Astronomy&Astrophysicsmanuscriptno.pprs˙davide˙18Dec12 (cid:13)c ESO2013 January16,2013 Pulse phase and precession phase resolved spectroscopy of Her X-1: studying a representative Main-On with RXTE D.Vasco1,R.Staubert1,D.Klochkov1,A.Santangelo1,N.Shakura2,andK.Postnov2 1Institutfu¨rAstronomieundAstrophysik,Universita¨tTu¨bingen,Sand1,D-72076Tu¨bingen,Germany 2SternbergAstronomicalInstitute,LomonossovUniversityMoscow,Russia e-mail:[email protected] November2012 3 1 ABSTRACT 0 2 Aims.WeperformedadetailedpulsephaseresolvedspectroscopyoftheaccretingbinaryX-raypulsarHerX-1intheenergyrange 3.5–75keV and have established pulse phase profiles for all spectral parameters. For three parameters, the centroid energy of the n cyclotronline,thephotonindexandthefluxofthe6.4keVironline,wehavestudiedthevariationasafunctionof35dphase. a Methods.WeanalyzedRXTEobservationsoftheMain-OnofNovember2002usingdatafromthePCAandtheHEXTEinstruments. J Fourdifferenttimeintervalsofabout∼1ddurationwereselectedtoprovideagoodcoverageofacompleteMain-On.Theintervals 5 arecenteredat35dphases0.03,0.10,0.15,and0.20,respectively. 1 Results.Allspectralparametersshowastrongmodulationwithpulsephase.Whilethecentroidenergyofthecyclotronlinefollows roughlytheshapeofthepulseprofile,showinghighervaluesclosetothepeakoftheX-raypulse,boththephotonindexandtheiron ] lineintensityexhibitdistinctminimaaroundthepeakoftheX-raypulse.Withrespecttovariationsoftheobservedprofileswith35d E phase,wefindthatthereisaclearevolutionoftheshapeofthepulseprofiles(fluxversuspulsephase),amoderateincreaseofthe H maximumcyclotronlineenergy(foundaroundpulsephase0.7),butnosignificantevolutionoftheshapeofthepulsephaseprofiles . ofthecyclotronlineenergy,thespectralpowerlawindexortheironlineintensity. h Conclusions.Thevariationofspectralparametersasafunctionofthepulsephaseprovidesimportantinformationaboutthesystem:i. p thedisappearanceoftheFelinefluxnearthehighestcontinuumfluxmaybeanindicationofahollowconegeometryoftheaccretion - structure;ii.Theapparentnon-dependenceofthecyclotronlineenergyprofileson35dphaseprovidesanewpossibility totestthe o modeloffreeprecessionoftheneutronstar,proposedtoberesponsibleforthesystematicvariationsinthepulseprofiles. r t s Keywords.binaries:general–stars:neutron–X-rays:binaries–X-rays:individuals:HerX-1–pulsars:individuals:HerX-1 a [ 1 1. Introduction cycle is responsible for the Short-On with a maximum flux of v roughlyonethirdthatoftheMain-On. 8 The X-ray source Her X-1 was discovered in 1972 by Uhuru HerX-1was also the firstaccretingX-raypulsarforwhich 7 (Tananbaumetal.1972),andclassifiedasanaccretingX-raybi- a cyclotron line in the X-ray spectrum has been discovered 3 nary. Her X-1 is one of the brightest and most studied persis- 3 tentbinaryX-raypulsars.Thedistancetothesystemis ∼7kpc (Tru¨mperetal.1978).Thisabsorption-likefeature,nowreferred . to as Cyclotron Resonance Scattering Feature (CRSF), is ob- 1 and the masses of the neutron star and its companion are ap- served around40keV and allows to estimate the neutronstar’s 0 proximately 1.5 M and 2.2 M , respectively (Reynoldsetal. ⊙ ⊙ magneticfield.ApplyingtheformulaB =(1+z)E /11.6keV 3 1997). The X-ray flux shows periodic modulation on several 12 cyc 1 different time-scales: pulsations with 1.24s due to the spin of (whereB12 isthemagneticfieldstrengthinunitsof1012Gauss, v: the neutron star, eclipses due to the 1.7d orbital period, and a z is the gravitationalredshiftandEcyc is the centroidenergyof thecyclotronline),thefirstdirectmeasurementofthemagnetic i 35d super-orbitalperiod due to obscurationof the X-ray emit- X fieldofaneutronstarwasachieved(∼3×1012GaussforHerX- ting region by the precessing accretion disk. This 35 d period- r icityshowsdifferentstates:twoOn-stateswiththe∼11dMain- 1). The source shows a positive correlation between the cen- a On (at phase 0–0.31) and the ∼5d Short-On (at phase 0.57– troidenergyofthecyclotronlineandthebolometricluminosity 0.79),separatedbytwoOff-states(seee.g.Giacconietal.1973; (Staubertetal.2007;Vascoetal.2011). Gerend&Boynton 1976; Boyntonetal. 1980; Scott&Leahy Another observational feature of Her X-1 is the evolution 1999; Scottetal. 2000; Klochkovetal. 2006). The accretion of the pulse profile as function of energy and time, or better: disk is thought to be tilted (with respect to the orbital plane), 35d phase. For boththe Main-On and the Short-On,a system- warpedandcounter-precessingwithasomewhatvariableperiod atic variation in the shape of the pulse profilesis found.These of∼35d.Theonsetoftheflux(oftenidentifiedwith35dphase changesconsistofthedisappearingofsomefeaturesinthepulse 0.0)iscalledtheTurn-On(TO)andcorrespondstothetransition profilewithanincreaseinenergyand/ortime.Thesevariations fromtheOff-statetotheMain-On.Atthistime,theouterrimof repeat systematically on a time scale of ∼35d. These changes thediskclearstheviewtotheX-rayemittingregionclosetothe havebeenwellknownforsometime(seee.g.Deeteretal.1998; polar caps on the surface of the neutron star, leading to an in- Scottetal. 2000; Tru¨mperetal. 1986). Recently, Staubertetal. creaseinflux.Viceversa,thedeclineofthefluxtowardstheend (2010a,b,2012)onthebasisofRXTEobservations,gaveaquan- oftheMain-Onisidentifiedwiththeinneredgeoftheaccretion titative description of these changes by providing a template, diskblockingourviewtotheX-rayemittingregions.Asimilar which can be used to predict the shape of the profile in the 9– 1 D.Vasco,R.Staubert,D.Klochkov,A.Santangelo:RXTEpulsephasespectroscopyofHerX-1 Table 1.SummaryofthefourintervalsoftheMain-Onof35d cycleno.323.Thecolumnsare:thenumberoftheinterval,the timeintervalinMJD,theexposuretime,thecorresponding35d phaseinterval,andthecenterofthe35dphaseinterval. Interval limits exposure limits center MJD [ks] 35dphase 35dphase 1 52595.060−52596.743 25 0.007 − 0.056 0.03 2 52597.959−52598.719 25 0.090 − 0.112 0.10 3 52599.603−52600.726 25 0.137 − 0.161 0.15 4 52601.316−52602.406 28 0.186 − 0.217 0.20 13keVenergyrangeforany35dphaseduringtheMain-On.An extensionofthisworkforotherenergyrangesandincludingthe Short-Onisinpreparation. Tru¨mperetal. (1986), on the basis of observations by Fig.1.PCA lightcurveof theMain-Onofcycle323.Thegrey Exosat, had proposed that free precession of the neutron star zonesrepresentthefourintervalsusedforthisanalysis.Foreach is responsible for those pulse profile changes, due to the vari- intervalthecentered35dphaseisgiven.Detailsofthetimeand ation of the angle of the line of sight to the X-ray emitting re- 35dphaseintervalsarelistedinTable1 gions on the surface of the neutron star. For Her X-1, the de- . pendence of the spectral parameters on pulse phase have been observedby severalmissions. Early examplesare Pravdoetal. (1978)withOSO8,Pravdoetal.(1979)andSoongetal.(1990) with the A-4 experimentof HEAO-1 and McCrayetal. (1982) with HEAO 2 the Einstein Observatory, Vogesetal. (1982) with the MPE/AIT ballon experiment, Kahabka (1987) with Exosat,Kunzetal.(1996)withMir-HEXE.Laterexamplesare Endoetal. (2000) with ASCA, Zane&Ramsay (2001) with XMM-Newton, Lutovinovetal. (2000) with the ART-P tele- scopeonboardofGRANADAandKlochkovetal.(2008)with INTEGRAL. Inthisworkwepresentadeepinvestigationofthevariation ofkeyspectralparametersasafunctionofpulsephasewiththe finest resolutionso far and, for the first time, a discussion of a possibleevolutionwith 35d phase.Changesofthespectralpa- rameterswithpulsephasearequitecommonamongaccretingX- raypulsarsandaregenerallyattributedtoachangeintheview- ing angle of the accretion region (see e.g., Kreykenbohmetal. 2004andreferencestherein).Here,wefocusonthevariationof the centroid energy E of the CRSF around 40keV, the pho- cyc Fig.2. Mean 9-13keV pulse profiles of the four time intervals ton index Γ and the iron line characteristics. We also address at different35d phases(see Table 1): Interval1 in black(solid thequestionwhetherourdatasupportthefreeprecessionmodel line), Interval 2 in green (dashed line), Interval 3 in red (dash whichhasbeensuggestedtoexplainthevariationinshapeofthe dottedline)andInterval4inblue(dashdotdotdottedline).For pulseprofile. general35ddependenceseeStaubertetal.(2010a,b).Astiming reference for pulse phase zero we use the “sharp-edge” at the trailingedgeoftherightshoulderofthemainpulsewhichleads 2. Observationsanddataanalysis intoan eclipse likeminimum(Staubertetal. 2009b).Note that TocarryoutthisanalysisweusedobservationsofHerX-1ofthe these pulse profiles are statistically so accurate that the uncer- Rossi X-ray Timing Explorer(RXTE) performedin November taintiesaresmallerthanthelinewidth. 2002.Theseobservationscorrespondtocyclenumber323(cycle numberingaccordingtoStaubertetal.2009b)centeredatMJD ∼52599.32 with an observed Turn-On of MJD 52594.80. The sin i=13.1831 lt-s and Tπ=52599.486440MJD. To align the dataof thiscycleprovidethe bestcoverageofanyMain-Onof pulseprofiles,areferenceti2met =MJD52594.869900091and 0 Her X-1 observed with RXTE. Within this cycle, we sum up aspinperiodP =1.237761809swereused.As“pulsephase spin observations from four selected time intervals at different 35d zero” the sharp-edge feature at the trailing edge of the right phasesin orderto have a goodcoverageof an entireMain-On, shoulderofthemainpeakwasused(seeStaubertetal.2009). avoidingdipsandeclipses.Allintervalshaveadurationofabout The PCA was used in the energy range 3.5–60keV and one day (details are givenin Table 1). Figure 1 shows the four HEXTEintheenergyrange20–75keV.Thedatahavebeenana- intervalsselectedforthisanalysis. lyzedwithXSPEC12.6.01usingthehighecut2spectralmodel, For barycentric and binary corrections orbital param- eters and the ephemeris of Staubertetal. (2009) were 1 http://heasarc.gsfc.nasa.gov/docs/xanadu/xspec used: Porb=1.700167287s, P˙orb=+(2.8±0.2)×10−12ss−1,a · 2 http://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/XSmodelHighecut.html 2 D.Vasco,R.Staubert,D.Klochkov,A.Santangelo:RXTEpulsephasespectroscopyofHerX-1 Fig.3.CyclotronlinecentroidenergyprofilesasfunctionofthepulsephaseforInterval1(topleft),Interval2(topright),Interval 3(bottomleft)andInterval4(bottomright). powerlawcontinuumwithanexponentialcut-off.Thedifferen- included in the model: a multiplicativeGaussianoptical depth tialphotonfluxf(E)isdescribedby: for the Cyclotron Resonant Scattering Feature (CRSF) and an additiveGaussianemissionlinefortheironfluorescencefeature f(E)= A E−Γ , ifE ≤Ecut (1) around 6.5keV. This model is the same one as used in earlier (E−Γ·exp(cid:16)EE−fEolcdut(cid:17), ifE >Ecut aWnealhyasevse(csoeneseis.gte.,ntClyobfuorunndettahla.t2t0h0e2haingdhSetcauutbesrpteecttraal.l2m0o0d7e)l. where Γ is the photon index, E is the cut-off energy and describesthespectrumofHerX-1best.Thediscontinuityofthis cut E is the e-folding energy. In addition, two line features are modelatthecut-offenergydoesnotconstituteaproblemandwe fold have verified that no systematic uncertaintiesare introducedin estimating the spectral parameters. We used the PCA data up to60keV,whichhasbecomefeasiblebynewresponsematrices (PCA response v11.7, 2009 May 11). These high energy data candefinitivelyimprovethephotonstatisticsatenergiesaround andbeyondthecyclotronlinefeature.Thesamechoicehasbeen used in previous analyses (see e.g. Ferrignoetal. 2011) and it wasconfirmedbyRothschildetal.(2011)withRXTEobserva- tionsofCenA.Therecorn3spectralcomponentwasalsoadded to the model to normalize the background. After we had ver- ified, that the energy and width of the iron K line is constant (6.45keVand0.5keV,respctively),wefixedthosevaluesinor- dertominimizethenumberoffreeparameters.GoodXenon4ob- servationalmodesofthePCAforhighresolutionanalysiswere usedtoexctractlightcurvesandspectra.Anadditionalsystem- aticuncertaintyof1%wasaddedinusingthePCAdata.Toan- alyze the data, version v6.11 of the HEASOFT software5 and 3 http://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/ Fig.4. The cyclotronline centroidenergyas functionof pulse XSmodelRecorn.html phase for the four different 35d phase intervals (see Table 1): 4 http://heasarc.gsfc.nasa.gov/docs/xte/abc/ Interval 1 in black (asterisks), Interval 2 in green (diamonds), pca issues.html#configs modes Interval3inred(triangles)andInterval4inblue(squares). 5 http://heasarc.gsfc.nasa.gov/ftools/ 3 D.Vasco,R.Staubert,D.Klochkov,A.Santangelo:RXTEpulsephasespectroscopyofHerX-1 Fig.5.ThecyclotronlineprofilesofFig.3forthefour35dintervals(blackcrosses):Interval1(topleft),Interval2(topright),Interval3(bottom left)and Interval 4(bottomright), normalized toacommon amplitude. Thebigredfilleddotsrepresent theweightedmean values of allfour intervals.Thesolidbluelinerepresentsabestfitfunction(acombinationoftwocosinecomponents).Weconcludethat,withinthegivenstatistics, thereisnoevidenceforanychangeinshapeoftheprofileswith35dphase. backgroundestimationfilesSky VLEdated2005November28 3. Pulsephasevariability were used.We have investigatedwhetherthere arecorrelations Weconcentrateonthedetailedstudyofthevariationofthefol- betweenthefitparameters:nodependenceofanysingleparam- lowingspectralparametersasfunctionofpulse phase:the cen- eterontheothershasbeenfound.Allspectralresultsstatedbe- troidenergyE of thecyclotronline,the photonindexΓ, and lowhavebeenobtainedthroughspectralfitswiththeassumption cyc the intensity of the iron line at 6.4keV. The phase profiles of of negligible absorption due to neutral hydrogen, both intrin- sic to the source and interstellar (which is at 5.1 × 1019 cm−2, thesespectralparametersarecomparedwiththeshapeoftheflux profiles(the”pulseprofiles”)forthefourdifferent35dphasein- DalFiumeetal.1998).Theintroductionofabsorptionasafree parameterdoesnotleadtoareductioninχ2. tervals. In Figure 2 the 9–13keV pulse profiles of the fourin- tervalsare shown. Note that the pulse profilesare of such high For the pulse phase resolved analysis, we have extracted statisticalqualitythattheuncertaintiesofthefluxvalues(ineach the spectra in 14 pulse phase bins over the 1.24s pulse, the ofthe128pulsephasebins)arecomparabletothewidthofthe widthsofwhichwerechosentohaveroughlyidenticalphoton- lineschosentoplottheprofiles.Theprofilesarerepeatedin the statistics in each spectrum. The centers of the 14 phase bins followingfigures(asdashedlines)toallowadirectcomparison are at pulse phases: 0.1, 0.3, 0.45, 0.55, 0.625, 0.675, 0.7125, with the profiles of the spectral parameters. For the remaining 0.7375,0.7625,0.7875,0.8250,0.8750,0.9250,and0.9750.For spectral parameters, such as the cut-off energy E , the fold- cut thecyclotronlineenergyEcycthisisthefinestresolutioninpulse ing energy Efold (with reference to the used spectral model - phase everachieved(the foursmallest bins around the peak of highecut),andthewidthanddepthofthecyclotronline(σ cyc thepulsehaveawidthof1/80ofaphase). andτ ), we willrestrictourselvesto profilesofthe combined cyc Withthespectralfunctiondescribedabove,goodfitswithre- dataofcycle323.Fortheseparametersthestatisticsissuch,that ducedχ2 between0.9and1.2aregenerallyachieved.However, nostatementscanbemadeaboutadependenceon35dphase.In splittingupthedataintosmallpulsephaseintervalsrevealsthat allFigures,theuncertaintiesgivenareonesigma(68%)values. larger χ2 values appear: up to ∼12 for the pulse phase range 0.775–0.85, and 1.4–2.8 for the pulse phase range 0.5–0.775. 3.1.Cyclotronlineenergy Themainreasonforthisistheexistenceofthesocalled”10keV feature”(seethediscussionin3.5).Modelingthisfeaturebyan The profiles of the cyclotron line energy E as a function cyc extra Gaussian is generally successful and brings the χ2 down of pulse phase are shown in Figures 3 and 4. Generally, E cyc toacceptablevalues(inafewcasesχ2 isstillfoundaround1.3, roughlyfollowsthe shape of the pulse profile:the broadmaxi- whichis mostlikely dueto an imperfectmodelingby a simple mumisfoundtobeclosetothepeakofthepulseprofile(around Gaussian). pulse phase 0.7) for all 35d phases. The formal uncertainties 4 D.Vasco,R.Staubert,D.Klochkov,A.Santangelo:RXTEpulsephasespectroscopyofHerX-1 Fig.6. Photon-index profiles as function of pulse phase for Interval 1(topleft), Interval 2 (topright), Interval 3 (bottomleft) and Interval 4 (bottomright). of E (as determinedby XSPEC) are of the orderof a few to 35d phase. The weighted mean values of the four highest val- cyc severalpercentforpulsephases0.0–0.6and0.9–1.0andaround uesofE ofeachgroupare40.16±0.22keV,40.89±0.20keV, cyc one percent or less for pulse phases 0.6–0.9 (close to the peak 41.02±0.15keVand41.52±0.20keVformean35dphases0.03, of the pulse). Adoptingan additionalsystematic uncertaintyof 0.10, 0.15 and 0.20 (intervals 1 through 4), respectively. This 0.15keV(∼ 0.4%)foralldatapoints,theprofilesarewellrep- corresponds to an increase by ∼ 0.7keV per 0.1 units in 35d resented by cosine functions (see below). We find slightly dif- phase.TheminimumE valueshavelargeruncertaintieswith cyc ferent values for the mean E and the peak-to-peak ampli- a tendency to decrease with 35d phase, but, within uncertain- cyc tude: a slight, but significant increase is found as function of ties,theyareconsistentwithaconstantvalue(around33.3keV). Thepeak-to-peakamplitudeisthenslightlyincreasingwith35d phase(withameanof∼7.6keV). WhilethevaluesforthemaximumE andthepeak-to-peak cyc amplitudearedependenton35dphase,thesinusoidalshapeof themodulationdoesnotchange.Inordertoverifythisstatement, thefollowinganalysiswasperformed:theoriginalE profiles cyc (Figure 4) were scaled such that the separation of minimum to maximumE hadaconstantvalueof7.64keV,usingthemin- cyc imum values measured in phase bin 0.2–0.4 and the weighted mean of the four highest values in each of the four profiles as reference.Inthisway,normalizedE profilesweregenerated. cyc ThesenormalizedprofilesareshowninFig.5,eachincompar- isontotheweightedmeanvaluesandasmoothbestfitfunction of the weighted mean: a combination of two cosine functions with common mean (37.31keV), amplitude (3.82keV), period and phase-zero values of 0.70 and 0.772 for pulse phases 0.3– 0.875 and 1.47 and 0.3 for the remaining phases, respectively. Visually, there is no obvious deviation of any of the four data setsfromtheweightedmean.Asquantitativestatisticaltest we Fig.7. The photon index Γ as function of pulse phase for the performed the following: comparing the individual normalized four different 35d phase intervals (see Table 1): Interval 1 in profiles with that profile representing the weighted mean leads black (asterisks), Interval 2 in green (diamonds), Interval 3 in to χ2 values (normalized to the degrees of freedom) of 0.72, red(triangles)andInterval4inblue(squares). 1.46, 0.72 and 1.32 for the four intervals, respectively. As an 5 D.Vasco,R.Staubert,D.Klochkov,A.Santangelo:RXTEpulsephasespectroscopyofHerX-1 Fig.8.IronlineintensityprofilesasfunctionofpulsephaseforInterval1(topleft),Interval2(topright),Interval3(bottomleft)andInterval4 (bottomright).Allintensitieslessthan1.0areconsistentwithzero,wethereforeshowtwosigmaupperlimits. additionaltest, we havethen performeda MonteCarlo simula- 3.3.Ironlineintensity tion, in order to answer the following question. Assuming the Anotherspectralparameterwhich showsa clearmodulationas profiles are indeed the same for all fourintervals, that is equal functionofpulsephaseistheironlineintensity(seeFigure8). tothebestfitmeanprofile:whatistheprobabilitytofindanin- Itshowsamoderateincreaseuntiltheleftshoulderofthepulse dividualprofilewhichdeviatesfromthe meanprofileinsucha waythattheχ2reachesorexceedstheobservedvalue?Wehave (phase∼ 0.7),afterwhichitdropsalmostto zeroaroundpulse phase 0.8, before reaching the start value again at pulse phase simulated 100 profiles for each of the fourintervals, reproduc- 0.9.TheminimumiscoincidentwiththepeakoftheX-raypulse ing the statistical conditionsof each interval(that is, the width of the Gaussian distribution from which the random numbers weredrawnwerechosenaccordingtotheuncertaintyofthecor- respondingmeasureddata point). Those probabilitiesare 68%, 29%,73%and4%forthefourintervals,respectively.Even4% forInterval4isaratherhighandacceptableprobability.Wecon- clude,that, within ourstatistical accuracy,we find noevidence foranychangeintheshapeoftheE profileswith35dphase. cyc 3.2.Photon-index Figure6showstheprofilesofthephotonindexΓasfunctionof thepulsephase.Thisspectralparameterisrelativelyconstantfor pulsephasesupto0.6(showingasmallpositiveslope),buthas adistinctdiparoundthepulsepeakandasmalleronearoundthe leftshoulder.Thephoton-indecesrangebetween0.42±0.01and 1.07± 0.01forInterval1,between0.54±0.01and1.08±0.02 forInterval2,between0.36±0.01and1.10±0.49forInterval3 and between0.33±0.01and 1.07±0.01forInterval4. In gen- eral,thespectrumgetsharderwhenthefluxincreases.Whilethe mainfeaturesofthepulsephasedependenceofΓareverymuch Fig.9.Theironlineintensityprofilesforthefourdifferent35d thesameinthefour35dintervals,thedepthofthenewnarrow phase intervals (see Table 1): Interval 1 in black (asterisks), diparoundphase0.62showsacleartrendtowardssmallervalues Interval2in green(diamonds),Interval3in red(triangles)and fromInterval1toInterval4(seeFig.7). Interval4inblue(squares). 6 D.Vasco,R.Staubert,D.Klochkov,A.Santangelo:RXTEpulsephasespectroscopyofHerX-1 Fig.10.PulsephaseprofilesforthecutoffenergyE (topleft),thefoldingenergyE (topright),thewidthofthecyclotronlineσ (bottom cut fold cyc left),andthedepthτ ofthecyclotronline(bottomright)forthetotaldatasets. cyc (see Figure8 and 9) in a similarway as the photonindex.The to analysis with different spectral functions involving a power ironlineintensityrangesbetween0(forallintervals)and 12.40 law (e.g., highecut,plcut,Fermi-Dirac or NPEX). The fea- forInterval1,14.62forInterval2,13.19forInterval3and10.75 tureisthereforeconsideredtobeinherenttoaccretingX-raybi- forInterval4.The profilesof35dintervals2–4are quitesimi- naries.Sofar,nophysicalexplanationhasbeensuggested. lartooneanother,whileforInterval1,theironlineintensityis In our current analysis, using data from observations of significantlylowerforpulsephases<0.6. HerX-1byRXTE,thisfeaturedoesnotplayaroleinthephase averagedanalysis. However,in the pulse phaseresolvedanaly- sis,largerχ2 valuesappearduetotheexistenceofthis”10keV 3.4.Otherspectralparameters feature”: up to ∼12 for the pulse phase range 0.775–0.85, and For the other spectral parametersE , E the width σ and 1.4–2.8forthepulsephaserange0.5–0.775.Modelingthisfea- cut fold cyc the depth τ , we show their pulse phase dependenceonly for turebyanextraGaussianisgenerallysuccessfulandbrings the cyc thetotaldatasets(notresolvedin35dphase),becauseinthese χ2 down to acceptable values (in a few cases χ2 is still found parameters we find a considerably larger scatter, such that no around1.3, which is most likely due to an imperfectmodeling conclusions can be drawn about a possible variation (or not) byasimpleGaussian).Thecentroidenergyisgenerallyfoundat with 35d phase (the 35d phase resolved profiles can be found ∼ 16keVwithaσof∼ 5keV.Fig.11showsanexampleofthe in Vasco 2012)6. The profiles are shown in Figures 10. Also spectrumofInterval3,pulsephasebin0.80–0.85,wheretheχ2 for these parameters there is significant modulation with pulse isreducedfrom5.55to1.38for224dof.Wehaveverified,that phase, and they generally show a broad maximum around the allthe otherspectralparametersare notalteredwhenintroduc- phaseofthepulsepeak,withtheinterestingfeaturethatforE ing this extra Gaussian. We note that this feature occurs most fold thereisadipinthismaximum,rightatthepulsepeak.Itisalso strongly at a pulse phase close to the peak of the pulse, where worthnoting,that,exceptforE ,themeasuredvaluesforpulse all other spectral parameters also tend to show their strongest fold phases<0.4areratherhigh,notfollowingtheshapeofthepulse variability. profiles. 4. Summaryanddiscussion 3.5.The”10keVfeature” We have selected the best data available in the RXTE archive It has been noticed (e.g. Coburnetal. 2002), that in fitting ob- of an observation of a Main-On of Her X-1 to perform de- servedspectra of accretingX-ray binarieswith a cut-offpower tailed pulse phase resolved spectroscopy in the energy range lawa”wiggle”or”bump”around∼10keVto∼15keVisfound 3.5–75keV.TheobservationsofNovember2002(cycleno.323) in the residuals. This applies to many different sources includ- provide the best RXTE coverage of a Main-On (Vasco 2012), ingHerX-1(alsotonon-cyclotronlinesources),toobservations suchthatanattemptcouldbemadetostudypulsephasedepen- withdifferentsatellites(e.g.Ginga,Beppo/SAXandRXTE),and dentspectralvariationsalsoasafunctionofthephaseofthe35d modulations- flux and shape of the pulse profiles -, which are 6 http://tobias-lib.uni-tuebingen.de/frontdoor.php?source opus=6346 believedto be dueto precessionalmotionof the accretiondisk 7 D.Vasco,R.Staubert,D.Klochkov,A.Santangelo:RXTEpulsephasespectroscopyofHerX-1 and,possibly,theneutronstaritself.Asspectralmodelwehave – For35d intervals 1–3, the peak of the E profile is struc- cyc used a power law with an exponential cut-off (the highecut tured(seeFig.3),withlocalmaximanearthemaximumof model in XSPEC) modified by two line features, a multiplica- themainpeakofthepulseprofileandaroundthepositionof tive cyclotron line (in absorption) and an additive iron fluores- theleftshoulderofthemainpeak.Asimilarstructureisseen cenceline(inemission).Wehaveconcentratedonthreespectral inτ . cyc parameters: the centroid energy of the cyclotron line, the pho- – ThefoldingenergyE followsthepulseprofile,exceptfor fold ton index Γ of the powerlaw component(valid between 3keV anarrowdipinthepeakofthepulse(Fig.10,upper-right). and∼ 20keV),andtheintensityoftheironfluorescencelineat – Similarly,thecut-offenergyE ,thewidthanddepthofthe cut 6.4keV.Forthesethreeparameters,theanalysiswasperformed cyclotronline(σ andτ ),roughlyfollowthepulsepro- cyc cyc for four one day long intervals at different mean 35d phases file,exceptforhighervaluesatphases0.0–0.5(Fig.10). (0.03, 0.10,0.15 and 0.20, respectively).For the otherspectral – Whilethestrongdipinthephotonindexprofile(Fig.6and parameters of the applied spectral model, no 35day phase de- 7)closetothemainpulsepeakwasknown(eventhoughless pendencewasstudied. wellmeasured),the second,verynarrowdip (aroundphase 0.61)isanewlydetectedfeature.Wenotethatthisiscloseto thepositionoftheleftshouldercomponentofthemainpeak. 10 – The profile of the intensity of the 6.4keV iron line show a 5 distinctminimumatmaximumflux(Figs.8,and9). χ 0 – We find that the so called ”10 keV feature” seen in the 5 − spectraofseveralaccretingbinarypulsars,isaround16keV 10 5 10 20 50 in Her X-1, with a strong pulse phase dependence: essen- 5 tially concentrated in the narrow pulse phase interval 0.8– χ 0.9.Spectralfitsforalltheotherphaseintervalsdonotshow 0 significantresiduals. 5 − 5 10 20 50 Energy (keV) Fig.11. Residuals of the X-ray spectrum of pulse phase bin 4.2.Precessionphasedependence 0.80-0.85forInterval3without(top)andwith(bottom)anextra Withrespecttoanyvariationofthespectralparameters(ortheir Gaussiancomponentinthefit. pulsephasevariations)with35dphase,weconsideronlythecy- clotronlineenergyE ,thephotonindexΓandtheintensityof cyc theironfluorescencelineat6.4keV.Fortheotherparametersthe photonstatisticsisnotsufficienttodistinguishbetweendifferent 4.1.Pulsephasedependence 35d phases. It is the first time that a study of the variation of spectralparameterswith35dphasewasdone.So,thefollowing Theresultsofthepulsephaseresolvedanalysiscanbesumma- resultsareallnew. rizedasfollows.We distinguishbetweenresultswhichconfirm andimproveinstatisticalsignificancewhichwasknownbefore andnewresults. – The maximumvalue forEcyc (reachednearthe pulse peak) showsaslight,butsignificantincreasewith35dphase.The meanvalueis41.0±0.1keV,andtheslopeis∼ 0.7keVper 4.1.1. Confirmedandimprovedresults 0.1unitsof35dphase. – TheminimumvalueforE (aroundpulsephase0.3)isfor- – Allspectralparametersshowastrongmodulationwithpulse cyc mallyconsistentwithaconstantvalueof33.5±0.5keV(we phase. wouldnotruleoutasmalldecrease).Togetherwiththemax- – The strongest variations always appear around the peak of imumincreasing,thismeansthatalsothepeak-to-peakam- thepulse(atmaximumflux). plitude (mean value 7.6± 0.5keV) is increasing with 35d – TheprofileofthecentroidenergyE ofthecyclotronline cyc phase. follows roughly the modulation of the pulse profile (maxi- – TheshapeoftheE profile(seeFigs.4and5) isindepen- mum energy around maximum flux). The shape is close to cyc dentof35dphase. ”sinusoidal”. – Similarly,theshapeofthe Γprofilesisindependentof35d – The photon indexprofile (Fig. 6 and 7) shows a strong dip phase,exceptforthenewnarrowdiparoundpulsephase0.62 close to the pulse peak. The dip around the main peak is a (Figs.6and7),whereatrendtoasmallerdepthfromInterval knownfeature,nicelyconfirmedhereandverywellresolved 1toInterval4isseen. inthisanalysis. – Theshapeoftheironlineintensityprofilesaresimilartoone another,exceptforInterval1whichshowsadistinctlylower 4.1.2. Newresults intensityforpulsephases<0.6(Figs.8and9). – It is the first time that for Her X-1 a phase profile of the centroid cyclotron line energy E is produced with such cyc 4.3.Comparisonwithpreviousresultsandphysical a high resolution and statistical accuracy. The four small- conclusions est bins around the peak of the pulse have a width of 1/80 of a phase. The mean variation (minimum to maximum) is ForHerX-1,thedependenceofthespectralparametersonpulse ∼ 23% (Figs. 3 and 4). The modulation is close to ”sinu- phase have been studied by several authorson the basis of ob- soidal”; however, at least two sinusoidal components(with servations with different X-ray instruments (see Introduction). greatly different periods) are needed to model the modula- In the following we highlight our new findings and significant tion. improvementsanddiscusspossiblephysicalimplications. 8 D.Vasco,R.Staubert,D.Klochkov,A.Santangelo:RXTEpulsephasespectroscopyofHerX-1 Pulsephasedependenceofthecentroidcyclotronlineen- despitetheargumentbyWhiteetal.(1983) thatthematerial in ergy:ThismodulationisquitecommonamongaccretingX-ray thecolumnmaybetoohot. pulsarsandisgenerallybelievedtobeduetothechangingview- We like to stress the observed fact, that at the pulse phase ingangleunderwhichtheX-rayemittingregionsareseen(e.g., whereweseethehighestcontinuumfluxthereisessentiallyno Kreykenbohmetal. 2004 and references therein). If we adopt Fe line flux. This should provide some constraints in finding a theidea,thatpeaks(highX-rayflux)inthepulseprofilecanbe feasible geometry. If the above adopted scenario is correct, by associatedwithbeamedradiationemittedfromtheaccretingre- whichwelookdownintothepencilbeamatthepulsepeak,the gionsaroundthemagneticpoles,thentheobservedpulseprofiles Fe line result may be consistent with a hollow cone geometry, arearepresentationoftheemissioncharacteristics.Duringafull where the majority of the radiation escapes through the empty neutronstarrotation we may be seeing differentemitting spots center of the cone, where there is no material which can flu- (mostlikelyfromacomplexmagneticfieldconfigurationwhich oresce, while the walls are seen at off-center angles. It is, of deviatesfromasimpledipole(seee.g.Suchyetal.2008),possi- course, assumed that the bottom of the cone close to the neu- blyhavingamulti-poleconfiguration)andtheemergingbeamed tronstarsurfaceisfilledwithX-rayemittingplasma. radiationunderchangingangles.Thesituationisfurthercompli- Thenon-dependenceofthecyclotronlineenergyprofileon catedbygravitationalbending.Itisthereforenotstraightforward 35dphaseandthemodelofneutronstarfreeprecession: One tointerpretobservedpulseprofilesintermsofaccretiongeom- of the results of this study is the finding that the shape of the etryandbeamingcharacteristics(seee.g.Caballeroetal.2011). cyclotron line energy profile (E vs pulse phase) is indepen- cyc Ifwe,however,assumethatthemainpeakinthepulseprofileof dentof35dphase(Figs.3and4),whilethemaximumcyclotron Her X-1 is due to a reasonablynarrow pencil beam (following line energyincreasesslightlyby ∼0.7keV per0.1unitsof35d e.g.,Pravdoetal. 1978; Klochkovetal. 2008), emitted perpen- phase.Ifweattributethestrongvariationsinpulseprofile with dicular to the neutron star surface at the hot spot of the main 35dphasetoprecessionoftheneutronstar,thatistothechange accreting pole, then we may associate this pulse phase with a oftheangleunderwhichweseetheX-rayemittingregions,we situationwheretheobserverislookingdownintotheaccretion wouldexpectalsotheshapeofthecyclotronlineenergyprofile column, parallel to the magnetic field lines and the velocity of to change with 35d phase. However, this expectation needs a the in-falling material. At this phase we see the maximum cy- quantitativeanalysis.Recentlyconcludeddetailedmodelcalcu- clotronlineenergyandthehardestspectrum(asharpminimum lations(Postnovetal.2012),assumingneutronstarfreepreces- inphotonindexΓ)-thatis,wearelookingdeepdowntosmall sion, have shown, that under a specific set of assumptions (in- distancesfromtheneutronstarsurfacewherethemagneticfield cludingacertainmulti-polegeometryandemissionintonarrow is strongest and the temperature is highest. Here, we also find pencil beams), the observed pulse profiles in the energy range thelargestwidthanddepthofthecyclotronline,aswellasthe 9-13keV(thesameasusedinStaubertetal.2010a,b,2012)can highestE andalocaldipwithinabroadpeakofE . be reproduced with high accuracy. We point out here that the cut fold model of Postnovetal. (2012) is an attempt to give a physi- Along similar lines, the newly discovered structure of a calexplanationofthevariationinpulseprofilesbyneutronstar second (very sharp) minimum in Γ around pulse phase 0.61 freeprecession,requiringseveralspecificassumptions,whilethe (Fig. 7), corresponding to the left shoulder of the main peak, template approach of Staubertetal. (2012), mentioned in the may be the signature of a second pole. At this pulse phase we Introduction, does not need any physical assumptions, it just alsofindindicationsforanotherrelativemaximuminE (Fig. cyc makes use of the observed pulse profiles. We plan to investi- 3). gate whether the here described constancy of the shape of the cyclotron energy profile is consistent with the physical model. Pulsephasedependenceofthe6.4keVironlineflux: Figs. Inthissenseourresultopensanewchanneltotestthemodelof 8and9showasharpanddeepminimumoftheintensityofthe freeprecessionoftheneutronstar. 6.4keVironline,againcoincidentwiththemainpulsepeak.The profileisverysimilartothatofΓ(Fig.7)andtheFelineintensity Acknowledgements. This paper is based on observational data taken by the NASAsatelliteRossiX-rayTimingExplorer(RXTE).Weliketoacknowledge dropsto nearzero at pulse phase ∼0.79 (where Γ is minimal). thededication ofall people whohavecontributed tothegreat success ofthis It is the first time, that such a sharp minimum in the 6.4keV mission.D.V.andcoauthorsthankDLRforfinancialsupportthroughgrant50 flux is observed. While Choietal. (1994), in observations by OR0702andD.K.acknowledgessupportbytheCarlZeissStiftung.Wethank Ginga,andZaneetal.(2004),inobservationsbyXMM-Newton, theanonymousrefereeforveryvaluablecomments. had founda sinusoidal-like modulationwith a broadminimum aroundthepulsepeak,Oosterbroeketal.(2000),withdatafrom References Beppo/SAX, were only able to measure the Fe-L line around 1keV, for which they had found a minimum around the pulse Boynton,P.E.,Crosa,L.M.,&Deeter,J.E.1980,ApJ,237,169 peakwhichwassimilarlysharpanddeepaswenowfindforthe Caballero, I., Kraus, U., Santangelo, A., Sasaki, M., & Kretschmar, P. 2011, A&A,526,A131 6.4keV line. It is generally believed, that the origin for the Fe Choi,C.S.,Nagase,F.,Makino,F.,etal.1994,ApJ,437,449 linesisfluorescenceinrelativelycoolmaterialwhichisbeingil- Coburn,W.,Heindl,W.A.,Rothschild,R.E.,etal.2002,ApJ,580,394 luminatedbytheX-raybeam.Forthegeometricalsite,however, DalFiume,D.,Orlandini,M.,Cusumano,G.,etal.1998,A&A,329,L41 wherethisfluorescenceistakingplace,orwhetheritispredomi- Deeter,J.E.,Scott,D.M.,Boynton,P.E.,etal.1998,ApJ,502,802 nantlyinreflectionorintransmission,nogeneralconsensushas Endo,T.,Nagase,F.,&Mihara,T.2000,PASJ,52,223 Ferrigno,C.,Falanga,M.,Bozzo,E.,etal.2011,inTheX-rayUniverse2011, beenreachedsofar.Severaldifferentregionshavebeenproposed ed.J.-U.Ness&M.Ehle,69–+ (see. e.g. Choietal. 1994 and references therein): 1) the outer Gerend,D.&Boynton,P.E.1976,ApJ,209,562 edgeoftheaccretiondiskextendedintheverticaldirection;2)a Giacconi,R.,Gursky,H.,Kellogg,E.,etal.1973,ApJ,184,227 coronaoftheaccretiondisk;3)the atmosphereofthecompan- ˙Inam,S.C.&Baykal,A.2005,MNRAS,361,1393 Kahabka,P.1987,MPERep.,No.204,139pp.,204 ionstar;4)asurfaceattheAlfve´nradius.TheAlfve´nsurfaceis Klochkov,D.,Shakura,N.,Postnov,K.,Staubert,R.,&Wilms,J.2006,ArXiv currentlythemostpopularone.However,alsotheaccretioncol- Astrophysicse-prints umnwasproposed(e.g.,Leahy2001and˙Inam&Baykal2005), Klochkov,D.,Staubert,R.,Postnov,K.,etal.2008,A&A,482,907 9 D.Vasco,R.Staubert,D.Klochkov,A.Santangelo:RXTEpulsephasespectroscopyofHerX-1 Kreykenbohm,I.,Wilms,J.,Coburn,W.,etal.2004,A&A,427,975 Kunz,M.,Kendziorra,E.,Kretschmar,P.,etal.1996,A&AS,120,C233 Leahy,D.A.2001,inInternationalCosmicRayConference,Vol.6,International CosmicRayConference,2536 Lutovinov,A.A.,Grebenev,S.A.,Pavlinsky,M.N.,&Sunyaev,R.A.2000, AstronomyLetters,26,691 McCray,R.A.,Shull,J.M.,Boynton,P.E.,etal.1982,ApJ,262,301 Oosterbroek,T.,Parmar,A.N.,DalFiume,D.,etal.2000,A&A,353,575 Postnov,K.,Shakura,N.,&Staubert,R.2012,MNRAS,submitted Pravdo,S.H.,Bussard,R.W.,Becker,R.H.,etal.1978,ApJ,225,988 Pravdo,S.H.,Bussard,R.W.,&White,N.E.1979,MNRAS,188,5P Reynolds,A.P.,Quaintrell,H.,Still,M.D.,etal.1997,MNRAS,288,43 Rothschild,R.E.,Markowitz,A.,Rivers,E.,etal.2011,ApJ,733,23 Scott,D.M.&Leahy,D.A.1999,ApJ,510,974 Scott,D.M.,Leahy,D.A.,&Wilson,R.B.2000,ApJ,539,392 Soong,Y.,Gruber,D.E.,Peterson,L.E.,&Rothschild,R.E.1990,ApJ,348, 641 Staubert,R.,Klochkov,D.,Vasco,D.,etal.2012,A&A,00,00,accepted05Dec 12,astro-ph.HE/1212.5472 Staubert, R., Klochkov, D., Vasco, D., & Wilms, J. 2010a, in Proceedings of the 8th INTEGRAL Workshop ”The Restless Gamma-ray Universe” (INTEGRAL2010).September27-302010.DublinCastle,Dublin,Ireland. Published online at http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=115, arXiv:astro-ph.HE1110.6717 Staubert, R., Klochkov, D., Vasco, D., & Wilms, J. 2010b, in Proceedings of the 8th INTEGRAL Workshop ”The Restless Gamma-ray Universe” (INTEGRAL2010).September27-302010.DublinCastle,Dublin,Ireland. Publishedonlineathttp://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=115 Staubert,R.,Klochkov,D.,&Wilms,J.2009,A&A,500,883 Staubert,R.,Shakura,N.I.,Postnov,K.,etal.2007,A&A,465,L25 Suchy,S.,Pottschmidt,K.,Wilms,J.,etal.2008,ApJ,675,1487 Tananbaum,H.,Gursky,H.,Kellogg,E.M.,etal.1972,ApJ,174,L143+ Tru¨mper,J.,Kahabka,P.,Oegelman,H.,Pietsch,W.,&Voges,W.1986,ApJ, 300,L63 Tru¨mper,J.,Pietsch,W.,Reppin,C.,etal.1978,ApJ,219,L105 Vasco,D.2012,PhDthesis,Univ.ofTu¨bingen,Germany Vasco,D.,Klochkov,D.,&Staubert,R.2011,A&A,532,A99+ Voges,W.,Pietsch,W.,Reppin,C.,etal.1982,ApJ,263,803 White,N.E.,Swank,J.H.,&Holt,S.S.1983,ApJ,270,711 Zane,S.&Ramsay,G.2001,inTwoYearsofSciencewithChandra Zane,S.,Ramsay,G.,Jimenez-Garate,M.A.,WillemdenHerder,J.,&Hailey, C.J.2004,MNRAS,350,506 10