hastobeselected. Afterevaluatinganumberofcommonlyusedkernels,thesquared i,j i j exponentialkernelwaschosenforthisworkasitwasfoundtobeeffective. Thiskernelisgivenby: (cid:26) (cid:27) 1 k(β ,β ) = α2exp − (β −β )2 . (7) i j 2η2 i j whereαandηarehyper-parameters. Thesehyper-parameterstogetherwithnoisestandarddeviation σ arelearnedfromthetrainingdata,byminimizingthenegativelogmarginallikelihood: n 1 1 m −logp(D|B,θ) = DTΣ−1D+ log|Σ|+ log(2π) (8) 2 2 2 wherethecovariancefunctionΣisgivenby: Σ = K(B,B)+σ2I (9) n withrespecttoθ = {α,η,σ },where I isthecorrespondingidentitymatrix. n Oncehyper-parametersθ arelearnedfromthetrainingdata,arbitrarypoints β∗ areprovided asinputtotheGPmodeltopredictthecorrespondingthicknessestimateasaGaussianprobability distributionwhosemeanisµ∗ andstandarddeviationisσ∗. µ∗ andσ∗ arecalculatedasfollows: d d d d µ∗ = K(β∗,B)Σ−1D; (10) d (σ∗)2 = α2+σ2−K(β∗,B)Σ−1K(B,β∗). (11) d n 3. ASensorDesignExample Thissectiondetailstheprocedurefordesigninganexciter-detectorcoil-basedPECsensorsuitable forcriticalpipeinspection. Thedesignexampletargetsgreycastironpipeassessment;themaximum thicknessexpectedonpipeswas20mm. Theprocedureincludesthefollowingsteps: (1)identifying electricalandmagneticpropertiesofthepipematerialtobeinspected; (2)numericallysimulating asensortodeterminesuitablesensordimensions;and(3)sensorfabrication. Thefollowingsubsections detailthethreesub-stepsofthedesignprocedure. 3.1. IdentificationofMaterialElectricalandMagneticProperties Since β becomes a function in the form of β ≈ g(µ,σ,d) and predominantly depends on the electromagnetic properties and material thickness, it is in fact heavily independent of sensor dimensions. Practicallimitationsinsensorexcitationandsignalacquisitionelectronicsdictatethose dimensions, and they should be decided upon before fabrication in order to achieve sufficient penetration depth in the ferromagnetic material (grey cast iron in this case). Sensor dimensions aredeterminedinthispaperthroughnumericalsimulation,andtoachievethat,knowingµandσ beforehandisnecessary. Measuring electrical and magnetic properties was done by extracting a coupon (hot tapping [24–26] is a viable option for coupon extraction from on-site critical pipes), making a specimen (dimensions = 3 mm × 2 mm × 2 mm) through Electric Discharge Machining (EDM) wirecutting[27–29](usingcoolingliquid)andfeedingittoaPhysicalPropertyMeasurementSystem (PPMS) [30–32]. An average representation of properties is derived by performing measurements onmultiplespecimens. Atotalof27specimensmadefromcouponsextractedfromequally-spaced locations along a 1 km-long grey cast iron pipeline, with details provided in Table 1, were tested Sensors2017,17,2208 6of25 bymeasuringtheirmagnetizationcurve(i.e., BHcurvewhereBismagneticfluxdensityandHis magneticfiledintensity)andelectricalconductivity. Table1.Specificationsofthegreycastironpipeusedfortheexperimentalworkofthispaper;adapted from[7]. Location VeronaStreet,StrathfieldNSW2135,Australia YearInstalled 1922 NominalPipeDiameter 600mm InternalPipeDiameter 579mm–590mm(withcementlining) ExternalPipeDiameter 662mm–666mm NominalWallThickness 27mm Material Pitcastiron InternalLiner Cement(installedin1964) CementLiningThickness 9.5mm–16.5mm PipeLengths 3.6m Jointing Leadrunjoints(withtar-soakedhempsealants) TotallengthinUseforResearch Approximately1km Sinceelectricalconductivityisknowntovarysignificantlywithtemperature,thedependencewas capturedbymeasuringtheconductivityofeachspecimenacrossarange(220K–350K).Theaverage representationforconductivity(i.e.,2.16×106S/m,approximately)wasobtainedbycomputingthe meanovertemperature(between283Kand313Ktoresembleatmospherictemperaturevariation in Sydney Australia), as well as specimens. Although the average value of σ was considered for simulation,itwasnotablethatσ ofcastironisconsiderablyvariable. ThiscanbeseeninFigure3, whichshowsahistogramofconductivitiesresultingfromallconductivityvalues(1097intotal)between temperatures283Kand313Kcapturedfromall27specimens. Thestandarddeviation(std)ofthis datasetwas0.261×106S/m,and94.8%ofthedatafellwithin±2standarddeviations.Suchavariation in conductivity creates a unique difficulty in calibrating PEC sensors for critical pipe assessment. ConductivitydatafromwhichthestatisticswerecalculatedareprovidedasSupplementaryMaterial. Significantvariationinmagneticpropertieswithinatmospherictemperatureconditionsanda correlation between electrical conductivity and magnetic permeability were not evident from the availabledata;thereforeamagnetizationcurveperspecimenwasmeasuredwhilemagnetizingand demagnetizing. Resultingcurveswereaveragedeventuallyacrosssamples. Figures4and5depict a magnetization curve and conductivity measurements performed on a particular grey cast iron specimen, respectively, and raw data are provided as Supplementary Material. A fine sampling resolutiontomeasurethemagnetizationcurveregioncoveringlowmagneticfieldsisrecommended in order to capture the typical non-linear behaviour present. A sampling interval of 10 A/m was usedwhenmagneticfieldintensity≤100A/m. Therelativepermeabilityvalueµ = 63calculated r fromthelowmagneticfieldregionofthemagnetizationcurveinFigure4(consideringthesensor excitationstrength,highmagneticfieldsarenotexpectedinsidethepipematerial)andtheaveraged conductivityvalue2.16×106 S/mwereusedtonumericallysimulateaPECsensoranddetermine suitabledimensionsfortheapplication,theprocessisdescribedinsubsequentSection3.2. Sensors2017,17,2208 7of25 Figure3.Histogramoftheelectricalconductivityofgreycastironfortemperaturesbetween283Kand 313Kcaptured. Figure4.Ameasuredmagnetizationcurveofaspecimentakenfromagreycastironpipesegment. Figure5.Temperaturevariationoftheelectricalconductivityofgreycastiron. 3.2. NumericalSimulationofthePECSensor Duetothesimplicityofmodelling,andthecommonuseforferromagneticmaterialthickness estimation[2,3,5],acircular-shapedPECsensorhavingconcentrically-woundaircoredcoilsasshown in the cross-section in Figure 1 was selected for this work. For a fixed excitation, the sensor size hasbeenobservedtobeadominantfactorinfluencingthesensor’spenetrationcapability(i.e.,the maximumthicknessofaparticularmaterialtowhichthesensorwillbesensitive)[16].Therefore,before fabrication,thesensorinteractionwithgreycastironwasnumericallysimulatedusingFEA.A2D Sensors2017,17,2208 8of25 axisymmetricmodelofthesensorplacedaboveagreycastiron(showninFigure6)wasdeveloped usingCOMSOLMultiphysics®. TheinputparametersrequiredforsimulationaredefinedinTable2. ThesimulationmodeloutputsthedetectorcoilvoltageV(t)asafunctionofmanyinputvariablesas showninEquation(12). V(t)iscalculatedusingthemagneticvectorpotential,whichisdeterminedby solvingthemagneticvectorpotentialequationshowninEquation(13)foranygivenlocationinthe (cid:126) (cid:126) model,where Aisthemagneticpotentialatanylocation,tistimeand J isthesourcecurrent. s V(t) = f(r ,r ,h ,lo ,n ,σ ,µ ,r ,r ,h ,lo ,n ,σ ,µ ,d,µ,σ,Z ,I ,t) (12) di do d d d d d ei eo e e e e e dl e (cid:126) ∂A ∇2A(cid:126) −µσ = −µ(cid:126)J . (13) s ∂t Figure 6. 2D axisymmetric model of the PEC sensor placed on a cast iron block (developed in COMSOLMultiphysics®). Table2.Parametersrequiredforsimulation. Symbol Description r Innerradiusofdetectorcoildomain di r Outerradiusofdetectorcoildomain do h Heightofdetectorcoildomain d lo Verticaloffsetofthedetectorcoil d n Numberofdetectorcoilturns d d Diameterofthedetectorcoilwire d σ Electricalconductivityofthedetectorcoil d µ Magneticpermeabilityofthedetectorcoil d r Innerradiusofexcitercoil ei reo Outerradiusofexcitercoil he Heightofexcitercoildomain loe Verticaloffsetoftheexcitercoil ne Numberofexcitationcoilturns de Diameteroftheexcitationcoilwire Re Resistanceoftheexcitationcoilwire σe Electricalconductivityoftheexcitercoil µe Magneticpermeabilityoftheexcitercoil d Platethickness σ Electricalconductivityofpipematerial µ Magneticpermeabilityofpipematerial Ie Amplitudeortheexcitationcurrentpulse Z Loadimpedanceconnectedtothedetectorcoil dl Sensors2017,17,2208 9of25 Tonarrowdownthesuitablesetofsensordimensions,theheightsofexciteranddetectorcoils (h andh )andverticaloffsetsofthetwocoils(lo andlo )arefixed. Copperwiresareusedtowind e d e d coils; thus, we use the standard permeability and conductivity of copper (µ , µ , σ and σ ) for e d e d simulation. Inaddition,roughestimatesofpermeability(µ)andelectricalconductivity(σ)ofgreycast ironarerequired. Table3showsthefixedparametersforsimulation. Aspertheestimatedvaluein Section3.1,theapproximatedelectricalconductivityusedforgreycastironwasσ =2.16×106S/m. Since the magnetic properties of grey cast iron are non-linear, the relative permeability value µ =63calculatedfromthelowmagneticfieldregionoftheexperimentally-measuredBHcurvein r Section3.1wasusedtorepresentµ. Theamplitudeoftheexcitationcurrentpulsewasalsoconsidered tobefixedat200mA.Thesensorexcitationcircuitwasdesignedtoproduceavoltagepulsehaving a10-Vamplitudeandcurrentamplitudeof200mA;thus,theexcitercoilresistancewasrequiredtobe R =50Ω. Duetoavailability,standardcopperwireofd = d =0.315mmdiameter(AWG28wire e e d class)waschosentowindbothexciteranddetectorcoils. AsdiscussedinSection3.3,thedetectorcoil outputisdirectlyconnectedtoaninstrumentationamplifierhavinghighinputimpedance. Thisresults intheeffectiveimpedance(Z )feltastheloadbythedetectorcoiltobehigh(indicativeof∞). dl Table3.Fixedparameters(constants)usedforsimulation. Symbol Value he =hd 10mm loe =lod 2mm de =dd 0.315mm σe =σd 5.998×107S/mforcoppercoils µe =µd 4π×10−7H/mforcoppercoils σ 2.16×106S/m µ µ=µrµ0,µr =63,µ0 =4π×10−7H/m Ie 200mA Re 50Ω Z ∞ dl Giventheconstraints,theobjectivewastoselectsuitableinnerandouterradiiofbothexciter anddetectorcoils(i.e.,r ,r ,r andr )alongwiththeirrespectivenumberofcoilturns(i.e.,n and ei eo di do e n )inordertohavecastironthicknesssensitivityfromabout5–20mm. Whileparameterselection d canbeformulatedasanoptimisationproblem,similartotheworkin[19]relatedtoadistributedEC inspectionsystem,solvingitforthiscasewouldrequiretime-consumingstochasticoptimisationdue toderivingclosed-formequationstoperformaquickerconvexoptimisationbeingdifficult. Therefore theparametersinTable4wereselectedthroughsimulationandexperimentallyvalidatedtoyield sufficientsensitivitytothicknesswithbothlowandhighlift-off,asshowninFigure7. Thelaterstage ofallsignalsinFigure7behavesasastraightlinewithanegativegradient;thisbehaviourisexpected aspertheformulationinEquation(4)andvalidatesthestraightlinebehaviourtheorizedinSection2.1. Raw data plotted in Figure 7 and the relevant COMSOL simulation model are provided with the SupplementaryMaterialforinterestedreaderstouseandwithwhichtoexperiment. Table4.EstimatedparametervaluesusedtofabricatethePECsensor. Symbol Value r 25mm di r 28mm do n 300 d r 50mm ei reo 57mm ne 600 Sensors2017,17,2208 10of25 Figure7. Numerically-simulatedsignalsbythe2Daxisymmetricmodelfordifferentgreycastiron thickness with and without lift-off (visualized as ln[V(t)]); sharp rising edges of signals are not discriminableinthemstimescaleandappeartobeoverlapping. Due to operational practicalities, water utilities are interested in robotic tools, which can autonomouslyinspectpipesinternally;adevelopmentrelatedtothepurposeispresentedin[13]. Asin thecasewiththepipeinTable1,criticalpipesusuallyhaveaninsulatedinternalprotection,typically madeofcement. Therefore, wheninspectinginternally, itisnecessaryforPECsensorstoassessa pipewallwitha10–15mmlift-off. Motivatedbythisneed,andforthesensortobesuitableforboth externalandinternalinspection,thedimensionsinTable4werechosenforthesensortobesufficiently sensitivetothicknesswithalift-offrangingfrom2–14mm,asindicatedbythesignalsinFigure7. 3.3. SensorFabrication Figure 8 shows the PEC sensor fabricated using the values provided in Table 4. Both exciter anddetectorcoilswerewoundusingAWG28wireshavinganapproximatediameterof0.315mm. ThesensorcorewasdesignedinSOLIDWORKS©softwareandwas3DprintedusingPolylactide(PLA) biodegradablepolyester.

Description:
of ferromagnetic material thickness [2–5] closely relate to the work of this The signal feature is derived from the analytical model proposed in [3] for .. Raw data plotted in Figure 7 and the relevant COMSOL simulation model .. Electronics and Applications, Siem Reap, Cambodia, 18–20 Jun 2017
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.