Astronomy&Astrophysicsmanuscriptno.paper (cid:13)c ESO2017 February1,2017 Pulsating low-mass white dwarfs in the frame of new evolutionary sequences IV. The secular rate of period change LeilaM.Calcaferro1,2,AlejandroH.Co´rsico1,2,andLeandroG.Althaus1,2 7 1 0 1 Grupo deEvolucio´n EstelaryPulsaciones, FacultaddeCiencias Astrono´micasy Geof´ısicas, 2 UniversidadNacionaldeLaPlata,PaseodelBosques/n,1900,LaPlata,Argentina n 2 Instituto de Astrof´ısica La Plata, CONICET-UNLP, Paseo del Bosque s/n, 1900, La Plata, a J Argentina 1 e-mail:lcalcaferro,acorsico,[email protected] 3 Received;accepted ] R S ABSTRACT . h p Context.Anincreasingnumberoflow-mass(M⋆/M⊙ . 0.45)andextremelylow-mass(ELM, - o M⋆/M⊙.0.18−0.20)white-dwarfstarsarecurrentlydiscoveredinthefieldoftheMilkyWay. r Someofthesestarsexhibitlong-periodg-modepulsations,andarecalledELMVvariablestars. t s a Also,somelow-masspre-whitedwarfstarsshowshort-period p-mode(andlikelyradial-mode) [ photometricvariations, and aredesignated aspre-ELMVvariable stars.Theexistence ofthese 1 newclassesofpulsatingwhitedwarfsandpre-whitedwarfsopenstheprospectofexploringthe v binaryformationchannelsoftheselow-masswhitedwarfsthroughasteroseismology. 0 8 Aims.Wepresentatheoreticalassessmentoftheexpectedtemporalratesofchangeofperiods(Π˙) 8 forsuchstars,basedonfullyevolutionary low-massHe-corewhitedwarfandpre-whitedwarf 8 0 models. . 1 Methods.Ouranalysisisbasedonalargesetofadiabaticperiodsofradialandnonradialpulsa- 0 tionmodescomputedonasuiteoflow-massHe-corewhitedwarfandpre-whitedwarfmodels 7 1 with masses ranging from 0.1554 to 0.4352M⊙, which were derived by computing the non- : v conservativeevolutionofabinarysystemconsistingofaninitially1M⊙ZAMSstaranda1.4M⊙ i X neutronstarcompanion. r Results.Wecomputethesecularratesofperiodchangeofradial(ℓ=0)andnonradial(ℓ=1,2) a gand pmodesforstellarmodelsrepresentative ofELMVandpre-ELMVstars,aswellasfor stellarobjectsthat areevolving justbeforetheoccurrence of CNOflashesattheearlycooling branches.WefoundthatthetheoreticallyexpectedmagnitudeofΠ˙ ofgmodesforpre-ELMVs arebyfarlargerthanforELMVs.Inturn,Π˙ ofgmodesformodelsevolvingbeforetheoccur- renceofCNOflashesarelargerthanthemaximumvaluesoftheratesofperiodchangepredicted forpre-ELMVstars.Regarding pandradialmodes,wefoundthatthelargerabsolutevaluesof Π˙ correspondtopre-ELMVmodels. Conclusions.Weconcludethatanyeventualmeasurementofarateofperiodchangeforagiven pulsatinglow-masspre-whitedwarforwhitedwarfstarcouldshedlightabout itsevolutionary status.Also,inviewofthesystematicdifficultiesinthespectroscopicclassificationofstarsofthe 1 Pleasegiveashorterversionwith:\authorrunning and/or \titilerunning priorto \maketitle ELMSurvey,aneventualmeasurementofΠ˙ couldhelptoconfirmthatagivenpulsatingstaris anauthenticlow-masswhitedwarfandnotastarfromanotherstellarpopulation. Keywords.asteroseismology,stars:oscillations,whitedwarfs,stars:evolution,stars:interiors, stars:variables:general 1. Introduction Low-mass (M /M . 0.45) white dwarfs (WD) are probably produced by strong mass-loss ⋆ ⊙ episodesattheredgiantbranchphaseoflow-massstarsinbinarysystemsbeforetheHe-flashonset (Althausetal.2010).SinceHeburningisavoided,theyareexpectedtoharborHecores,incontrast to average-mass(M ∼ 0.6M ) C/O-coreWDs. Inparticular,binaryevolutionisthe mostlikely ⋆ ⊙ originfortheso-calledextremelylow-mass(ELM)WDs,whichhavemassesM ∼0.18−0.20M . ⋆ ⊙ Theevolutionoflow-massWDsisstronglydependentontheirstellarmassandtheoccurrenceof elementdiffusionprocesses(Althausetal.2001).Althausetal.(2001,2013);Istrateetal.(2016b) havefoundthatelementdiffusionleadstoadichotomyregardingthethicknessoftheHenvelope, whichtranslatesintoadichotomyintheageoflow-massHe-coreWDs.Specifically,forstarswith M &0.18−0.20M ,theWDprogenitorexperiencesmultiplediffusion-inducedCNOthermonu- ⋆ ⊙ clearflashesthatconsumemostoftheHcontentoftheenvelope,andasaresult,theremnantenters its finalcooling track with a verythin H envelope.The resulting objectis unableto sustain sub- stantialnuclearburningwhileitcools,anditsevolutionarytimescaleisrathershort(∼ 107−108 yr). On the contrary,if M . 0.18−0.20M , the WD progenitordoesnot experienceH flashes ⋆ ⊙ at all, and the remnant enters its terminal cooling branch with a thick H envelope. In this case, residual H nuclear burning via pp-chain becomes the main energy source, that ultimately slows downtheevolutionofthestar,inwhichcasethecoolingtimescaleisoftheorderof∼109yrs.The agedichotomyhasbeenalsosuggestedbyobservationsofthoselow-massHe-coreWDsthatare companionstomillisecondpulsars(Bassaetal.2003). In the past few years, numerous low-mass WDs, including ELM WDs, have been detected through the ELM survey and the SPY and WASP surveys (see Koesteretal. 2009; Brownetal. 2010,2012;Maxtedetal.2011;Kilicetal.2011,2012;Brownetal.2013;Gianninasetal.2014; Kilicetal.2015;Gianninasetal.2015;Brownetal.2016a,b).Theinterestinlow-massWDshas beengreatlypromotedbythediscoveryofpulsationsinsomeofthem(Hermesetal.2012,2013c,a; Kilicetal. 2015;Belletal. 2015,2016)1.Thediscoveryofpulsatinglow-massWDs (hereinafter ELMVs2)constitutesauniquechanceforprobingtheinteriorofthesestarsandeventuallytotest their formation scenarios by employing the methods of asteroseismology. Theoretical adiabatic pulsationalanalyzesof these stars (Steinfadtetal. 2010;Co´rsicoetal. 2012c; Co´rsico&Althaus 2014a) show that g modes in ELM WDs are restricted mainly to the core regions, providing the chance to constrain the core chemical structure. Also, nonadiabatic stability computations (Co´rsicoetal.2012c;VanGrooteletal.2013;Co´rsico&Althaus2016)showthatmanyunstable g and p modesare excited by a combinationof the κ−γ mechanism(Unnoetal. 1989) and the 1 ThestarSDSSJ135512+195645discoveredbyBelletal.(2016)islikelyahigh-amplitudeδScutipul- satorwithanoverestimatedsurfacegravity,aspointedbytheseauthors. 2 Forsimplicity,hereandthroughoutthepaperwerefertothepulsatinglow-massWDsasELMVs,evenif M⋆&0.18−0.20M⊙. 2 Pleasegiveashorterversionwith:\authorrunning and/or \titilerunning priorto \maketitle “convectivedriving”mechanism(Brickhill1991),bothofthemactingattheH-ionizationzone.In addition,theεmechanismduetostableHburningcouldcontributetodestabilizesomeshort-period gmodesinELMWDs(Co´rsico&Althaus2014b). Apart from ELMVs, pulsations in several objects that are likely the precursors of low-mass WD stars have been detected in the last years (Maxtedetal. 2013, 2014; Zhangetal. 2016; Gianninasetal. 2016; Cortietal. 2016)3. Nonadiabatic stability computations for radial modes (Jeffery&Saio 2013) and nonradial p and g modes (Co´rsicoetal. 2016a; Gianninasetal. 2016; Istrateetal. 2016a) have revealed that the excitation of pulsationsin these pre-WDs is the κ−γ mechanismactingmainlyatthezoneofthesecondpartialionizationofHe,withaweakercontri- butionfromtheregionofthefirstpartialionizationofHeandthepartialionizationofH.So,the abundanceofHeintheenvelopesofthisnewclassofpulsatingstars(hereinafterpre-ELMVs4)isa crucialingredientfordestabilizingthepulsationmodes(Co´rsicoetal.2016a;Istrateetal.2016a). Theg-modepulsationperiods(Π)ofWD starsexperienceaseculardriftastheycool,giving placetoadetectablerateofperiodchange,Π˙ ≡dΠ/dt.Specifically,asthetemperatureinthecore ofaWDdecreases,theplasmaincreasesitsdegreeofdegeneracysothattheBrunt-Va¨isa¨la¨(buoy- ancy)frequency—thecriticalfrequencyofg-modepulsations(Unnoetal.1989)—decreases,and the pulsationalspectrum of the star is shifted to longer periods. On the other hand, gravitational contraction(ifpresent)actsintheoppositedirection,favoringtheshorteningofthepulsationpe- riods.Thecompetitionbetweentheincreasingdegeneracyandgravitationalcontractiongivesrise to adetectableΠ˙. Inparticular,ithasbeenshownbyWingetetal.(1983) thatthe rateof change oftheg-modepulsationperiodsisrelatedtotherateofchangeofthetemperatureattheregionof theperiodformation,T˙,andtherateofchangeofthestellarradius,R˙ ,accordingtothefollowing ⋆ order-of-magnitudeexpression: Π˙ T˙ R˙ ≈−a +b ⋆, (1) Π T R ⋆ where a and b are constants whose values depend on the details of the WD modeling (however a,b ≈ 1). The first term in Eq. (1) corresponds to the rate of change in period induced by the coolingoftheWD, andsinceT˙ < 0,itisapositivecontribution.Thesecondtermrepresentsthe rateofchangeduetogravitationalcontraction(R˙ <0),anditisanegativecontribution. ⋆ In the cases in which robust measurements of secular period drifts of pulsating WDs can be achieved,anumberofimportantapplicationscanbe—inprinciple—carriedout(Mukadametal. 2003). In particular, the derived values of Π˙ could help in calibrating the WD cooling curves, thus reducing the theoretical uncertainties of WD cosmochronology to constrain the age of the Galacticdisk(e.g.,Harrisetal.2006),halo(e.g.,Isernetal.1998),andGalacticglobularclusters (e.g.,Hansenetal.2013)andopenclusters(Garc´ıa-Berroetal.2010).ThemeasurementofΠ˙ also couldallowustoinferthechemicalcompositionofthecoreofaWD(Kepleretal.2005).Thisis becausetherateofcoolingofWDs, andso,therateofperiodchangeofagivenpulsationmode, dependprimarilyonthecorecompositionandthestellarmass.Atfixedmass,Π˙ islargerforhigher meanatomicweightofthecore.Thisallowstoplaceconstraintsonthecorechemicalcomposition. 3 ThenatureofthevariablestarsreportedbyCortietal.(2016)isunclear,astheycouldbeprecursorsof low-massWDstarsor,alternatively,δScuti/SXPhe-likestars,aspointedbytheseauthors. 4 Hereandthroughoutthepaperwerefertothepulsatinglow-masspre-WDsaspre-ELMVs,evenifM & ⋆ 0.18−0.20M⊙. 3 Pleasegiveashorterversionwith:\authorrunning and/or \titilerunning priorto \maketitle AnotherpossibleapplicationofthemeasurementofΠ˙ isthedetectionofplanets.Theorbitalmotion of a pulsating WD around the center of mass of the system due to the possible presence of a planet modify the light travel time of the pulses. As a result, the observed arrival time on Earth changes,thusprovidingan alternativemethodto detectthe planet(Mullallyetal. 2008). Finally, the rates of periodchange in WDs allow, in principle,to place constraintson axions(Isernetal. 1992; Co´rsicoetal. 2001; Bischoff-Kimetal. 2008; Co´rsicoetal. 2012a,b, 2016b; Battichetal. 2016),neutrinos(Wingetetal.2004;Co´rsicoetal.2014),andthepossiblesecularrateofvariation ofthegravitationalconstant(Co´rsicoetal.2013).Notethat,however,inordertoestablishrobust constraints based on the rate of change of periods, it is necessary to know with some degree of accuracythetotalmass,theeffectivetemperature,thecorecomposition,andtheenvelopelayering ofthetargetstar(Fontaine&Brassard2008). The rate of change of the periods can be measured, in principle, by monitoring a pulsat- ing WD over a long time interval when one or more very stable pulsation periods are present in their power spectrum. In the case of pulsating DA (H-rich atmosphere) and DB (He-rich at- mosphere) WDs, also called DAV and DBV stars, respectively, cooling dominates over gravita- tional contraction, in such a way that the second term in Eq. (1) is usually negligible, and only positive values of the observed rate of change of period are expected (Winget&Kepler 2008; Fontaine&Brassard2008;Althausetal.2010).ForC/O-coreDAVs,theexpectedratesofperiod changearein therange10−15−10−16 s/s(Bradleyetal. 1992;Bradley1996),inexcellentagree- ment with the measured values for G117−B15A (Π˙ = 4.19 ± 0.73 × 10−15 s/s, Kepler 2012), R548 (Π˙ = 3.3±1.1×10−15 s/s, Mukadametal. 2013) and L19−2 (Π˙ = 3.0±0.6×10−15 s/s, Sullivan&Chote 2015), although in strong conflict with the value derived for WD 0111+0018 (Π˙ > 10−12 s/s, Hermesetal. 2013b). For DBVs, an estimate of the rate of period change has beenobtainedforPG1351+489(Π˙ = 2.0±0.9×10−13 s/s,Redaellietal.2011),inlinewiththe theoreticalexpectations(Π˙ ∼ 10−13−10−14 s/s; Wingetetal. 2004;Co´rsico&Althaus2004). In the case of pulsating hot WD and pre-WD stars, also called GW Vir or pulsating PG1159 stars (He-, C-, and O-rich atmosphere),theoreticalmodelspredictrates of period changein the range 10−11−10−12s/s(Kawaler&Bradley1994;Co´rsico&Althaus2006;Co´rsicoetal.2008).Forthe higheffectivetemperaturescharacterizingtheGWVirinstabilitystrip,gravitationalcontractionis stillsignificant,tosuchadegreethatitsinfluenceonΠ˙ canovercometheeffectsofcooling.Inthis case thesecondtermin Eq.(1) isnotnegligibleand,therefore,eitherpositiveornegativevalues of Π˙ are possible. Π˙ for severalg modes has been measured in the case of the prototypicalGW Virstar,PG1159−035(Costa&Kepler2008).Thestarexhibitsamixtureofpositiveandnegative Π˙ values of large magnitude, up to ∼ 4 × 10−10 s/s. In particular, the rate of period change of the modewith periodΠ = 517.1s is Π˙ = 1.52±0.05×10−10 s/s, an order of magnitudelarger thanthetheoreticalpredictions(Kawaler&Bradley1994;Co´rsico&Althaus2006;Co´rsicoetal. 2008). Althausetal. (2008) have foundthatthis discrepancycouldbe alleviated if PG1159−035 is characterizedby a thin He-rich envelope,leading to remarkablylarge magnitudesof the rates of period change. A measurement of Π˙ in another GW Vir star, PG0112+200, has been carried outby Vauclairetal. (2011). The derivedratesof periodchangeare muchlarger than those pre- dictedbytheoreticalmodels(Co´rsicoetal.2007),callingforthepresenceofothermechanism(s) apartfromneutrinocoolingtoexplainthedisagreement.Inparticular,amechanismthatcouldbe playingadominantroleisresonantmodecouplinginducedbytherotation(Vauclairetal.2011). 4 Pleasegiveashorterversionwith:\authorrunning and/or \titilerunning priorto \maketitle Acautionarynoteregardingtheinterpretationofthemeasuredratesofperiodchangeinpulsating WDsisneededhere.ThestudiesbyHermesetal.(2013b)fortheDAVstarWD0111+0018,and Vauclairetal. (2011) for the GW Vir star PG0112+200(among others), indicate that our under- standingoftheratesofperiodchangeinpulsatingWDsisfarfromcomplete,andthisshouldbe keptinmindwhenusingΠ˙ intheapplicationsmentionedbefore. Inthispaper,thefourthoneofaseriesdevotedtolow-massWDandpre-WDstars,wepresent forthefirsttimeadetailedassessmentofthetheoreticaltemporalratesofperiodchangeofELMV and pre-ELMV stars. According to the theoretically estimated rates of cooling of these stars (Althausetal. 2013), low-mass WDs cool slower than low-mass pre-WDs. On these grounds, it isexpectedthatELMVswillhavesmallerratesofperiodchangethanpre-ELMVs.Therefore,the eventualmeasurementoftherateofperiodchangefora givenpulsatingstarcouldbepotentially usefultodistinguishinwhichevolutionarystagethestar is. Also,aneventualmeasurementofΠ˙ couldhelp,inprinciple,todistinguishgenuineELMWDs(M .0.18−0.20M )thathavethickH ⋆ ⊙ envelopesandlongcoolingtimescales,fromlow-massWDs(M &0.18−0.20M ),characterized ⋆ ⊙ by thinner H envelopesand shorter coolingtimescales. However,we must keep in mind that the coolingratesofthiskindofstarscouldbesoslow,thatanysecularperiodchangewouldbevery difficulttodetect.Notwithstanding,someofthesestarsmaynotbeontheirterminalcoolingtracks butrathermaybeonthepre-WDstage,orevengoingtoaCNOflash,andthushavemuchhigher (andmuchmoreeasilymeasurable)Π˙ values.Inotherwords,thedetectionofanysignificantsec- ularperiodchangewouldbestrongevidencefortheobjecttobenotonitsfinalcoolingtrackasan ELMVstar.AlthoughthemeasurementofΠ˙ foranyofthesestarsisnotexpectedshortly,itcould beachievedinthenextyearsbymeansofcontinuousphotometricmonitoringoftheseobjects. The paper is organizedas follows. In Sect. 2 we brieflydescribe ournumericaltools andthe mainingredientsoftheevolutionarysequencesweemploytoassesstheratesofperiodchangeof low-massHe-coreWDsandpre-WDs.InSect.3wepresentindetailourresultsofΠ˙ forELMV and pre-ELMV models. In particular, we study the dependence of the rates of period change of nonradialdipole (ℓ = 1) g and p modes, and radial (ℓ = 0) modes with the stellar mass and the effectivetemperature.WeexpandtheanalysisbyincludingtheassessmentofΠ˙ forstellarmodels evolving at stages previous of the developmentof thermonuclear CNO flashes during the early- coolingphase.Finally,inSect.4wesummarizethemainfindingsofthepaper. 2. Modeling 2.1.Evolutionarycode Thefullyevolutionarymodelsoflow-massHe-coreWDandpre-WDstarsonwhichthisworkis basedweregeneratedwiththeLPCODEstellarevolutioncode.LPCODEcomputesindetailthecom- pleteevolutionarystagesleadingtoWDformation,allowingonetostudytheWDandpre-WDevo- lutioninaconsistentwaywiththeexpectationsoftheevolutionaryhistoryofprogenitors.Details of LPCODEcan be foundin Althausetal. (2005, 2009, 2013, 2015, 2016) andreferencestherein. Here,wementiononlythosephysicalingredientswhicharerelevantforouranalysisoflow-mass, He-coreWDandpre-WDstars(seeAlthausetal.2013,fordetails).ThestandardMixingLength Theory(MLT)forconvectionintheversionML2isused(Tassouletal.1990).Themetallicityof the progenitorstars has been assumed to be Z = 0.01.Radiative opacities for arbitrarymetallic- 5 Pleasegiveashorterversionwith:\authorrunning and/or \titilerunning priorto \maketitle 5,5 0.1650 0.1612 0.1554 blue edge (l= 1) SDSS J1735 0.1706 SDSS J2228 6 SDSS J2139 SDSS J1112 0.1762 SDSS J1355 PSR J1738 SDSS J1614 SDSS J1840 0.1805 6,5 0.1863 SDSS J1618 g g 0.1917 o l 0.2019 SDSS J1518 0.2389 7 0.2707 0.3205 0.3624 7,5 ELMV stars 0.4352 Template models 11000 10000 9000 8000 7000 T [K] eff Fig.1. T − logg plane showing the low-mass He-core WD evolutionary tracks (final cooling eff branches)ofAlthausetal.(2013).Numberscorrespondtothestellarmassofeachsequence.The locationofthetenknownELMVs(Hermesetal.2012,2013c,a;Kilicetal.2015;Belletal.2015, 2016) are marked with large red circles (T and logg computed with 3D model atmospheres eff corrections). Stars observed not to vary (Steinfadtetal. 2012; Hermesetal. 2012, 2013c,a) are depictedwithsmallblackcircles.TheGraysquaresandtrianglesontheevolutionarytracksindicate thelocationofthetemplatemodelsanalyzedinthe text.Thedashedbluelinecorrespondstothe blueedgeoftheinstabilitydomainofℓ = 1gmodesaccordingtothenonadiabaticcomputations ofCo´rsico&Althaus(2016)usingML2(α=1.0)versionoftheMLTtheoryofconvection. ity in the range from 0 to 0.1 are from the OPAL project (Iglesias&Rogers 1996). Conductive opacities are those of Cassisietal. (2007). The equation of state during the main sequence evo- lutionis thatof OPAL forH- and He-richcompositions.Neutrinoemission ratesfor pair,photo, and bremsstrahlung processes have been taken from Itohetal. (1996), and for plasma processes weincludedthetreatmentofHaftetal.(1994).FortheWDregimewehaveemployedanupdated versionoftheMagni&Mazzitelli(1979)equationofstate.Thenuclearnetworktakesintoaccount 16elementsand34thermonuclearreactionratesforpp-chains,CNObi-cycle,Heburning,andC ignition.Time-dependentelementdiffusionduetogravitationalsettlingandchemicalandthermal diffusionof nuclearspecieshasbeentakenintoaccountfollowingthe multicomponentgastreat- mentofBurgers(1969).Abundancechangeshavebeencomputedaccordingtoelementdiffusion, nuclearreactions,andconvectivemixing.Thisdetailedtreatmentofabundancechangesbydiffer- entprocessesduringtheWDregimeconstitutesakeyaspectintheevaluationoftheimportanceof residualnuclearburningforthecoolingoflow-massWDs. 6 Pleasegiveashorterversionwith:\authorrunning and/or \titilerunning priorto \maketitle 2.2.Pulsationcode The rates of periodchangeof radialmodesand nonradial p and g modescomputedin this work were derived from the large set of adiabatic pulsation periods presented in Co´rsico&Althaus (2014a).Theseperiodswerecomputedemployingtheadiabaticradialandnonradialversionsofthe LP-PULpulsationcodedescribedindetailinCo´rsico&Althaus(2006,2014a),whichiscoupledto theLPCODEevolutionarycode.TheLP-PULpulsationcodeisbasedonageneralNewton-Raphson techniquethatsolvesthefourth-order(second-order)setofrealequationsandboundaryconditions governinglinear,adiabatic,nonradial(radial)stellarpulsationsfollowingthedimensionlessformu- lationofDziembowski(1971)(seealsoUnnoetal.1989).Theprescriptionwefollowtoassessthe runoftheBrunt-Va¨isa¨la¨frequency(N)istheso-called“LedouxModified”treatment(Tassouletal. 1990;Brassardetal.1991). 2.3.Evolutionarysequences Realisticconfigurationsforlow-massHe-coreWDandpre-WDstarswerederivedbyAlthausetal. (2013)bymimickingthebinaryevolutionofprogenitorstars.Binaryevolutionwasassumedtobe fully nonconservative, and the loss of angular momentum due to mass loss, gravitational wave radiation,and magnetic brakingwas considered.All of the He-core pre-WD initial modelswere derivedfromevolutionarycalculationsforbinarysystemsconsistingofanevolvingMainSequence low-mass component (donor star) of initially 1M⊙ and a 1.4M⊙ neutron star companion as the othercomponent.Atotalof14initialHe-corepre-WDmodelswithstellarmassesbetween0.1554 and0.4352M⊙werecomputedforinitialorbitalperiodsatthebeginningoftheRochelobephase intherange0.9to300d.Inthispaper,we focusontheassessmentoftheratesofperiodchange values corresponding to the complete evolutionary stages of these models down to the range of luminositiesofcoolWDs,includingsomestagesprevioustothethermonuclearCNOflashesduring thebeginningofthecoolingbranch. 3. Thetheoreticalratesofperiodchange Inthiswork,theratesofperiodchangeareassessed assimpledifferencingoftheperiodsofsuc- cessivemodelsineachevolutionarysequence.Specifically,therateofchangeoftheperiodΠ at k thetimeτ isestimatedas: i Π (τ)−Π (τ ) Π˙ (τ)= k i k i−1 , (2) k i ∆τ i where∆τ =τ −τ istheevolutionarytimestep,andΠ (τ)andΠ (τ )arethepulsationperiods i i i−1 k i k i−1 ofthemodewithradialorderkevaluatedatthetimesτ andτ ,respectively.Inourcomputations, i i−1 thetimestep∆τ issmallenoughastoensurethatthissimplenumericalrecipeyieldsveryprecise i resultsforΠ˙.Wecomputetherateofperiodchangefornonradialℓ=1,2gand pmodes,andalso radial(ℓ=0)modes.Thesetofpulsationmodesconsideredinthisworkcoversaverywiderange ofperiods(upto∼7000s),embracingalltheperiodicitiesdetectedinELMVandpre-ELMVstars uptonow. Low-massWDshaverealpossibilitiesofbeingobservedatthreestages(Althausetal.2013): thefinalcoolingbranch(WDphase),thestagesatconstantluminosityfollowingtheendofRoche 7 Pleasegiveashorterversionwith:\authorrunning and/or \titilerunning priorto \maketitle −15/dt [10 s/s] 2345600000 00000000000000..............11111112223341667788903726351506061180025520625379975424 −15/dt [10 s/s] −−−−0000.... 86420 00000000000000..............11111111222334566778890372635150606118002542062537997542 Pd Pd −1 10 −1.2 0 −1.4 −10 0 1000 2000 3000 4000 5000 6000 7000 −1.6 0 20 40 60 80 100 120 140 160 P[s] P[s] 0 0.1554 0.1612 −0.2 00..11675006 0.1762 −0.4 00..11880653 0.1917 −0.6 00..22031899 −15/dt [10 s/s] −0−.18 0000....2334726300257542 Pd −1.2 −1.4 −1.6 −1.8 0 20 40 60 80 100 120 140 160 P[s] Fig.2.Left:Theratesofperiodchangeofℓ=1gmodesversusthepulsationperiods,correspond- ingtoWDmodelscharacterizedbyaneffectivetemperatureofT ∼ 9000Kanddifferentstellar eff masses(0.1554≤ M⋆/M⊙ ≤0.4352).Middle:Sameasinleftpanel,butforℓ=1 pmodes.Right: Sameasinleftpanel,butforradial(ℓ=0)modes. lobe overflow (pre-WD phase), and for M⋆ & 0.18M⊙, the evolutionary stages prior to the oc- currenceofCNOflashesontheearlycoolingbranches(pre-flashstages)5.Below,weexplorethe magnitude and sign of the rates of period changes of low-mass WD stars at these evolutionary stages.Inalltheregimesconsideredinthiswork,therateofperiodchangevaluesforℓ = 2areof thesameorderofmagnitudethanforℓ=1.Thus,wewillconcentrateonshowingresultsonlyfor thecaseℓ = 1,althoughwemustkeepinmindthatalsomodeswithℓ = 2canbeobservedinthis typeofpulsatingstars. 3.1.WDphase:ELMVs Next,weshallexaminetheeffectofchangingthestellarmassandtheeffectivetemperatureonthe rateofperiodchangeofELMVmodels,thatis,low-massWDmodelsalreadyevolvingintheirfinal coolingbranches.Theadiabaticandnonadiabaticpulsationpropertiesofpulsatinglow-massWD stars,orELMVs,havebeenexploredindetailinCo´rsicoetal.(2012c);VanGrooteletal.(2013); Co´rsico&Althaus(2014a,2016).InFig.1wepresentaT −loggdiagramshowingthelow-mass eff He-core WD evolutionary tracks of Althausetal. (2013), with the stellar masses indicated with small numbers. For illustrative purposes, we also include the location of the ten known ELMVs (Hermesetal. 2012, 2013c,a; Kilicetal. 2015; Belletal. 2015, 2016) with red circles, and stars observed not to vary (Steinfadtetal. 2012; Hermesetal. 2012, 2013c,a), displayed with small 5 During the rapid incursions of the starsinthe logT −logg diagram whilethey arelooping between eff theCNOflashes, theevolutionissofast thattheprobability offindingastarinthosestagesisalmost null (Althausetal.2013).Forthisreason,wewillnotconsiderthoseevolutionarystagesinthiswork. 8 Pleasegiveashorterversionwith:\authorrunning and/or \titilerunning priorto \maketitle 56 10987111400019932KKKK −0. 10 10987222311282172KKKK −0.2 4 −0.3 −15/dt [10 s/s] 23 −15/dt [10 s/s] −−00..54 Pd Pd −0.6 1 −0.7 0 −0.8 −1 0 1000 2000 3000 P 4[0s0]0 5000 6000 7000 −0.9 0 10 20 30 40 P 5[0s] 60 70 80 90 0 −0.2 −0.4 −15/dt [10 s/s] −0.6 Pd −0.8 −1 10318K 9337K 8338K 7382K −1.2 0 10 20 30 40 50 60 70 80 90 P[s] Fig.3. Left: The rate of period change of ℓ = 1 g modes versus the pulsation periods, corre- spondingto WD modelscharacterizedbya stellar mass M⋆ = 0.1762M⊙ anddifferenteffective temperatures.Middle:Similartoleftpanel,butforℓ=1 pmodes.Right:Similartoleftpanel,but forradial(ℓ=0)modes. black circles. The gray squares (triangles) on the evolutionarytracks indicate the location of the templatemodelstobeanalyzedinFig.2(Figs.3and4)below. InassessingthedependenceofΠ˙ forgmodeswith M andT inWDstars,itisusualtocon- ⋆ eff siderthepredictionsofthesimplecoolingmodelofMestel(1952)forcomparisonwithnumerical results. Within the framework of the Mestel’s cooling law, Kawaleretal. (1986) have derived a relationbetweenΠ˙ and M andT (theirEq.3),whichpredictsthatΠ˙ islargerforlowerstellar ⋆ eff masses and higher effective temperatures. The mass dependence can be understood by realizing thatthelowerthe mass, the largerthe radiatingsurfaceandthe lowerthetotalheatcapacity.For afixedT value,lessmassivemodelshavehigherluminositiesandthuscoolfasterwithalarger eff Π˙. Concerningthe dependenceof Π˙ with the effective temperature,for a fixed M , modelswith ⋆ higher T cool faster, with the consequencethat Π˙ is larger. This simple picture becomesmore eff complicatedwhenthereexistanotherenergysourcelikenuclearburning,apartfromtheheatreser- voirstoredintheionsduringthepreviousevolutionaryphases.Thisisthecaseoflow-massWDs with M⋆ . 0.18−0.20M⊙(ELMWDs),whicharecharacterizedbyintenseHburning.Thus,the simplepredictionsbasedontheMesteltheorycannotbeappliedtoWDsinthismassrange. WedepictinFig.2theratesofperiodchangeintermsofperiodsforℓ=1gmodes(leftpanel), ℓ = 1 p modes (middle panel), and ℓ = 0 radial modes(right panel), for low-mass WD models withTeff ∼9000Kandseveralstellarmasses(0.1554≤ M⋆/M⊙ ≤0.4352).Thelocationofthese stellarmodelsintheT −loggdiagramismarkedwithgraysquaresinFig.1.Forgmodes(left eff panel of Fig. 2), Π˙ linearly increases with the radial order k and thus with period, which is the reflectionoftheincreaseofΠwithk.TwowelldistinguishablebranchesoftheΠ˙ vsΠrelationship 9 Pleasegiveashorterversionwith:\authorrunning and/or \titilerunning priorto \maketitle 5600 19870333366656438KKKK −0.0 50 10987333355668843KKKK −0.1 40 −0.15 −15/dt [10 s/s] 2300 −15/dt [10 s/s] −−00.2.25 Pd Pd −0.3 10 −0.35 0 −0.4 −10 0 1000 2000 3000P[s] 4000 5000 6000 −0.45 0 5 10 15 20 P 2[5s] 30 35 40 45 0 10358K −0.05 98335684KK 7363K −0.1 −0.15 −15/dt [10 s/s] −−−000.2..325 Pd −0.35 −0.4 −0.45 −0.5 −0.55 0 10 20 30 40 50 60 P[s] Fig.4. Left: The rate of period change of ℓ = 1 g modes versus the pulsation periods, corre- spondingto WD modelscharacterizedbya stellar mass M⋆ = 0.1863M⊙ anddifferenteffective temperatures.Middle: Similar to the leftpanel, butfor ℓ = 1 p modes.Right: Similar to the left panel,butforradial(ℓ=0)modes. arevisibleinthefigure,oneofthemcorrespondingtomodelswith M⋆ & 0.18M⊙,andtheother one associated to models with M⋆ . 0.18M⊙. In the first group of models, nuclear burning is not relevant,and so, the rate of period change is generallylarger for lower stellar mass (at fixed T ∼9000K)andalltheΠ˙ valuesarepositive.Notethatforthissetofmodels,gmodesarevery eff sensitivetotheHe/Hcompositiongradient(seeFig.8ofCo´rsico&Althaus2014a).Thefactthat Π˙ > 0 implies that the rates of period change in models with M⋆ & 0.18M⊙ are dominated by cooling(firstterminEq.1).Theratesofperiodchangeforthissetofmodelsrangefrom∼ 10−15 s/sfortheshortestg-modeperiods6upto∼7×10−14s/sforΠ∼6000s. TheΠ˙ valuesforthegroupofmodelswith M⋆ . 0.18M⊙, ontheotherhand,arelowerthan ∼ 10−14 s/s, and are indeed substantially smaller than for the first group of models. This is due to the fact that, for models with stellar masses lower than the threshold mass of ∼ 0.18M⊙, the evolution is dominated by nuclear burning.As a result, the WD cooling is markedlydelayed, in such a way that the rates of period change are smaller in magnitude as compared with the case in which nuclear burning is negligible (M⋆ & 0.18M⊙). Note that g modes in this mass range mainlyprobethecoreregions(see Fig.7ofCo´rsico&Althaus2014a).TheΠ˙ valuesformodels M⋆ . 0.18M⊙ are smaller for lower stellar mass, as it can be seen in left panel of Fig. 2. This trendisoppositetothatpredictedbythesimpleformulaofKawaleretal.(1986)(seeabove).The fact that in this mass range (0.15 . M⋆/M⊙ . 0.18) the lowest-mass models are characterized bysmallerΠ˙ valuesisduetothatthesemodelshavemoreintensenuclearburning,whichimplies smaller cooling timescales. In this context, it is expected that the first term in Eq. (1) (cooling) 6 NotethattheΠ˙ valueforsomelow-ordermodesisveryclosetozero,orevennegative. 10