ebook img

Pulsator-like spectra from Ultraluminous X-ray sources and the search for more ultraluminous pulsars PDF

0.33 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Pulsator-like spectra from Ultraluminous X-ray sources and the search for more ultraluminous pulsars

DRAFTVERSIONJANUARY16,2017 PreprinttypesetusingLATEXstyleemulateapjv.5/2/11 PULSATOR-LIKESPECTRAFROMULTRALUMINOUSX-RAYSOURCESANDTHESEARCHFORMORE ULTRALUMINOUSPULSARS F.PINTORE1,L.ZAMPIERI2,L.STELLA3,A.WOLTER4,S.MEREGHETTI1,G.L.ISRAEL3 (Received;Revised;Accepted) DraftversionJanuary16,2017 ABSTRACT Ultraluminous X-ray sources (ULXs) are a population of extragalactic objects whose luminosity exceeds the Eddington limit for a 10 M black hole (BH). Their properties have been widely interpreted in terms of (cid:12) 7 accretingstellar-massorintermediate-massBHs.Howeveratleastthreeneutronstars(NSs)havebeenrecently 1 identified in ULXs through the discovery of periodic pulsations. Motivated by these findings we studied the 0 spectralproperties ofasample ofbright ULXsusinga simplecontinuummodel whichwas extensivelyused 2 tofittheX-rayspectraofaccretingmagneticNSsintheGalaxy. Wefoundthatsuchamodel,consistingofa n power-lawwithahigh-energyexponentialcut-off,fitsverywellmostoftheULXspectraanalyzedhere,ata a levelcomparabletothatofmodelsinvolvinganaccretingBH.Onthesegroundsalonewesuggestthatother J non-pulsatingULXsmayhostNSs. Wefoundalsothatabove2keVthespectrumofknownpulsatingULXs 3 is harder than that of the majority of the other ULXs of the sample, with only IC 342 X-1 and Ho IX X-1 1 displaying spectra of comparable hardness. We thus suggest that these two ULXs may host an accreting NS andencouragesearchesforperiodicpulsationsintheflux. ] Subjectheadings:stars: neutron–(stars:) pulsars: general–X-rays: individual(NGC7793P13, NGC5907 E X-1,IC342X-1,HoIXX-1,HoIIX-1,NGC5408X-1,NGC1313X-1,NGC1313X-2, H NGC5204X-1,NGC55ULX1,NGC5643ULX1,NGC6946X-1) . h p 1. INTRODUCTION optically-thick corona close to the BH (e.g. Middleton et al. - o Ultraluminous X-ray sources (ULXs) are a class of extra- 2015). However,thequalityofULXspectraisgenerallylow r galactic, point-likesourceswithluminosityfrom∼ 1039 erg andtheinterpretationoftheirspectralpropertiesisstillmatter t s s−1 up to 1042 erg s−1, in excess of the Eddington limit ofdebate. a By exploiting the recent availability of broadband X-ray for a 10M black hole (BH) (e.g. Fabbiano 2006). Such [ (cid:12) data obtained with the XMM-Newton and NuSTAR satellites, a high X-ray luminosity suggests that they host either inter- we carried out a comprehensive spectral analysis of a large 1 mediate mass BHs accreting at sub-Eddington rate (Colbert sample of the brightest ULXs. Several previous investiga- v & Mushotzky 1999; Miller et al. 2004), or super-Eddington tions focussed on the phenomenological characterization of 5 accreting BHs of stellar mass or of stellar origin (e.g. Glad- 9 stoneetal.2009;Feng&Soria2011). Inparticular,themost the spectra of ULXs (e.g Gonc¸alves & Soria 2006; Stobbart 5 luminous ULXs (> 5 × 1040 erg s−1) are usually consid- etal.2006;Gladstoneetal.2009;Pintore&Zampieri2012; 3 ered as the best intermediate mass BH candidates (e.g. Sut- Suttonetal.2013;Pintoreetal.2014). Motivatedbythedis- 0 tonetal.2012),whilelessluminoussourcescouldbesuper- covery of X-ray pulsations from M82 X-2 and subsequently . fromNGC7793P13andNGC5907X-1,weadoptedasim- 1 EddingtonaccretingBHswithmassesintherange5–80M(cid:12) ple spectral model that was extensively used to fit the X-ray 0 (e.g.Zampieri&Roberts2009).Therecentdiscoveryofthree continuum of accreting magnetic NSs, especially X-ray pul- 7 pulsatingneutronstars(NSs)intheULXM82X-2(Bachetti satorsinGalactichighmassX-raybinaries(formoredetails 1 etal.2014),NGC7793P13andNGC5907X-1(Israeletal. seeWhiteetal.1983,1995;Coburnetal.2001). Themodel : 2016a,Israeletal.2016b)provedthatULXscanbepowered v consists of a power-law with a high-energy exponential cut- byobjectsdifferentfromBHs. i off plus a blackbody; we find that in most cases the ULX X TheULXsspectraaregenerallydescribedintermsofacold spectraarewellfitbysuchamodel, indicatingthatdifferent (kT ∼ 0.1−0.6 keV) soft thermal component coupled to a r interpretationsoftheULXspectraarepossible. a high-energycomponentwithacut-offbelow10keV(e.g.Sut- Wedescribethedatareductioninsection2,wepresentthe tonetal.2013;Bachettietal.2013;Pintoreetal.2014;Mid- results of our spectral analysis in section 3 and we discuss dletonetal.2015). Thesoftcomponentispossiblyassociated theminsection4. tothephotosphereofstrongoutflowsejectedfromtheaccre- tiondiscatsuper-Eddingtonrates(e.g.Poutanenetal.2007; 2. OBSERVATIONSANDDATAANALYSIS Ohsuga & Mineshige 2011), while the high-energy compo- nentmightcomefromthebareinneraccretiondiscorfroman We analyzed a sample of 12 ULXs, including two ULX pulsars,locatedatdistanceslowerthan15Mpc,whichshows a broad luminosity range spanning from ∼ 1039 erg s−1 to 1INAF-IASFMilano,viaE.Bassini15,I-20133Milano,Italy ∼ 1041 erg s−1. The sources have available XMM-Newton 2NAF-OsservatorioAstronomicodiPadova, Vicolodell’Osservatorio and, in some cases, simultaneous (or nearly simultaneous) 5,I-35122Padova,Italy NuSTAR observations of good quality which allow us to put 3INAF-OsservatorioastronomicodiRoma,ViaFrascati44,I-00078, MonteporzioCatone,Italy robustconstraintsonthehighenergycurvatureoftheirX-ray 4INAF,OsservatorioAstronomicodiBrera, viaBrera28, 20121Mi- spectrum(i.e. withatleast10000countsintheXMM-Newton lano,Italy EPIC instruments, as shown in Gladstone et al. 2009). Our 2 Pintoreetal. TABLE1 LOGOFTHEOBSERVATIONSOFTHEULXSANALYZEDINTHISWORKANDORDEREDWITHINCREASINGRA. Source. Obs.ID Date Exp. Obs.ID Date Exp Epoch XMM-Newton (ks) NuSTAR (ks) 0724810401 2013-11-12 33.5 30002039005 2013-11-12 113 1 NGC5907X-1 0729561301 2014-07-09 42.0 80001042002 2014-07-09 57.1 2 - - - 80001042004 2014-07-12 56.3 2 0693760401 2013-11-25 46.0 - - - 1 NGC7793P13 0748390901 2014-12-10 47.0 - - - 2 0028740101 2001-11-15 28.3 - - - 1 NGC55ULX-1 0655050101 2010-05-24 124.0 - - - 2 0150280301 2003-12-21 10.3 - - - 1 NGC1313X-1 0693851201 2012-12-22 125.2 30002035004 2012-12-16 127.0 2 0405090101 2012-12-16 123.3 - - - 1 NGC1313X-2 0693851201 2012-12-22 125.2 30002035004 2012-12-16 127.0 2 0693850601 2012-08-11 59.9 30002032003 2012-08-10 98.6 1 IC342X-1 0693851301 2012-08-17 60.0 30002032005 2012-08-16 127.4 2 0200470101 2004-04-15 93.5 - - - 1 HoIIX-1 0724810101 2013-09-09 12.3 30001031002 2013-09-09 31.4 2 - - - 30001031003 2013-09-09 79.4 2 0724810301 2013-09-17 12.0 30001031005 2013-09-17 111.1 2 0200980101 2004-09-26 117 - - - 1 - - - 30002033005 2012-11-11 40.7 2 HoIXX-1 0693851701 2012-11-12 9.92 30002033006 2012-11-11 35.2 2 0693851801 2012-11-14 13.8 30002033008 2012-11-14 14.5 2 0693851101 2012-11-16 13.3 30002034010 2012-11-15 49.0 2 0405690201 2006-11-19 43.5 - - - 1 NGC5204X-1 0693851401 2013-04-21 16.9 30002037002 2013-04-19 96.0 2 NGC5408X-1 0653380501 2011-01-28 124.1 - - - 1 NGC5643ULX-1 0744050101 2014-08-27 114.0 - - - 1 NGC6946X-1 0691570101 2012-10-21 114.3 - - - 1 sampleissimilartothoseanalyzedinseveralpreviousstudies ting was carried out using XSPEC v.12.8.2 (Arnaud 1996). (e.g.Stobbartetal.2006;Gladstoneetal.2009;Pintoreetal. ThespectraofthepnandthetwoMOScameras, and(when 2014;Middletonetal.2015)andoffersanoverallpictureof available)oftheNuSTARdetectorswerefittogether,foreach the spectral properties displayed by ULXs. In order to ex- epoch. A multiplicative factor was included to account for tract individual spectra with better statistics, observations of possible inter-calibration uncertainties, which were in most thesamesourceobtainedwithintimeintervalsofafewdays cases smaller than 10%. We considered the 0.3–10 keV and weremergedifnosignificantspectralvariationswerepresent. 3–70 keV energy range for EPIC and NuSTARdata, respec- Data taken at very different times and/or showing different tively. spectralstateswereinsteadconsideredasindividualobserva- tions. Additionallytothisselection,wealsoconsidered,for 3. RESULTS eachsource,theobservationswiththelargestsourcespectral 3.1. Broadbandspectralanalysis variability. WelistinTable1theobservationsthatareusedin We fit the spectra with an absorbed power-law with an thiswork. exponential cut-off characterized by two parameters, the The data of the XMM-Newton EPIC instrument (Stru¨der cut-off energy E and the folding energy E : F(E) = c f et al. 2001; Turner et al. 2001) were reduced using SAS v.14.0.0.WeextractedspectrafromeventswithPATTERN≤4 k · E−Γe−(E−Ec)/Ef (HIGHECUT×POWERLAW in XSPEC), withtheexponentialpartactingforE > E . Inmostcases, for EPIC-pn (single- and double-pixel events) and PATTERN c an additional soft component, that we model with a black- ≤ 12forEPIC-MOS(single-andmultiple-pixelevents). We body for simplicity, is needed. This model was extensively set‘FLAG=0’inordertoexcludebadpixelsandeventscom- applied in the past to fit the X-ray continuum of accreting ingfromtheCCDedgesandremovedtimeintervalswithhigh magnetic NSs, notably X-ray pulsators in high mass X-ray background. Thespectrawereextractedfromcircularregions binaries. In those systems the hard component is believed with radius of 30(cid:48)(cid:48) and 65(cid:48)(cid:48) for source and background, re- to originate in a magnetic accretion-column close to the NS spectively. surface, whereas the soft blackbody-like component is usu- TheNuSTARdatawerereducedwiththestandardpipeline, ally ascribed to emission from the inner edge of the disk at basedontheNuSTARDataAnalysisSoftwarev1.3.0(NUS- themagnetosphericboundary(e.g.Whiteetal.1995;Coburn TARDAS) in the HEASOFT FTOOLS v6.16. We obtained etal.2001). cleaned event files by applying the standard corrections. NGC5907X-1wasobservedsixtimeswithXMM-Newton Spectrawereextractedfromcircularregionsofradius40(cid:48)(cid:48)and (e.g. Israeletal.2016b,Fuerstetal.2016)andgoodquality 60(cid:48)(cid:48)forsourceandbackground,respectively. spectra are available for the observations of February 2003, AllXMM-NewtonandNuSTARspectrawererebinnedsoas February 2012, November 2013 and July 2014. Simultane- to have at least 25 and 100 counts per bin, respectively, so ous and quasi-simultaneous NuSTAR data are available for thatminimumχ2 fittingtechniquescouldbeused;modelfit- the 2013 and 2014 observations. The fit of the 2003, 2012 Thesearchfornewultraluminouspulsars 3 for spectral variability, as already reported in the literature (e.g. Sutton et al. 2013; Pintore et al. 2014; Middleton et al. NGC 7793 P13 2015). To illustrate the range of possible states in which the sourcescanbefound,weplotinFig.1thetworepresentative 10-2 spectra of each ULX, choosing for each source the observa- NGC 5907 X-1 tions with the hardest and softest spectrum (see section 2). These are the observations reported in Table 1, with corre- spondingbestfitparameterslistedinTable2. Generally,the“pulsator-like”modelgivesgoodfits,except IC 342 X-1 -4 for a few cases in which the soft thermal component is not 10 strictly required (i.e. IC 342 X-1 in August 2012, and NGC Ho IX X-1 1313 X-2 in December 2012). In all other cases, blackbody NGC 5643 ULX-1 components with temperatures in the range ∼0.15–0.3 keV ] arerequired. Avarietyofpower-lawspectralslopesandcut- y units 10-6 NGC 1313 XN-2GC 1313 X-1 offTphaerraemlaettievreslyislaforguenχd2(Tvaablulees2o).btainedinthefitofHoIXX- r ra 1arecausedbysomeexcessemissionathighenergy,possibly bit indicating the presence of a further hard tail component, as r [a NGC 5204 X-1 discussedinWaltonetal.(2014a). Wenotethathardtailsare ) E observed also in the spectra of some Galactic accreting NSs 2f( 10-8 (e.g.McClintock&Remillard2006). E Finally,thespectraofNGC55ULX1,NGC5408X-1,and Ho II X-1 NGC6946showsomeresidualsaround1keV,asalreadyre- NGC 6946 X-1 ported in literature (e.g. Middleton et al. 2014). These fea- tureshavebeenassociatedlatelytoablendingofunresolved 10-10 NGC 5408 X-1 emissionandabsorptionlinesproducedbythephotosphereof a possible outflowing wind in a scenario of super-Eddington accretiononastellarmasscompactobject(Pintoetal.2016). NGC 55 ULX-1 For the three sources, we find that good fits are obtained with the addition of one or two broad Gaussian absorption -12 lines centered at ∼0.7 keV and ∼1.2 keV and with widths 10 σ ∼0.07−0.13keV. 3.2. Characterizationofthehardcomponent 1 10 Wefoundthatthe“pulsator-like”modelcandescribewell Energy (keV) the spectra of virtually all the ULXs of our sample. Differ- ent broad band spectral shapes and best fit parameters char- FIG.1.—Unfolded(E2F(E))spectraofalltheULXsofoursample. For acterize different sources (see Fig. 1 and Table 2). This is eachsource,weshowthetwomostdifferentspectralstatesobtainedbyfitting themwiththemodelforaccretingNSsdescribedinthetext.Fordisplaypur- particularly evident at low energy, where, besides the effect poses,thespectrahavebeenrebinnedonlyandthefluxisarbitrarilyshifted of different absorption column densities (from ∼ 5 × 1020 ontheyaxis. cm−2 to8×1022 cm−2), therelativeimportanceofthesoft component can differ significantly (even if similar tempera- and 2014 spectra give results consistent within the errors turesaroundkT∼0.2keVarefound). Spectraldifferencesare with absence of spectral variability, as also found by Fuerst apparentalsoathigherenergies,wherethespectrumisdomi- et al. (2016). We therefore report here only the results from natedbythecut-offpower-lawcomponent. Inordertostudy the 2014 observations which are of higher quality and can ingreaterdetaildifferencesintheharderspectralcomponent be complemented with NuSTAR data. They can be fit by (where the effects due to absorption and the additional soft a HIGHECUT×POWERLAW alone (no soft component) with componentarenegligible),searchforcorrelationswithother photon index Γ∼1.5, E = 5.5 keV and E = 8.3 keV. The sourceproperties, andpossiblygatherinformationonthein- c f 2013spectrum, obtainedwhenthesourcewasaboutafactor nermostregionsoftheaccretionflowclosetothecompactob- of2-3fainterthanin2014, isslightlysofter(Γ ∼1.9), butit ject,wecharacterizethehigh-energyspectrathroughacolor- canstillbefitbyacut-offpower-lawwithouttheadditionof colordiagram. Thiswasdonebyusingthefluxesinthe2–4 asoftcomponent. keV, 4–6 keV and 6–30 keV energy bands derived from the ForNGC7793P13,weusetwoobservationstakenin2013 best-fitofTable2. Wepresentthecolor-colordiagraminfig- and2014(noNuSTARdataareavailable). Bothobservations ure2,wherewedefinedthehardnessasthe(6–30keV)/(4–6 givesimilarresults,requiringathermalcomponentwithtem- keV)ratioandthesoftnessas(2–4keV)/(4–6keV)ratio. We peraturekT∼0.2keVinadditiontoacut-offpower-lawwith notethatthefluxesabove10keVareestimateddirectlyfrom Γ∼1.1. AnotherXMM-Newtonobservation,obtainedinMay thespectraonlyinthecaseswhereNuSTARobservationsare 2012whenthesourcewasmuchfainter,providesalesscon- available. Intheothercases,thefluxesarecalculatedfroman strainingspectrum,butconsistentinspectralshapewiththose extrapolationofthe0.3–10keVbest-fitmodel. Asexpected, of2013and2014. sources displaying spectral variations move across different For all other ULXs in our sample, several XMM-Newton regions in this diagram (note again that we pre-selected the and NuSTAR observations are available. We analyze all the mostdifferentspectra ofeachsource)Severalof thesources availablegoodqualityspectra,findinginmostcasesevidence with parameters around hardness∼1.5 and softness∼1.5 be- 4 Pintoreetal. TABLE2 SPECTRALRESULTSOBTAINEDBYADOPTINGTHECONTINUUMMODELTBABS×(BBODY+HIGHECUT×POWERLAW). Src. Epoch TBABS BBODY HIGHECUT POWERLAW GABS NH kTin Norm Ec Ef Γ Norm Energy σ Strenght LXa χ2/dof 1022cm−2 keV 10−6 keV keV 10−3 keV keV 1040ergs−1 NGC5907X-1 1 0.76+−00..0076 - - 6.0+−01..95 8.0+−21..58 1.85+−00..0089 0.19+−00..0022 - - - 4.2 149.44/173 2 0.77+−00..0044 - - 5.5+−00..55 8.3+−00..87 1.48+−00..0045 0.34+−00..0022 - - - 10.9 442.90/442 NGC7793P13 1 0.07+−00..0022 0.22+−00..0022 1.5+−00..32 5.3+−01..42 4.3+−10..78 1.06+−00..0089 0.093+−00..00019 - - - 0.21 357.49/325 2 0.10+−00..0022 0.19+−00..0043 1.1+−00..54 6.6+−01..32 4.5+−31..41 1.11+−00..0047 0.24+−00..0011 - - - 0.53 629.78/563 NGC55ULX-1 1 0.291+−00..005414 0.173+−00..00222 29.3+−55..82 1.424+−00..1029 1.48+−00..4342 0.95+−00..5614 8.1+−32.8 - - - 0.26 700.77/688 2 0.41+−00..0065 0.15+−00..0011 4.0+−00..67 2.00+−00..109 1.5+−00..43 2.3+−00..45 5.9+−11..98 0.75+−00..0011 0.07+−00..0021 0.038+−00..00109 0.23 270.40/243 NGC1313X-1 1 0.3+−00..11 0.24+−00..0068 19+−1124 2.9+−02..79 4.6+−72..25 1.7+−01..52 1.1+−00..88 - - - 1.67 250.54/229 2 0.283+−00..00108 0.205+−00..000088 9.4+−00..66 6.1+−00..59 10.4+−11..41 1.74+−00..0036 5.8+−00..34 - - - 1.07 1703.40/1718 NGC1313X-2 1 0.32+−00..0011 - - 3.4+−00..43 7.7+−10.9 1.60+−00..0044 0.68+−00..0022 - - - 1.05 820.64/860 2 0.19+−00..0044 0.23+−00..0034 1.7+−11..11 1.02+−00..0066 1.8+−00..43 0.9+−00..44 0.28+−00..0046 - - - 0.28 1020.57/987 IC342X-1 1 1.045+−00..008775 0.219+−00..002284 8.7+−42..15 6.66+−00..4556 10.6+−11..42 1.62+−00..005665 0.51+−00..0045 - - - 0.43 937.17/981 2 0.99+−00..002266 - - 6.38+−00..567 15+−21..49 1.915+−00..00331 0.89+−00..0033 - - - 0.51 1061.76/1063 HoIIX-1 1 0.12+−00..0011 0.211+−00..000067 2.0+−00..23 2.0+−00..23 8.7+−21..46 2.1+−00..11 1.6+−00..11 - - - 1.2 1317.83/1317 2 0.10+−00..0022 0.17+−00..0011 13.1+−22..20 5.3+−00..35 8.6+−00..76 1.93+−00..0068 1.00+−00..0078 - - - 0.88 800.29/785 HoIXX-1 1 0.160+−00..000088 0.209+−00..000088 8.7+−00..55 6.0+−00..45 10.6+−22..61 1.38+−00..0033 0.70+−00..0022 - - - 1.4 2191.03/2043 2 0.239+−00..000088 0.21+−00..0065 2.1+−00..99 3.6+−00..22 5.7+−00..22 1.43+−00..0044 2.8+−00..11 - - - 3.8 1546.80/1433 NGC5204X-1 1 0.08+−00..0023 0.240+−00..00029 6.9+−11..32 2.8+−02..58 12.4+−152.4 2.0+−00..13 0.45+−00..0038 - - - 0.81 837.88/821 2 0.05+−00..0033 0.18+−00..0022 3.6+−10..08 4.0+−01..71 7.4+−11..57 1.7+−00..13 0.23+−00..0035 - - - 0.50 414.06/414 NGC5408X-1 1 0.09+0.01 0.162+0.005 14.8+1.5 2.0+0.3 5.7+2.3 2.0+0.2 0.32+0.04 0.75+−00..0012 0.07+−00..0033 0.03+−00..0021 0.87 1035.47/990 −0.01 −0.005 −1.6 −0.2 −1.4 −0.2 −0.05 1.17+0.03 0.08+0.04 0.023+0.02 −0.03 −0.03 −0.009 NGC5643ULX-1 1 0.20+−00..0011 - - 3.9+−00..33 6.5+−10..19 1.46+−00..0044 0.160+−00..000055 - - - 2.98 865.07/934 NGC6946X-1 1 0.40+−00..0076 0.13+−00..0012 25+−188 1.8+−00..34 7.0+−42..73 1.9+−00..23 0.25+−00..0054 0.69+−00..0034 0.13+−00..0043 0.15+−00..1035 0.9 613.68/637 aUnabsorbedluminosityinthe0.3–20keVenergyband;theadopteddistancesare:17.14Mpc,3.58Mpc,2.73Mpc,3.77Mpc,3.27Mpc,5.32Mpc,4.25Mpc,1.99Mpcand4.76Mpc(Tullyetal.2013)for NGC5907,NGC7793,IC342,HoIX,HoII,NGC5408,NGC1313,NGC55andNGC5204,respectively;5.5Mpc(Smithetal.2007)forNGC6946and13.9Mpc(Sandersetal.2003)forNGC5643. comeeithersofter(i.e. movetowardtheupper-leftcornerof pulsarsareIC342X-1andHoIXX-1. the figure) or harder (i.e. move toward the lower-right cor- 4. DISCUSSION ner),butnoneofthemshowsbothbehaviors. Thisleadstoa distinctionbetweentwodifferentclassesofsofterandharder Inpreviousstudies,ULXspectracharacterizedbyacurva- ULXs. Asimilarconclusionwasreachedine.g. Suttonetal. tureabove3–5keVandasoftexcessbelow∼1keVwerede- (2013)andPintoreetal.(2014)basedonadifferentspectral scribed in terms of physically-motivated spectral models for analysis. accreting BHs of different masses (e.g. Stobbart et al. 2006; WehighlightthatthetwoknownULXpulsarsinthesam- Gladstoneetal.2009;Pintore&Zampieri2012;Suttonetal. ple lie in the region of the color-color diagram that corre- 2013;Bachettietal.2013;Waltonetal.2013).Inspiredbythe spondstothehardestspectra. Theirhardnessvaluesareclose recent discovery of pulsations in three ULXs (Bachetti et al. tothemaximumbutstillwithinthebroaddistributionofthe 2014;Israeletal.2016a,b),weappliedhereamodelthathas ULXs in our sample. We applied a Kolmogorov-Smirnov beencommonlyusedtofittheX-raycontinuumofaccreting test (KS) to the distribution of the softness of pulsating and magneticNSs(e.g.Whiteetal.1995)togoodqualityXMM- non-pulsating ULXs finding a KS-statistics of ∼ 88% and a Newton and NuSTAR spectra of a sample of bright ULXs. p-value of ∼ 0.013 that they are drawn from the same sam- Suchmodel, HIGHECUT×POWERLAWplusasoftblackbody, ple. Althoughwiththecurrentlimitedsampleitisdifficultto was introduced empirically (see White et al. 1995, and ref- obtain firm conclusions, it is interesting to note that also the erences therein) and later found to be similar to the spectra ULXpulsarM82X-2hasaratherhardspectrum5(Brightman calculatedfrommodelsofbulkandthermalComptonization etal.2016a,b). in magnetic accretion models (Becker & Wolff 2007) which We note that NGC 7793 P13 attained the lowest values of havealsobeenemployedtofitthespectraofafewX-raypul- the softness ratio of the whole sample. During the epoch sars in HMXBs (Farinelli et al. 2016). The shape of its ex- 1 observation, when no pulsations were found in the timing ponentialcutoffisregulatedbytwoparameters(thee-folding data (Israel et al. 2016b, a), the spectrum of NGC 5907 X-1 energyEf andthecutoffenergyEc),throughwhichthespec- wasclosetothecenterofthedistributioninFig.2. In2014, trawithvastlydifferentcurvatureobservedinaccretingX-ray whenpulsationsweredetected,thepositionofNGC5907X- pulsars at high energies (usually > 7−10 keV) can be fit- 1inthecolor-colordiagramwasclosertothatofNGC7793 ted.Inthisworkwefoundthatthis“pulsator-like”continuum P13. Hence,whenpulsationswereseen,thetwoULXpulsars model, together with a soft component, can be successfully weresignificantlyhard. Theonlysourcesthat,atleastonone usedtodescribealsotheoverallshapeofthespectraofbright epoch, had spectral parameters similar to those of the ULX ULXs6. This suggests also that accreting BH-based models usually adopted for ULXs (e.g. disc blackbody plus Comp- 5Unfortunately,goodqualityXMM-Newtonspectraldataarenotavailable fortheULXpulsarM82X-2,owingtocontaminationfromthebrightnearby 6AswithothercontinuummodelsforULXs,inafewcasestheadditionof ULXM82X-1. broadabsorption-likefeatures(e.g.Pintoetal.2016)and/orahighenergytail Thesearchfornewultraluminouspulsars 5 10 NGC 7793 P13 NGC 5907 X-1 IC 342 X-1 Ho IX X-1 NGC 5643 ULX-1 NGC 1313 X-1 NGC 1313 X-2 NGC 5204 X-1 Ho II X-1 NGC 6946 X-1 NGC 5408 X-1 NGC 55 ULX-1 s s e n t f o S 1 0.5 1 1.5 2 2.5 3 Hardness FIG.2.—Color-colordiagramobtainedfromtheratiosofthefluxestimatedintheenergyranges2–4keV,4–6keVand6–30keVandestimatedfromthe best-fitsoftable2. tonization) do not necessarily have the interpretative power whether BH-models or the pulsator-like model we adopted thathasbeenattributedtothem. provide a statistically better fit to the X-ray continuum of Inourspectralfits,thesoftblackbodycomponenthasatem- bright ULXs. The two types of models resemble each other peratureof∼0.1-0.3keVinallsources,butitsrelativeimpor- inthattheybothcompriseasoftcomponent(ablackbodyor tancediffersacrossdifferentspectraandsources. Theequiva- adisk-blackbody,whichisverydifficulttodistinguishatthe lentradiusofthethermallyemittingregion,inferredfromthe softX-rayenergieswhereitisseen)andahardercomponent normalizationoftheblackbodycomponent,istypicallylarger comprisingapowerlaw-likespectrumwithexponentialcutoff, than100km.Thisvaluerulesoutanyassociationwiththepu- whichlikelyoriginatesfromComptonizationinanaccretion tative NS surface, but may be consistent with the size of the diskcoronainthecaseofBHsandfromthepost-shockregion emittingregionofthediscclosetotheco-rotationradius,asin of a magnetically-funneled accretion column in the case of thecaseofsomeX-raypulsatorsandULXpulsars(Israeletal. NSs. Theshapeofthecut-offcanbesmootherorsteeperthan 2016a,b). Alternatively, since pulsating ULXs have super- a simple exponential in the pulsator-like model. In order to Eddingtonaccretionrates, thesoftcomponentmayoriginate ascertainwhatobservationswouldberequiredtodistinguish in a powerful outflow that is ejected from the accretion disc between BH and NS-like spectral models we simulated the (e.g. Poutanen et al. 2007; Ohsuga & Mineshige 2011; Mid- spectraofIC342X-1andNGC1313X-1byusingthebest-fit dletonetal.2015). DISKBB+COMPTTmodel(seee.g. Middletonetal.2015)and The best fit values derived with the HIGHECUT a1MsexposuretimewithXMM-NewtonandNuSTAR.Byfit- ×POWERLAW for the hard component span a fairly large tingthesespectrawithaHIGHECUT×POWERLAWmodel,we range,bothinspectralslopeandcut-offandfoldingenergies, foundstructuredspectralresidualsathighenergy(>10keV), as observed also in galactic accreting X-ray pulsars. This notobservedwithaDISKBB+COMPTTmodel. Thesamesim- component is believed to arise in the post-shock region of ulationwascarriedoutbasedonthespecificationsofthefu- the accretion column above the surface of the neutron star. ture X-ray mission Athena+7 where a discrimination of the Recentanalyticalcalculations,aswellas2Dradiation-hydro- twomodelsrequiredanexposuretimeofatleast∼100ksin simulationsofaccretionontomagnetizedNSs, showthatfor theWFIinstrument. However, wehighlightthatthesimple magneticfieldsof∼ 1014 Gorlarger,veryhighluminosities DISKBB+COMPTTmodel,whenusingNuSTARdata,hasbeen (up to 2-3 orders of magnitude above the Eddington limit) challengedinthesourcesHoIXX-1(Waltonetal.2014b),al- can be produced (Mushtukov et al. 2015; Kawashima et al. readyindicatingthatULXspectradonotcompletelysuitwith 2016). aBHdescriptiononly. Basedoncurrentlyavailabledata,itisnotpossibletoassess The relatively large number of parameters in the BB + HIGHECUT×POWERLAW model hampers a straightforward (e.g.Waltonetal.2014b;Mukherjeeetal.2015)provednecessaryinorder tomakethefitacceptable 7http://www.the-athena-x-ray-observatory.eu/ 6 Pintoreetal. comparisonbetweenthesources,butaclearpictureemerges bealsonotedthatX-rayluminosityswingoftheULXpulsars from a color-color diagram in which only the range above 2 is much larger ((cid:38) a factor of 100) than that of IC 342 X-1 keVisconsidered,whereabsorptioneffectsarenegligibleand and Ho IX X-1 (a factor of ∼ 5 only). Following Israel et thereisno(ormarginal)contaminationfromthesoftcompo- al. (2016a,b)andassumingthatthesourcesareallviewedat nent. This clearly shows that the ULX pulsars, when pulsa- comparableinclinationanglesandhavecomparablebeaming, tionsaredetected,haveaharderspectrumthanthatofthema- weexpectthatthehighertheluminositythehigherthemag- jorityoftheotherULXsofthesample(notethatthespectrum neticfield.Israeletal.(2016a,b)estimatedadipolarmagnetic ofNGC5907X-1wassomewhatsofterin2013,whennopul- fieldof∼ 3×1013 GforNGC5907X-1and∼ 5×1012 G sationsfromthissourceweredetected). Therearenoinstru- for NGC 7793 P13. Since IC 342 X-1 and Ho IX X-1 have mentaleffectsthatfavorthedetectionofpulsations,ifpresent, luminositiesof∼1040ergs−1,wecanroughlyguessadipo- in harder sources, but we cannot exclude that for some pro- lar magnetic field of ∼1013 G for both sources if their spin cesses intrinsic to the sources the flux modulation increases periodwillturnouttobeintherangeofsecondsaswell. when their spectra become harder. It is possible to specu- late that the harder sources are those observed more directly intheinnerregionsclosetothecompactobjects(orpossibly 5. CONCLUSION fromanaccretioncolumn, Fuerstetal.2016)andthismight We adopted a commonly used spectral model for accret- facilitate the detection of pulsations in the case of accreting ingX-raypulsatingNSintheGalaxytodescribethespectra NS; while for softer sources the inner regions might be pos- of a sample of bright ULXs. We found that this model well siblyoccluded(becauseofhigheranglesofthelineofsight) describesthespectraofmostULXs, suggestingthatspectral by cold, optically thick plasmas which reduce the pulsation models based on accreting BHs may not have the interpre- coherence. tative power that has been ascribed to them up to now. We None of the other sources showed high-energy spectra as conclude that other ULXs may be found to host NSs accret- hardasthehardestspectraoftheULXpulsars,exceptforIC ingatsuper-Eddingtonrates. Weshowedalsothattheknown 342X-1andHoIXX-1.Thespectralparametersofthesetwo pulsatingULXsareamongstthehardestsourcesofoursam- sourcesoverlap,atleastononeepoch,withthoseoftheULX ple,withIC342X-1andHoIXX-1havingcomparablyhard pulsars (see Fig. 2). Hence we suggest that IC 342 X-1 and spectra.Basedontheirspectralpropertiesalone,wethussug- Ho IX X-1 may be good candidates NS ULXs. On the ba- gestthesetwosourcesarelikelycandidateNSULXs. sisoftheirspectrumalone,NGC5408X-1,HoIIX-1,NGC 1313X-1andX-2,NGC5643ULX1andNGC6946X-1are instead less likely to contain NSs. The failure to detect pul- ACKNOWLEDGEMENTS sations so far in IC 342 X-1 and Ho IX X-1 may be caused We thank the anonymous referee for his/her helpful com- byintermittentactivityofperiodicfluxmodulationand/orby ments. We acknowledge financial contribution from the the presence of a large period derivative. However it should agreementASI-INAFI/037/12/0andPRININAF2014. REFERENCES Arnaud,K.A.1996,inASPConf.Ser.,SanFranciscoCA,Vol.101,Jacoby, Miller,J.M.,Fabian,A.C.,&Miller,M.C.2004,ApJ,614,L117 G.H.andBarnes,J.,eds.,AstronomicalDataAnalysisSoftwareand Mukherjee,E.S.,Walton,D.J.,Bachetti,M.,&Harrison,F.A.e.a.2015, SystemsV.,17 ApJ,808,64 Bachetti,M.,Harrison,F.A.,Walton,D.J.,etal.2014,Nature,514,202 Mushtukov,A.A.,Suleimanov,V.F.,Tsygankov,S.S.,&Poutanen,J. Bachetti,M.,Rana,V.,Walton,D.J.,etal.2013,ApJ,778,163 2015,MNRAS,454,2539 Becker,P.A.,&Wolff,M.T.2007,ApJ,654,435 Ohsuga,K.,&Mineshige,S.2011,ApJ,736,2 Brightman,M.,Harrison,F.,Walton,D.J.,etal.2016a,ApJ,816,60 Pinto,C.,Middleton,M.J.,&Fabian,A.C.2016,Nature,533,64 Brightman,M.,Harrison,F.A.,Barret,D.,etal.2016b,ApJ,829,28 Pintore,F.,&Zampieri,L.2012,MNRAS,420,1107 Coburn,W.,Heindl,W.A.,Gruber,D.E.,etal.2001,ApJ,552,738 Pintore,F.,Zampieri,L.,Wolter,A.,&Belloni,T.2014,MNRAS,439,3461 Colbert,E.J.M.,&Mushotzky,R.F.1999,ApJ,519,89 Poutanen,J.,Lipunova,G.,Fabrika,S.,Butkevich,A.G.,&Abolmasov,P. Fabbiano,G.2006,ARA&A,44,323 2007,MNRAS,377,1187 Farinelli,R.,Ferrigno,C.,Bozzo,E.,&Becker,P.A.2016,A&A,591,A29 Sanders,D.B.,Mazzarella,J.M.,Kim,D.-C.,Surace,J.A.,&Soifer,B.T. Feng,H.,&Soria,R.2011,NewAstronomyReviews,55,166 2003,AJ,126,1607 Fuerst,F.,Walton,D.J.,Stern,D.,etal.2016,ArXive-prints, Smith,B.J.,Struck,C.,Hancock,M.,etal.2007,AJ,133,791 arXiv:1610.00258 Stobbart,A.-M.,Roberts,T.P.,&Wilms,J.2006,MNRAS,368,397 Gladstone,J.C.,Roberts,T.P.,&Done,C.2009,MNRAS,397,1836 Stru¨der,L.,etal.2001,A&A,365,L18 Gonc¸alves,A.C.,&Soria,R.2006,MNRAS,371,673 Sutton,A.D.,Roberts,T.P.,&Middleton,M.J.2013,MNRAS,435,1758 Israel,G.L.,Papitto,A.,Esposito,P.,Stella,L.,&Zampieri,e.a.2016a, Sutton,A.D.,Roberts,T.P.,Walton,D.J.,Gladstone,J.C.,&Scott,A.E. ArXive-prints,arXiv:1609.06538 2012,MNRAS,423,1154 Israel,G.L.,Belfiore,A.,Stella,L.,etal.2016b,ArXive-prints, Tully,R.B.,Courtois,H.M.,Dolphin,A.E.,Fisher,J.R.,&etal.2013,AJ, arXiv:1609.07375 146,86 Kawashima,T.,Mineshige,S.,Ohsuga,K.,&Ogawa,T.2016,PASJ,68,83 Turner,M.J.L.,etal.2001,A&A,365,L27 McClintock,J.E.,&Remillard,R.A.2006,inCompactstellarX-ray Walton,D.J.,Harrison,F.A.,Grefenstette,B.W.,Miller,J.M.,&etal. sources,ed.W.H.G.LevinandM.vanderKlis(Cambridge:Cambridge 2014a,ArXive-prints,arXiv:1402.2992 UniversityPress),157 —.2014b,ApJ,793,21 Middleton,M.J.,Heil,L.,Pintore,F.,Walton,D.J.,&Roberts,T.P.2015, Walton,D.J.,Miller,J.M.,Harrison,F.A.,etal.2013,ApJ,773,L9 MNRAS,447,3243 White,N.E.,Nagase,F.,&Parmar,A.N.1995,X-rayBinaries,1 Middleton,M.J.,Walton,D.J.,Roberts,T.P.,&Heil,L.2014,MNRAS, White,N.E.,Swank,J.H.,&Holt,S.S.1983,ApJ,270,711 438,L51 Zampieri,L.,&Roberts,T.P.2009,MNRAS,400,677

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.