ebook img

Pulsar Timing Arrays and the cosmological constant PDF

0.97 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Pulsar Timing Arrays and the cosmological constant

ICCUB-14-032 Pulsar Timing Arrays and the cosmological constant Domènec Espriu 4 1 0 Departamentd’EstructuraiConstituentsdelaMatèriaandInstitutdeCiènciesdelCosmos(ICCUB), 2 UniversitatdeBarcelona,MartíiFranquès,1,08028Barcelona,Spain. n a Abstract. InthistalkIreviewhowanon-zerocosmological constantL affectsthepropagationofgravitationalwavesand J theirdetection inpulsar timingarrays(PTA).IfL =0itturnsout thatwavesareanharmonic incosmological Friedmann- Robertson- Walker coordinates and although the am6 ount of anharmonicity isvery small it leads to potentially measurable 0 effects. The timing residuals induced by gravitational waves in PTA would show a peculiar angular dependence with a 3 marked enhancement around a particular value of the angle subtended by the source and the pulsars. This angle depends mainlyontheactual valueofthecosmological constant andthedistancetothesource.Preliminaryestimatesindicatethat ] O the enhancement can be rather notorious for supermassive black holemergers and infact itcould facilitatethe firstdirect detectionofgravitationalwaveswhileatthesametimerepresentinga‘local’measurementofL . C Keywords: Cosmologicalconstant,darkenergy,gravitationalwaves,pulsartimingarrays . h p - o r INTRODUCTION t s a ThereisafairamountofevidencesuggestingthatthespacetimewhereweliveisgloballydeSitterwithavaluefor [ thecosmologicalconstantestimated[1]tobearoundL ≃10−52m−2.Thishasobviouseffectsoncosmology–atvery 1 largescales.Theseeffectsareofnoconcerntoushere. v Insteadwewouldliketohelpanswerthequestion:doesL havea‘local’influence?,wherelocalmeansatmoderate 5 valuesoftheredshiftz.Inshort,canthecosmologicalconstantbemeasured‘locally’?Thisisanimportantquestion 2 becauseitmaysettletheissueastowhetherL isatrulyfundamentalpropertyofspace-time,abasicconstantofnature 9 presentatallscales,ratherthanawayofprovidingsomeeffectivedescriptionrelevantonlyatcosmologicaldistances. 7 . Alotofworkhasbeendevotedtofindingtracesoftheexistenceofthecosmologicalconstantatsub-cosmological 1 scalessuchasinclusterofgalaxies[2],sofarwithoutaclearconclusionorveryrelevantbounds.Severalworksstudy 0 theeffectofL onthegravitationalbendingofligh[3,4,5]ortheShapiroeffect[6].Someauthorshaveevenadvocated 4 1 more exoticeffectssuchas providingan explanationthe well knownPioneer anomaly[7] or the apparentincrese of : theastonomicalunitwithtime[8]. v Discussionsintheliteratureregardingtheabovepointstendtobeconfusing.Effectsrangefromsurprisinglylarge i X tozero.Notsurprisinglythesourceofmostdiscrepanciesisthemeaningofthedifferentcoordinatesystemsandtheir r physicalrealization. a Here we propose to try to find ‘local’ effects of L by studying the propagation of gravitational waves (GW) in an space endowedwitha cosmologicalconstant.Thismay seemhopelessatfirstas thereis nodirectdetectionofa GW yet,letalonepossiblemodificationsdueto L =0. Howeverbecausethe natureofthecosmologicalconstantis 6 quiteunclearitisplausiblethatitshouldbeattributedtothegravitationalinteractionitself—afundamentalproperty of space-time—and accordinglyplaced naturally on the l.h.s. of Einstein equations. Then it seems quite natural to investigatehowthefundamentalexcitationsofgravityaremodifiedbyL .Thisissuehasbeenstudiedin[9]. HasL possibleobservationalconsequencesonGWinspiteofitscurrentlypreferredverysmallvalue?Wewillsee thattheanswertothisquestionissomewhatsurprising.Whatfollowsisanextendedversionoftheresultsfoundbyus anddescribedin[10]. Forapreviouattempttofindeffectsofanon-zerocosmologicalconstantusingGWsee[11]. LINEARIZATION OFTHE FIELD EQUATIONSIN THEPRESENCE OFL Keeping control of the different orders in L will be essential to our discussion. This will become obvious in the subsequent. LetusstartbylinearizingEinsteinequationssinceafterallGWaresolutionsofthelinearizedequations: 1 Rmn gmn R+L gmn = k Tmn (1) −2 − Inthelinearizedapproximationweassumegmn =h mn +hmn , hmn 1andthen | |≪ 1 Rmn = 2 (cid:3)hmn +h,mn −hlm ,nl −hnl ,ml . (2) (cid:16) (cid:17) Agaugechoiceismandatorytosolvetheseequations.AcommonchoiceistoselecttheLorenzgauge ¶ m hmn = 1¶ n h ¶ m h˜mn =0, (3) 2 ↔ where 1 h˜mn =hmn h mn h (4) −2 ThefieldequationinLorenzgaugeare 1 (cid:3) hmn h mn h +2L hmn = 2L h mn . (5) −2 − (cid:18) (cid:19) WhetherthetermoforderO(hL )needstobeconsideredornotdependsontherelativemagnitudeof(cid:3)handL .Ifthe L hmn termonthel.h.s.isomitted(andonlyinthiscase)thereisaresidualgaugefreedomwithintheLorenzgauge. xm xm =xm +x m (6) ′ → aslongasx m isanharmonicfunction,(cid:3)x m =0.Allthisisofcoursewellknownandstandardtexbookmaterial.Ifwe setL tozerowegetthestandardtreatmentofgravitationalwaves—inMinkowskispacetime.ItisclearthatL =0 will modify the for of the solution by terms of order L . But we also need to know what choice of coordinates6 the linearizationandtheLorenzconditionimplies,ifany.ThisisnotatotallytrivialissueindeSitter. ‘GOOD’AND‘BAD’ COORDINATESYSTEMS INDESITTER Before giving the solution to the field equation in the Lorenz gauge (the one where GW are usually treated) let us discussseveralpossiblecoordinatechoicesindeSitterspace-time.Convenientreferencesaregivenin[12].Seealso [13]. Astaticmetric:Schwarzschild-deSitter(SdS) L L 1 ds2= 1 rˆ2 dtˆ2 1 rˆ2 − rˆ2+rˆ2dW 2 (7) − 3 − − 3 (cid:20) (cid:21) (cid:20) (cid:21) Thismetrichasnotquitesphericalsymmetry. Apositionindependentmetric:Friedmann-Robertson-Walker(FRW) L ds2=dT2 exp(2 T)d~X2 (8) − 3 r This metric incorporatesthe physical principlesof cosmologicalhomogeneityand isotropy. The coordinatesXi are comovingcoordinatesanchoredin space that expandwith the universe. These are the coordinateswhere our world appearshomogeneousandisotropic. NoneofthepreviousmetricsobeytheLorenzgaugecondition.Ofcoursethereisnoreasonwhytheyshouldbecause they are notsolutions of Einstein equationslinearized aroundMinkowskispace-time, so in order to match with the discussionintheprevioussectionletusproceedtolineariarizethetwometrics.FortheSdSmetricthisisquiteeasy astheSdSmetricisexpandableinintegerpowersofL L L ds2 1 rˆ2 dtˆ2 1+ rˆ2 rˆ2+rˆ2dW 2. (9) ≃ − 3 − 3 (cid:20) (cid:21) (cid:20) (cid:21) ItshouldthereforeobeyalinearizedversionofEinsteinequations,althoughascanbeeasilyverifiednotintheLorenz gauge. OnthecontraryitisclearthattheFRWcoordinatechoicecannotbelinearizedinL becauseitcontainsoddpowers of√L L ds2=dT2 exp(2 T)d~X2 (10) − 3 r and therefore it is impossible that it can fulfill any linearized Einstein equation, even if t <<1/√L as it is not expandableinintegerpowersofL . Onecanworkouttheexacttransformationbetweenthetwocoordinatesystems.Weshallreservecapitallettersfor FRWcoordinatesandthehattedlowercaseonesforSdS(thereasonforthehatwillbeevidentbelow) rˆ=eT√L /3R (11) 3 √3 tˆ= log +T (12) L   r 3 L e2T√L /3R2 − q  whereT andRarethecosmologicaltimeandcomovingcoordinateswhosephysicalrealizationisclear.Thistransfor- mationisvalidinsidethecosmologicalhorizon,i.e.R< 1 . √L LINEARIZED BACKGROUNDAND LINEARIZED GWSOLUTIONS LetusnowreturntoEq.5.Weshallworkinthelinearizedapproximationbothforthebackgroundmodification(with respecttoflatMinkowskispace-time)hLmn andforgravitationalwaveperturbationshWmn .Wefollowherethediscussions in[9,13].Thetotalmetricwillbewrittenas gmn =h mn +hLmn +hWmn , hLmn ,W 1 (13) | |≪ Letusfocusonthebackground.IntheLorenzgaugeandneglectingL hLmn (cid:3)h˜mn = 2L h mn , ¶ m h˜nm =0, (14) − Thishasasaparticularsolution L L h˜mn = 4xm xn h mn x2 hmn = xm xn +2h mn x2 (15) −18 − ⇒ 9 (cid:0) (cid:1) (cid:0) (cid:1) Thegeneralsolutionistheformerplusanysolutionof(cid:3)h˜mn butwecallthelatter‘waves’ratherthan‘background’. IndeedtheequationforGWisparticularlysimpleinLorenzcoordinatesiftheL hWmn termisneglected. (cid:3)h˜Wmn =0 (16) i.e.itistrulyawaveequation. Now we have to answer the followingquestion:What is the physicalrealizationof the coordinatesx,t where we justsolvedEinsteinequationsintheLorenzgauge? LetustakeadvantageoftheresidualgaugeinvariancethatexistsifthetermL hmn isneglected.Thenthesolution L h˜mn = 4xm xn h mn x2 (17) −18 − or (cid:0) (cid:1) L hmn = xm xn +2h mn x2 (18) 9 canbetransformedintoastaticmetric—stillinLoren(cid:0)zgauge. (cid:1) Thefollowingchangeofcoordinates L x2 (y2+z2) x=x′+ t′2 ′ + ′ ′ x′ (19) 9 − − 2 4 (cid:18) (cid:19) L y2 (x2+z2) y=y′+ t′2 ′ + ′ ′ y′ (20) 9 − − 2 4 (cid:18) (cid:19) L z2 (x2+y2) z=z′+ t′2 ′ + ′ ′ z′ (21) 9 − − 2 4 (cid:18) (cid:19) L t=t′ (t′2+r′2)t′ −18 transformsthemetricintoastaticsolutionatorderL L L ds2= 1 r2 dt2 1 (r2+3x2) dx2. (22) − 3 ′ ′ − − 6 ′ ′i ′i (cid:20) (cid:21) (cid:20) (cid:21) ThismetrichasaZ symmetryonly.WearestillintheLorenzgauge. 3 Underthefollowingadditionalchange L L L x′=x′′+ x′′3, y′=y′′+ y′′3, z′=z′′+ z′′3, (23) 12 12 12 t =t (24) ′ ′′ themetricbecomes L L ds2= 1 r′′2 dt′′2 1 r′′2 (dr′′2+r′′2dW 2), (25) − 3 − − 6 (cid:20) (cid:21) (cid:20) (cid:21) whichisnotintheLorenzgaugeanymore.Yetanotherchange L r =rˆ+ rˆ3 t =tˆ ′′ ′′ 12 leadsto L L ds2= 1 rˆ2 dtˆ2 1+ rˆ2 drˆ2+rˆ2dW 2. (26) − 3 − 3 (cid:20) (cid:21) (cid:20) (cid:21) ThisisthelinearizedSchwarzschild-deSittermetric. NowweknowinwhichcoordinateswewerewhenwesolvedthelinearizedEinsteinequationwithacosmological constant in Lorenz gauge. A series of elementary coordinate transformations brought our solution to a linearized version of the Schwarzschild-de Sitter metric (expandedto first order in L ). Thanks to Birkhoff’stheorem[14], we knowthatthismetricisunique. TheSdScoordinatesareusefulforproblemswithsphericalsymmetry,suchasobjectsfallingontoeachother.They donotadmitaNewtonianlimitifL =0,i.e. 6 ds2=(1+2F )dt2 (1 2F )dx2 (27) 6 − − becauseinadditiontothescalarpotentialF (whichitselfhasacorrectionofO(L ))thereisatensorpotentialt L . ij ∼ HoweveritisstilltruethatifamassivesourceofmassMisintroducedvia T =Md (rˆ) (28) 00 theequationofmotionforanon-relativisticbodyaregovernedbyF alone GM r¨ˆ= +O(L ) (29) − rˆ Solutions are periodic in coordinates rˆ,tˆ (up to O(L )) and the wave equation will lead to harmonic GW in these coordinatesuptocorrectionsofO(L ). However,thecoordinateswherethemetricisSchwarzschild-deSittercenteredinaremoteblackholearenot‘useful’ forcosmologysimplybecausewedonotperformmeasurementshereusingthese.Butweknowhowtogofromthese SdS coordinated to the ones (FRW) where cosmological measuments are made. Of course none of these subtleties occurifL =0. GRAVITATIONALWAVESIN COSMOLOGICALCOORDINATES LetusgobacktoLorenzgauge.Recallthatwewanthmn =hLmn +hWmn andthathWmn shouldfulfill,ifthetermL hW is neglected, h˜Wm m =0, ¶ m h˜Wn m =0, (cid:3)h˜Wmn =0 (30) whilehLmn shouldfulfillifL hL isneglected h˜Lmm =0, ¶ m h˜Ln m =0, (cid:3)h˜Lmn = 2L h mn . (31) − Thegeneralsolutionatlowestorder(writtenforhmn )willbe L hmn =hLmn +hWmn = xm xn +2h mn x2 +EmWn coskx+DWmn sinkx (32) 9 (cid:0) (cid:1) where Emn and Dmn are polarization tensors having vanishing traces EW = DW = 0 and obeying the condition km Enm W =km Dnm W =0withk2=0. ItispossibletoderivethefullsolutionincludingL hmn termsbutweshallnotconsiderithereasthemodifications areunrealisticallysmalltobeseen,buttheyhavesomeinterestingaspectsnevertheless.Theinterestedreadercansee [9]fordetails. ThiscoordinatesystemiseasilyrelatedtoSdScoordinates.Thesecoordinatesarewellsuitedtodescribeproblems withsphericalsymmetry(rˆ=0isa‘special’point)suchasthesolarsystemorcollapseontoablackholebutthese coordinatesarenottheoneswhereweobservethe(expanding)universe.Whenthesphericalsymmetryislost(away fromthesource),wehavetomatchtosuitablecoordinates,physicaltotheobserver. We have to transformnowthe solutionsfoundin SdS-likecoordinatesto FRW coordinates.Letus showhere for simplicityjusthowthelowestordersolution(i.e.theoneobtainedneglectingL hWmn terms)looksoncetransformed.A planewavepropagatinginthezˆdirectiontransformsinto 0 0 0 0 L L 0 E11 1+2 3T E12 1+2 3T 0 hWmn FRW = (cid:18) q (cid:19) (cid:18) q (cid:19)  L L × 0 E12 1+2 3T −E11 1+2 3T 0 0 (cid:18) 0 q (cid:19) (cid:18) 0 q (cid:19) 0    L Z2  cos w(T Z)+w TZ +O(L ) +O(L ) − r3 (cid:18) 2 − (cid:19) ! (33) 0 0 0 0 L L 0 D11 1+2 3T D12 1+2 3T 0 + (cid:18) q (cid:19) (cid:18) q (cid:19)  L L × 0 D12 1+2 3T −D11 1+2 3T 0 0 (cid:18) 0 q (cid:19) (cid:18) 0 q (cid:19) 0    L Z2  sin w(T Z)+w TZ +O(L ) +O(L ) − r3 (cid:18) 2 − (cid:19) ! Themaximaofthewavewillbereachedwhen L Z2 w(T Z)+w TZ =np (34) − 3 2 − r (cid:18) (cid:19) np T2 L n2p 2 L Z (n,T) T + (35) max ≃ − w − 2 3 2w2 3 r r Thephasevelocityofthewaveis dZ L v (T) max =1 T +O(L ) (36) p ≡ dT − 3 r Incomovingcoordinatesthephasevelocityissmallerthan1.Thisdoesnotmeanthatthewavesslowdown.Wecan calculatethevelocityin‘ruler’distance. L dl d L dl2= 1+2T dZ2, = 1+T dZ 1 (37) max − − r3! dT dT " r3! #≃ Notice that the modifications due to the cosmological constant are not of order L as a naive consideration of the linearizedfieldequation(obeyedbytheGW)wouldleadustobelieve.Aswediscussedinmuchdetail,thislinearized equationintheLorenzgaugeisinanessentialwayrelatedtoSdScoordinates.Theeffectofthecoordinatechangeto thecosmologicalFRWcoordinatesisactuallyaneffectoforder√L andthereforethemagnitudeofthechangecanbe verydifferent. Severalphysicalmagnitudesappearinthemodifiedexpressionforthewaves;inparticularL .Itseffectsareshown intheaccompanyingfigureandthemostrelevantquestionis:arethesechangesdetectable? h++ 1.0 0.5 4´1024 6´1024 8´1024 1´1025 -0.5 -1.0 -1.5 FIGURE1. Dependenceoftheamplitudeandwave-lengthonZ(expressedinmeters)foraconstantvalueofT andfordifferent valuesofL .Dashedline:L =0,dottedline:L =10 52m 2,solidline:L =10 51m 2.Waveswith103Hz<w<10 10Hzcannot − − − − − bepracticallyplottedintherelevantZ-range.Herew=4 10 16Hz − · TIMINGRESIDUALS IN PULSAR ARRAYS Pulsarsareverystableclockswithperiodsrangingfrommillisecondsuptoabout10seconds.About600pulsarsare known.Theaverageperiodis0.65s.Fastrotatingpulsarscanbemoreregularthanatomicclocksanddisruptionsof theorderof1m scanbemeasuredonEarth. The passage of a gravitational wave disrupts this array of clocks and indeed PTA’s may provide the first direct evidence of gravitational waves in <10 years. The idea behind the PTA collaborations is to detect the correlated disruption of the periods measured for a significant number of pulsars due to the passing of a gravitational wave throughthesystem [15, 16,17, 18].PTA aresuitabledetectorsforlowfrequencyGW, i.e.fortherange10 9 Hz to − w 10 7Hz[15]andthesignalisexpectedtofollowapowerlaw[16,19].Akeyprobleminmakingpredictionsis − ≤ ≤ modelinginarealisticwaythewavefunctionsproducedinthedifferentsources,inparticularthevalueoftheamplitude ofthemetricperturbationhisafreeparameterinprinciple.Someboundsintherangeof10 17 h 10 15havebeen − − ≤ ≤ setalready[19]. RoughestimatesfromtheexpressionsintheprevioussectionindicatedthatcorrectionsofO(√L )canberelevant forpulsar timingarrays(typicallysituatedatL 1 kpc)beingdisturbedby extragalacticbinaryblackholesystems ∼ (typicallyatl 100Mpcormore). ∼ Iff (t)isthefieldphaseofthepulsar,thepulsedemissionmeasuredwithanEarth-basedradiotelescopewillbe 0 L f (t)=f (t t (t) t (t)) (38) 0 E+S GW − c − − wheret arelocalcorrectionsduetothemovementoftheEarthandsolarsystemandt (t)istheshiftduetothe E+S GW passageofaGW. Letusconsiderthe observationalset-upshowninthe figureThe fieldphaseshiftdueto theGWwill beapproxi- Source P ZE Pulsar a L Earth matelygivenby[20] 1 t (t)= nˆinˆjH (t), (39) GW ij −2 where 0 H (t)=L dxh (t+Lx,~P+L(1+x)nˆ) (40) ij ij 1 Z− and~Pisthepulsarlocation,nˆ=( sina ,0,cosa )andZ =cz 3 (zistheredshift).Hereandinwhatfollowswedo E L − nottakematterintoaccount,thatisW M=0.Weshallreturntoqthispointlater. Itisinterestingtonotethatthisexpression(whichincludestheleadingcorrectionanyway)isvalidonlyifthetime componentsoftheperturbedmetricareallzero.Thisissoatorder√L ,whichbyfardominates,butceasestobetrue whenoneconsiderstheO(L )termsindicatedin(33).See[9]forthecompleteexpressions. Tokeepthingsassimpleaspossibleletusassumethataremotemergingofgalaxieseventuallyleadstothemerging of their centralblack holes. Characteristically,the two black holeshave very differentmasses and thereforewe can thinkofoneobjectorbitingaroundthemostmassiveone,andeventuallycollapsinontoit.Theproblemistherefore a keplerian one in essence, with approximatespherical symmetry.The two spiraling black holes produceGW with a characteristictimeofemissionthatisoftheorderofonetoseveralyearsandtheperiodofthesignalrangesfrom days to months. The coordinates where the emission is just a collection of a few harmonics will of course be SdS coordinates.Considerthesimplestpossiblecase(justoneharmonic): 1 hSmndS= Emn cos[w(t r)]+Dmn sin[w(t r)] +O(L ) (41) r − − (cid:0) (cid:1) When we say days or months we have to be definite about which clock we are talking about; namely in which coordinatesystemtandraremeasuredinthepreviousequation.Itshouldbeobviousthattheyrefertothecoordinates associatedtothesupermassiveblackhole(locatedatr=0).ItisonlyinthosecoordinatesthattheemissionofGWis periodic.(Ofcourseitisnotexactlyperiodicasthesmallestblackholelosesenergyandeventuallycollapsesandthe emissionoftheGWcannotbereallyattributedtothepointr=0,butthisdoesnotchangetheessenceoftheargument becausetheuncertaintyinthepointofemissionismuchsmallerthanothermagnitudesrelevantforthediscussion.)In conclusion,thepreviousequationisthedistortiontothemetricproducedbyGWinSdScoordinates. If the metric would be exactly Schwarzchild, that is without any cosmological constant at all, the metric would asymptotically become Minkowski and these coordenates are roughly speaking also the ones of a remote observer (rememberthatwehaveneglectedthepresenceofmattercompletely).However,thisiscertainlynotthecaseifL =0 6 becausethenthemetricisnotasymptoticallyflat.Thenitisclearthataterrestrialobserverisnotusingthecoordinates r and t but rather describes their observations of the universe (in particular the distant place where the black hole mergingtookplace)usingFRWcoordinatesRandT. AswelearnedintheprevioussectionsthentheGWbecomesinFRWcoordinates Emn L L R2 hFmn RW = 1+ T cos w(T R)+w TR R r3 ! " − r3 (cid:18) 2 − (cid:19)# (42) Dmn L L R2 + 1+ T sin w(T R)+w TR +O(L ). R r3 ! " − r3 (cid:18) 2 − (cid:19)# AswediscussedindetailintheprevioussectiontherearecorrectionsoforderL totheexpressionforthewavesinSdS coordinates,butafterchangingtoFRW coordinates,thesecorrectionswillstill beoforderL .Itisreallythechange fromSdStoFRWcoordinatesthatmattersandintroducescorrectionsoforder√L . From the pulsar to the Earth the electromagnetic signal follows the trajectory given by the line of sight ~R(x)= ~P+L(1+x)nˆ.Listhecomovingdistance(replacingitbytherulerdistancemakesnosignificantdifferences). R(x)= Z2+2xLZ cosa +x2L2 Z +xLcosa , (43) E E ≃ E Intheusualtreatment,thecosmologicalcqonstantisneglectedandtheeffectofL wouldtakenintoaccountonlythrough theredshiftw w =w/(1+z).TheimportantquestionisofcoursewhetherL isreallyrelevantafterall. eff → OBSERVING COSMOLOGICALCONSTANT EFFECTS IN GRAVITATIONALWAVES Letusdefine L Z L Q (x,T ,L,a ,b ,Z ,w,L ) w(T + x E x cosa ) E E E ≡ c − c − c L (ZE +xLcosa )2 L Z L (44) +w c c T + x E +x cosa . E r3 2 −(cid:18) c (cid:19)(cid:18) c c (cid:19)! Then 1Le H t (T )= sin2a cos2b +2sina sinb cos2b sin2a sin2b GW E ≡ −2 c − (45) 0 (cid:0) 1 L L (cid:1) dx 1+ (T + x) (cosQ +sinQ ), ×Z−1 (ZE+xLcosa ) r3 E c ! wheree isacharacteristicGWamplitude.Allthevariableshavealreadybeendefinedexceptb thatcorrespondstothe azimuthalangleofthepulsarreferredtotheplaneperpendiculartothelineEarth-source. The first indicationthat the cosmologicalconstantmatterscomesfromconsideringthe theoreticaldependenceof thesignalontheanglea subtendedbythesourceandthepulsar,theEarthbeingthevertex.Thisisshowninthefigure whereanenhancementisfoundatlowangles(atleastforthevaluesselectedfortheastrophysicalparameters) 2.´10-7H 2.´10-7H 1.´10-7 1.´10-7 Α Α 0.5 1.0 1.5 2.0 2.5 3.0 0.5 1.0 1.5 2.0 2.5 3.0 -1.´10-7 -1.´10-7 -2.´10-7 -2.´10-7 -3.´10-7 -3.´10-7 FIGURE2. OnthelefttherawtimingresidualforL =10 35s 2 asafunctionoftheanglea subtendedbythesourceandthe − − measuredpulsarasseenfromtheobserver.OntherightthesametimingresidualforL =0.Inbothcaseswetakee =1.2 109m, L=1019mandTE = ZcEsforZE =3×1024m;withthesevalues|h|∼ Re ∼10−15 whichiswithintheexpectedaccuracy×ofPTA. SimilarresultsareobtainedforotherclosevaluesofTE Letusnowdefinethefollowingstatisticalsignificance s = 1 (cid:229)Np (cid:229)Nt H(TEi,j,Li,a i,b i,ZE,w,e ,L ) 2 (46) vN N s u p t i=1j=1 t ! u t wheres istheaccuracywithwhichweareabletomeasurethepulsarsignalperiod.Wetakes 10 6s(thisisthe t t − ≃ averageofthebestmeasuredpulsarsincludedintheInternationalPTAProject[17]). Weassumeanobservationtimeof3years,startingatthetimethesignalis1016sold(timeofarrivalatourGalaxy) andobservationsevery11days(N =101);1016s T 1.00000001 1016s.Thecoalescencetimesofsupermassive t E black holes is taken to be O(107) s; that is abou≤t one≤year (much sh×orter time scale than the time of arrival of the perturbationtothelocalsystem). The galactic latitude and longitude of each pulsar are transformed to (a ,b ), where a is the angular separation betweenthelineEarth-GWsourceandthelineEarth-pulsar. Weplots (a )usingasetof5fixedpulsarssupposedtobeexactlyatthesameangularseparationfromasourcethe positionofwhichwevary.Thiscouldbedoneforanysetoffivepulsars.Thepositionofthepeakdoesnotdependon L andb .WeusethepulsarswhichareallclosetoeachotheratadistanceL 1020m: i i ∼ TABLE1. PulsarsfromtheATNFCatalogue J0024-7204E J0024-7204D J0024-7204M J0024-7204G J0024-7204I Theresultsaresummarizedinthefollowingfigures: Σ Σ Σ 0.14 0.14 4 0.12 0.12 3 0.10 0.10 0.08 0.08 2 0.06 0.06 0.04 0.04 1 0.02 0.02 Α Α Α 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 FIGURE 3. s (a ) for L =10 35s 2 (left). Zoom on the lower values for L =10 35s 2 (middle) with the prominent spike − − − − removed(noticetheverydifferentverticalscale,andcomparisontotheL =0case(right). Asisobviousfromthefigure,thesignalshowsaremarkablesimilaritybetweenthecasesL =0andL =0except fortheveryprominentspikethatthecaseshownforL =10 35s 2,thecurrentlypreferredvalueforL ,ata6 relatively − − lowangle. Nowtakealistofobservedpulsarswelldistributedinthegalaxy.Theangles(a ,b )arecalculatedforallofthem consideringtwohypotheticalsourcesofGW.Onelocatedatgalacticcoordinatesq =300 ,f = 35 andanother S1 ◦ S1 ◦ atq =4 ,f =10 . − S2 ◦ S2 ◦ We orderthem from the lowest a to the largest. We groupthem in sets of five pulsars. We consider 27 sets of 5 pulsars;thatisalistof135pulsars.Foreachsetwecalculatethesignificance s = 1 (cid:229)5k 1(cid:229) 01 H(TEi,j,Li,a i,b i,1024,10−8,1.2×109,10−35) 2 (47) k v5 101 10 7 uu · i=1j=1 − ! t andplotitasafunctionoftheaverageangleoftheset,a¯ =(cid:229) 5k a i with1 k 27.Wethinkthatthefiguresspeak k i=1 5 ≤ ≤ by themselves.It is clearthat PTA observationsthataim at observingthe ‘normal’GW spectrumshouldabsolutely seethe‘abnormal’enhancementatagivenvalueoftheangle. WHYTHISENHANCEMENT? In order to understand why this effect comes about let us examine the behaviour of the differentialtiming residual aswemovealongthelineofsight.Thewindowintheangularvariablecorrespondstoa‘valley’wherethephaseis (nearly)stationary.Atthisvalueoftheangularvariablea iswheretheenhancementtakesplace. Σ Σ Σ á 3.5 0.15 0.15 3.0 çççç 2.5 2.0 0.10 á 0.10 çççç 0011....0505 ááááááááç0.5áççááçáááçáçá1.0áçççáççááçááááççç1.á5çççáçççç2á.0ç Α00..00050.0á ááç0.5áççááçáááçáçá1.0áçççáççááçááááççç1.á5çççáçççç2á.0ç Α00..00050.0ááááááááç0.5áççááçáááçáçá1.0áçççáççááçááááççç1.á5çççáçççç2á.0ç Α FIGURE 4. Plot of s k(a¯k), k=1,27. L =10−35s−2. Circles correspond to Source 1 and squares to Source 2. Full range is showedontheleft,zoomonthelowervaluesforL =10 35s 2isshowninthemiddle(againthespikeisremoved-verticalscale − − isdifferent)andcomparisontoL =0isshowontherightfigure,respectively. 0.0 -x0.5 0.0 x -1.00.2 -0.5 -1.0 -1.0-x0.50.0 0.05 0.0dH 00..0005dH 0.00 dH -0.05 -0.2 -0.05 0.0 0.1 Α 0.2 0.3 0.0 0.1 Α 0.2 0.3 0.0 0.1 Α 0.2 0.3 FIGURE5. EvolutionofthephaseoftheGWalongthelineofsighttothepulsarfordifferentangles.LeftfigureL =0.Middle: L =10 35s 2.Right:sameasthepreviousonebutrotatedsoastoshowthe‘valley’ofstationaryphase,whichisabsentwithout − − thecosmologicalconstant. Amongallthedependencies,andwhenthedistancetothesourceiswellknown,themostrelevantappearstobethe onerelatedtothevalueL .ThepositionofthepeakdependsstronglyonthevalueofL .Itmovestowardsthecentral valuesoftheangleforlargervaluesofthecosmologicalconstant. Thepositionofthe‘valley’(andthereforeL )canbefoundanalyticallyintwoways 1. Lookingforthestationaryphasecondition 2. ExaminingthebehaviouroftheFresnelfunctionsandprefactorsobtainedafterintegration The prefactor becomesquite large for a specific value of the parameters involved.This particular value rendersthe Fresnelfunctionclosetozeroandtheproductisanumbercloseto2.Awayfromthispointthenetresultissmall. Using the series expansionof the Fresnel functionsat first order we are able to obtain an approximateanalytical expressionfortherelationL (a ) 12c2sin4 a 12c2sin4 a L (a )= 2 2 , (48) ((cT Z )cosa +Z )2 ≃ Z2 E E (cid:0) (cid:1) E E (cid:0) (cid:1) − L 1.8´10-35 1.6´10-35 1.4´10-35 1.2´10-35 1.´10-35 8.´10-36 Α 0.17 0.18 0.19 0.20 0.21 0.22 FIGURE6. L (a )obtainednumericallyfromthepositionsofthepeaksinthes (a )plotsfordifferentvaluesofthecosmological constant(dots)andobtainedanalyticallyfromanapproximationoftheFresnelfunctionsinvolvedinthetimingresidual(line).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.