ebook img

published ApJ article - Harvard-Smithsonian Center for Astrophysics PDF

17 Pages·2009·3.36 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview published ApJ article - Harvard-Smithsonian Center for Astrophysics

TheAstrophysicalJournal,704:324–340,2009October10 doi:10.1088/0004-637X/704/1/324 (cid:2)C2009.TheAmericanAstronomicalSociety.Allrightsreserved.PrintedintheU.S.A. LESSTHAN10PERCENTOFSTARFORMATIONINz ∼ 0.6MASSIVEGALAXIESISTRIGGEREDBY MAJORINTERACTIONS AdayR.Robaina1,EricF.Bell1,RosalindE.Skelton1,DanielH.McIntosh2,3,RachelS.Somerville4, XianzhongZheng5,Hans-WalterRix1,DavidBacon6,MichaelBalogh7,FabioD.Barazza8,MarcoBarden9, AsmusBo¨hm10,JohnA.R.Caldwell11,AnnaGallazzi1,MeghanE.Gray12,BorisHa¨ussler12,CatherineHeymans13, KnudJahnke1,ShardhaJogee14,EelcovanKampen9,15,KyleLane12,KlausMeisenheimer1,CaseyPapovich16,Chien Y.Peng17,Sebastia´nF.Sa´nchez18,RaminSkibba1,AndyTaylor19,LutzWisotzki10,andChristianWolf20 1Max-Planck-Institutfu¨rAstronomie,Ko¨nigstuhl17,D-69117Heidelberg,Germany;[email protected] 2DepartmentofAstronomy,UniversityofMassachusetts,710NorthPleasantStreet,Amherst,MA01003,USA 3DepartmentofPhysics,UniversityofMissouri-KansasCity,KansasCity,MO64110,USA 4SpaceTelescopeScienceInstitute,3700SanMartinDr.,Baltimore,MD21218,USA 5PurpleMountainObservatory,ChineseAcademyofSciences,Nanjing210008,China 6InstituteofCosmologyandGravitation,UniversityofPortsmouth,HampshireTerrace,PortsmouthPO12EG,UK 7DepartmentofPhysicsandAstronomy,UniversityofWaterloo,Waterloo,OntarioN2L3G1,Canada 8Laboratoired’Astrophysique,E´colePolytechniqueFe´de´raledeLausanne(EPFL),Observatoire,CH-1290Sauverny,Switzerland 9InstituteforAstro-andParticlePhysics,UniversityofInnsbruck,Technikerstr.25/8,A-6020Innsbruck,Austria 10AstrophysikalischesInstitutPotsdam,AnderSternwarte16,D-14482Potsdam,Germany 11UniversityofTexas,McDonaldObservatory,FortDavis,TX79734,USA 12SchoolofPhysicsandAstronomy,UniversityofNottingham,NottinghamNG72RD,UK 13DepartmentofPhysicsandAstronomy,UniversityofBritishColumbia,6224AgriculturalRoad,VancouverV6T1Z1,Canada 14DepartmentofAstronomy,UniversityofTexasatAustin,1UniversityStation,C1400Austin,TX78712-0259,USA 15EuropeanSouthernObservatory,Karl-Schwarzschild-Str.2,D-85748Garching,Germany 16StewardObservatory,TheUniversityofArizona,933NorthCherryAvenue,Tucson,AZ85721,USA 17NRCHerzbergInstituteofAstrophysics,5071WestSaanichRoad,VictoriaV9E2E7,Canada 18CentroHispanoAlemandeCalarAlto,C/JesusDurbanRemon2-2,E-04004Almeria,Spain 19TheScottishUniversitiesPhysicsAlliance(SUPA),InstituteforAstronomy,UniversityofEdinburgh,BlackfordHill,EdinburghEH93HJ,UK 20DepartmentofPhysics,DenysWilkinsonBldg.,UniversityofOxford,KebleRoad,OxfordOX13RH,UK Received2009April20;accepted2009August26;published2009September22 ABSTRACT Both observations and simulations show that major tidal interactions or mergers between gas-rich galaxies can lead to intense bursts of star formation. Yet, the average enhancement in star formation rate (SFR) in major mergers and the contribution of such events to the cosmic SFR are not well estimated. Here we use photometric redshifts,stellarmasses,andUVSFRsfromCOMBO-17,24μmSFRsfromSpitzer,andmorphologiesfromtwo deep Hubble Space Telescope (HST) cosmological survey fields (ECDFS/GEMS and A901/STAGES) to study the enhancement in SFR as a function of projected galaxy separation. We apply two-point projected correlation function techniques, which we augment with morphologically selected very close pairs (separation <2(cid:4)(cid:4)) and merger remnants from the HST imaging. Our analysis confirms that the most intensely star-forming systems are indeed interacting or merging. Yet, for massive (M∗ (cid:2) 1010M(cid:6)) star-forming galaxies at 0.4 < z < 0.8, we find that the SFRs of galaxies undergoing a major interaction (mass ratios (cid:3)1:4 and separations (cid:3)40 kpc) are only 1.80 ± 0.30 times higher than the SFRs of non-interacting galaxies when averaged over all interactions and all stages of the interaction, in good agreement with other observational works. Our results also agree with hydrodynamicalsimulationsofgalaxyinteractions,whichproducesomemergerswithlargeburstsofstarformation on ∼100 Myr timescales, but only a modest SFR enhancement when averaged over the entire merger timescale. Wedemonstratethattheseresultsimplythatonly(cid:4)10%ofstarformationat0.4(cid:3)z(cid:3)0.8istriggereddirectlyby majormergersandinteractions;theseeventsarenotimportantfactorsinthebuild-upofstellarmasssincez = 1. Key words: galaxies: evolution – galaxies: general – galaxies: interactions – galaxies: starburst – galaxies: statistics–infrared:galaxies Online-onlymaterial:colorfigure intensity star formation events at low redshifts, are almost in- 1.INTRODUCTION variablyhostedbymerginggalaxies(Sandersetal.1988).Fora Observationalevidencefromavarietyofanglesindicatesthat numberofapplications,thequantityofinterestistheaverageen- galaxyinteractionsandmergersofgalaxiescanleadtodramati- hancementinstarformation(SF)triggeredbymerging(ensem- callyenhancedstarformation(Sandersetal.1988;Bartonetal. bleaverageoverthepopulationofmajormergers/interactions, 2000, 2007; Lambas et al. 2003). This appears to hold true at orequivalently,temporalaverageovermajormergereventsdur- all redshifts where one can recognize mergers through galaxy ing a merger lifetime), not the high-intensity tail (e.g., Barton morphologies (z (cid:4) 1 with rest-frame optical morphologies; etal.2000;Lambasetal.2003;Herna´ndez-Toledoetal.2005; Melbourne et al. 2005; Hammer et al. 2005; 1 (cid:4) z (cid:4) 3 using Linetal.2007;Lietal.2008;Jogeeetal.2009).Bartonetal. less certain UV morphologies; Chapman et al. 2004). Ultra- (2007) carefully quantified the star formation rate (SFR) en- luminousinfraredgalaxies(ULIRGs),representingthehighest- hancementinmergersinlow-masshalosatlowredshift,using 324 No.1,2009 GALAXYINTERACTIONSANDSTARFORMATION 325 the Two-Degree Field Galaxy Redshift Survey (Colless et al. Therefore, to constrain galaxy evolution models and to 2001). They found that roughly 1/4 of galaxies in close pairs understand the physical processes responsible for the main (separated by <50 kpc) in low-mass halos with M < −19 mode of star formation at z < 1, it is of interest to determine bJ haveSFRenhancementsofafactorof5ormore.21 observationallythetypicalenhancement22inSFRaveragedover Ithasalsobeennotedthatthestrongdecreaseofthecosmic thedurationoftheentiremajor(stellar-massratiobetween1:1 SFRdensitybetweenz = 1andz = 0(e.g.,Lillyetal.1996; and1:4)galaxymergerorinteractionandtoconstraintheoverall Madauetal.1996;Hopkins2004;LeFlochetal.2005)wasnot fractionofSFtriggeredbymergers/interactionsatintermediate dissimilarfromtherelativelyrapiddropinmergerrateinferred redshift.Inacompanionpaper(Jogeeetal.2009)wefocuson (at that time) from close pairs and morphologically selected the rate of merging and also present a preliminary exploration mergers(LeFe`vreetal.2000).Ifmuchofthestarformationat oftheaveragechangeintheSFRcausedbylate-stagemajorand z > 0.5 were triggered by merging, the apparent similarity in minormerging(seealsoKavirajetal.2009),findinganaverage evolution between SFR and merger rate would be a natural mildenhancementwithintherestrictionsimposedbythesample consequence. More recently, studies of the fraction of star size.Inthispaper,wepresentastatisticallyrobustanalysisofthe formationinmorphologicallyselectedinteractingandmerging propertiesofstar-forminggalaxiesat0.4 < z < 0.8including galaxiesatintermediateredshiftsz<1havedemonstratedthat, allrelevantmergerphasesandaimedatprovidingasatisfactory infact,thebulkofstarformationisinquiescentlystar-forming answertotwokeyquestions.Whatistheaverageenhancement disk-dominatedgalaxies(Hammeretal.2005;Wolfetal.2005; inSFRasafunctionofgalaxypairseparationcomparedtotheir Belletal.2005;Jogeeetal.2009). SFR before the interaction? What fraction of star formation is Similarly, it has long been argued that early-type (elliptical directlytriggeredbymajormergersandinteractions? andlenticular)galaxiesareanaturaloutcomeofgalaxymergers There are a number of conceptual and practical challenges (e.g., Toomre & Toomre 1972; Schweizer & Seitzer 1992). In in such an experiment. Enhancements in SFR produce both any hierarchical cosmogony, mergers are expected to play a a boost in luminosity, but also increase dust content and largerole;awiderangeofwork—observationsoftheincreasing extinction.Ataminimum,onethereforeneedsdust-insensitive number density of non-star-forming early-type galaxies from SFR indicators. In addition, simulations have indicated that z=1tothepresent(Belletal.2004;Brownetal.2007;Faber SF can be enhanced at almost all phases of an interaction etal.2007),thekinematicandstellarpopulationsoflocalearly- from first passage through to after coalescence (e.g., Barnes typegalaxies(Trageretal.2000;Emsellemetal.2004),orthe &Hernquist1996;diMatteoetal.2007);althoughclosepairs jointevolutionofthestellarmassfunctionandSFRsofgalaxies will inevitably include some fraction of galaxies before first (Bell et al. 2007; Walcher et al. 2008; Pe´rez-Gonza´lez et al. pass and galaxies with unbound orbits. Therefore, an analysis 2008)—hasgivensupporttothenotionthatatleastsomeofthe needs to include both close pairs of galaxies (those before early-type galaxies assembled at z < 1 have done so through coalescence)andmorphologicallyclassifiedmergers(primarily galaxymerging.Insuchapicture,theaverageSFRenhancement thosenearoraftercoalescence).Morphologicalclassificationis frommergingisofinterestforinterpretingtheSFandchemical notastraightforwardart(seeJogeeetal.2009,foracomparison enrichmenthistoryofearly-typegalaxies,inasmuchasitgives between automated classifications and visual morphologies), an idea of what kind of fraction of stars in present-day early- even in ideal cases (Lisker 2008). Finally, galaxy mergers typegalaxieswecanexpecttohaveformedintheburstmode, are rare and short-lived, necessitating large surveys to yield andwhatfractionwecanexpecttohaveformedinaquiescent substantivesamplesofmergers. modeintheprogenitorgalaxies. In this work, we address these challenges as far as possible DirectobservationalconstraintsontheenhancementinSFR (seealsoLinetal.2007andLietal.2008).Weuseestimatesof causedbymergingprovideanimportantcalibrationformodel- redshift and stellar mass from the COMBO-17 survey (Wolf ingtriggeredstarformationincosmologicallymotivatedgalaxy et al. 2003; Borch et al. 2006) to define and characterize formation models. Hydrodynamic simulations of interacting the sample. Stellar mass selection should limit the effect galaxiesinwhichgasandstarformationareexplicitlymodeled of enhanced star formation and dust content on the sample have demonstrated that torques resulting from the merger can definition. We use SFR indicators that are constructed to be efficientlystripgasofitsangularmomentum,drivingittohigh dustextinctioninsensitive,bycombiningultraviolet(UV;direct, densitiesandleadingtosignificantenhancementinstarforma- unobscured light from young stars) and infrared (IR; thermal tion(e.g.,Barnes&Hernquist1996;Mihos&Hernquist1996; emissionfromheateddust,poweredprimarilybyabsorptionof Cox2004;Coxetal.2006a,2008;diMatteoetal.2007).How- UVlightfromyoungstars)radiation(Belletal.2005).Finally, ever,state-of-the-artcosmologicalsimulationslackthedynamic we study a very well-characterized sample of galaxy pairs at rangetoaccuratelysimulatetheinternalstructureofgalaxiesin 0.4 < z < 0.8usingweightedprojectedtwo-pointcorrelation significant volumes, so estimates of the global implications of functions (Skibba et al. 2006; Li et al. 2008), supplementing merger-drivenstarformationenhancementhavehadtorelyon them at very small separations (cid:4)15 kpc with very close pairs semianalytic calculations (e.g., Somerville et al. 2001; Baugh or merger remnants morphologically selected from two wide etal.2005;Somervilleetal.2008).Furthermore,astheprogeni- HST mosaics, GEMS (Rix et al. 2004) and STAGES (Gray torpropertiesplayakeyroleinthesimulatedSFRenhancements et al. 2009), in an attempt to account for all stages of galaxy (e.g., di Matteo et al. 2007; Cox et al. 2008), inaccurate pro- interactions. genitor property values (e.g., incorrect gas fraction or internal Theplanofthispaperisasfollows.InSection2,wediscuss structure) will lead to incorrect estimates for the average frac- the data and the methods used to estimate the stellar masses tionofSFinmergerseveniftheSFineachindividualmerger and the SFRs. In Section 3, we describe the sample selection weremodeledperfectly. andthemethodusedfortheanalysis.InSection4,wepresent 21 Thiscorrespondsroughlytoamasscutof5×109M(cid:6),assumingastellar 22 WhenwerefertoSFRenhancement,wedefinethisastheratioofSFRin M/LbJ ∼1,appropriateforastar-formingbluegalaxywithaChabrier(2003) somesubsample(e.g.,closepairs)totheaverageSFRofallsystemsinthat stellarIMF. massbin. 326 ROBAINAETAL. Vol.704 our estimates of the enhancement in SFR as a function of 2.2.GEMSandSTAGESHSTImagingData projected separation. In Section 5, we compare with previous F606W (V-band) imaging from the GEMS and STAGES observations, constrain the fraction of SF triggered by major surveys provides 0(cid:4).(cid:4)1 resolution images for our sample of mergers and interactions at 0.4 < z < 0.8, and compare COMBO-17galaxies.UsingtheAdvancedCameraforSurveys with simulations of galaxy merging. Finally, in Section 6, we (ACS; Ford et al. 2003) on board the Hubble Space Telescope summarize the main findings of this paper. All the projected (HST), areas of ∼30(cid:4) × 30(cid:4) in each of the ECDFS and the distancesbetweenthepairsusedhereareproperdistances.We assumeH0 =70kms−1Mpc−1,ΩΛ0 =0.7,andΩm0 =0.3. dAe9te0c1t/io9n02tofiealdlhimaviteinbgeemnasgunrviteuydeedotof amdAeBp(tFh6a0ll6oWwi)ng=ga2la8x.y5 lim (Rixetal.2004;Grayetal.2009;Caldwelletal.2008).These 2.THEDATA imagingdataarelaterusedtovisuallyclassifygalaxies,allowing very close pairs (separations <2(cid:4)(cid:4)) and merger remnants to be 2.1.COMBO-17:RedshiftsandStellarMasses includedinthisanalysis.WechoosenottouseF850LPHSTdata COMBO-17 has to date fully surveyed and analyzed three availablefortheGEMSsurveyinordertobeconsistentinour fields to deep limits in 5 broad and 12 medium passbands classification between the two fields (only F606W is available (Extended Chandra Deep Field South (ECDFS), A901/2 and fromSTAGES). S11;seeWolfetal.2003andBorchetal.2006).Usinggalaxy, star, and quasar template spectra, objects are classified and 2.3.MIPS24μm,TotalInfraredEmissionandStar redshiftsassignedfor∼99%oftheobjectstoalimitofm ∼ FormationRates R 23.5(Wolfetal.2004).Thephotometricredshifterrorscanbe The IR observatory Spitzer has surveyed two of the describedas COMBO-17fields:a1◦×0◦.5scanoftheECDFS(MIPSGTO), σ and a similarly sized field around the Abell 901/902 galaxy z ∼0.007×[1+100.8(mR−21.6)]1/2, (1) cluster(MIPSGO-3294:PIBell).Thefinalimageshaveapixel 1+z scaleof1(cid:4).(cid:4)25pixel−1andanimagepointspreadfunction(PSF) FWHMof(cid:7)6(cid:4)(cid:4).Sourcedetectionandphotometryaredescribed and rest-frame colors and absolute magnitudes are accurate to ∼0.1mag(accountingfordistanceandk-correctionuncertain- indepthinPapovichetal.(2004)andcatalogmatchinginBell ties).Theastrometryisaccurateto∼0(cid:4).(cid:4)1andtheaverageseeing et al. (2007).23 Based on those works, we estimate that our is0(cid:4).(cid:4)7.ItisworthnotingthatEquation(1)leadstotypicalred- sourcedetectionis80%completeatthe5σ limitof83 μJyin shifterrorsofσ (cid:7)0.01forbright(m <21)andσ (cid:7)0.04for the 24 μm data in the ECDFS for a total exposure of ∼1400 z R z s pixel−1. The A901/902 field has similar exposure time, but faint(21<m <23.5)galaxiesinthe0.4<z<0.8interval. R owing to higher (primarily zodiacal) background the 5σ limit ThestellarmasseswereestimatedinCOMBO-17byBorch (80%completeness)is97μJy,withlowercompletenessof50% et al. (2006) using the 17-passband photometry in conjunc- at83μJy.Weusebothcatalogstoalimitof83μJy. tion with a non-evolving template library derived using the Pe´gasestellarpopulationmodel(seeFioc&Rocca-Volmerange Toincludebothobscuredandunobscuredstarformationinto theestimateoftheSFRofgalaxiesinoursample,wecombine 1997, 1999) and a Kroupa et al. (1993) initial mass function UV emission with an estimate of the total IR luminosity in (IMF). Note that the results assuming a Kroupa (2001) or a concert. As the total thermal IR flux in the 8–1000 μm range Chabrier (2003) IMF yield similar stellar masses to within ∼10%.Thereddesttemplateshavesmoothlyvaryingexponen- is observationally inaccessible for almost all galaxies in our sample,wehaveinsteadestimatedtotalIRluminosityfromthe tiallydecliningstarformationepisodes,intermediatetemplates observed 24 μm flux, corresponding to rest-frame 13–17 μm haveacontributionfromalow-levelconstantlevelofstarfor- emission at the redshifts of interest z = 0.4–0.8. For this mation, while the bluer templates have a recent burst of star exercise, we adopt a Sbc template from the Devriendt et al. formationsuperimposed. (1999)SEDlibrary(Zhengetal.2007b;Belletal.2007).The The masses are consistent with those using M/L estimates resulting IR luminosity is accurate to a factor of (cid:4)2: local basedonasinglecolor(e.g.,Belletal.2003).Randomstellar mass errors are <0.3 dex on a galaxy-by-galaxy basis, and galaxies with IR luminosities in excess of > 1010L(cid:6) show a tight correlation between rest-frame 12–15 μm luminosity systematicerrorsinthestellarmasseswerearguedtobeatthe and totalIRluminosity (Spinoglio etal.1995; Chary &Elbaz 0.1 dex level (see Borch et al. 2006, for more details). Bell & 2001; Roussel et al. 2001; Papovich & Bell 2002) with a deJong(2001)arguedthatgalaxieswithlargeburstsofrecent scatter of ∼0.15 dex. Furthermore, Zheng et al. (2007b) have starformationcouldproducestellarM/Lvaluesatagivencolor thatarelowerbyupto0.5dex;thisuncertaintyismorerelevant stackedluminous(LTIR (cid:5)1011L(cid:6))z∼0.7galaxiesat70μm and 160 μm, finding that their average spectrum is in good in this work than is often the case. While this will inevitably agreementwiththeSbctemplatefromDevriendtetal.(1999), remainanuncertaintyhere,wenotethattheBorchetal.(2006) validating at least on average our choice of IR SED used for templatesdoincludeburstsexplicitly,thuscompensatingforthe extrapolationofthetotalIRluminosity. worstoftheuncertaintiesintroducedbyburstingstarformation We estimate the SFR by using both directly observed UV- histories. In Section 4.1.2, we will explicitly study the impact lightfrommassivestarsanddust-obscuredUV-lightmeasured thatsuchuncertaintieshaveonourresults. fromthemid-infrared.AsinBelletal.(2005)weestimatethe In what follows, we use COMBO-17 data for two fields: SFRψbymeansofacalibrationderivedfromPe´gasesynthetic the ECDFS and Abell 901/902 fields, because of their com- plementarydata:deepHST/ACSimagingfromtheGEMSand STAGES projects, respectively (allowing an investigation of 23 Inthispaper,weareinterestedinSFRenhancementsinclosepairsof morphologicallyselectedmergerremnantsandveryclosepairs), galaxies,wheretheclosestpairsmayfallwithinasingleSpitzer/MIPSPSF. Accordingly,inthisworkwechoosetoexplorethetotalSFRinthepair anddeep24μmimagingfromtheMIPSinstrumentsonboard (avoidsdeblendinguncertainties)ratherthantheindividualSFRoccurringin Spitzer,requiredtomeasureobscuredSF. bothgalaxies. No.1,2009 GALAXYINTERACTIONSANDSTARFORMATION 327 modelsassuminga100Myroldstellarpopulationwithconstant SFRandaChabrier(2003)IMF ψ/(M(cid:6) yr−1)=9.8×10−11×(LTIR+2.2LUV). (2) Here, L is the total IR luminosity and L = 1.5νl TIR UV ν,2800 is a rough estimate of the total integrated 1216–3000 Å UV luminosity. This UV luminosity has been derived from the 2800 Å rest-frame luminosity from COMBO-17 l . The ν,2800 factorof1.5inthe2800Å-to-totalUVconversionaccountsfor UV spectral shape of a 100 Myr old population with constant SFR, and the UV flux is multiplied by 2.2 to account for the light emitted longwards of 3000 Å and shortwards of 1216 Å bytheunobscuredstarsbelongingtotheyoungpopulation. For all galaxies detected above the 83 μJy limit, we have Figure1.Stellarmassvs.colordistributionofCOMBO-17selectedgalaxiesin used the IR and UV to estimate the total SFR. For galaxies theECDFSandA901/2fieldwith0.4<z<0.8.Theverticallineshowsthe undetected at 24 μm, or detected at less than 83 μJy, we use masslimitM(cid:5)>1010M(cid:6)usedtoselectoursample.Thismassselectedsample insteadUV-onlySFRestimates. iscompleteexceptforredsequencegalaxiesatz>0.6.Thebluelineshows thecutusedtoseparateredsequenceandbluecloudgalaxies.Redsymbols 2.3.1.IREmissionfromAGN-heatedDust denote24μmdetectedgalaxieswith>83μJy. (Acolorversionofthisfigureisavailableintheonlinejournal.) Possiblecontaminationofmid-IR-derivedSFRsfromactive galactic nucleus (AGN)-heated dust is often addressed by estimatingthefractionofstarformationheldinX-raydetected sources. In our case <15% of the star-forming galaxy sample Despitethevariouslevelsofuncertainty,takingthedifferent were detected in X-rays, in good agreement with the results lines of evidence together demonstrates that (cid:4)30% of the IR foundby,i.e.,Silvaetal.(2004)orBelletal.(2005). luminosityinoursamplecomesfromsystemsthatmayhostan Yet, there are two limitations of this estimate. First, this AGN, and that it is likely that <10% of the IR luminosity of does not account for any contribution from X-ray undetected our sample is powered by accretion onto supermassive black Compton-thick AGN, which could drive up the expected con- holes.Giventheotheruncertaintiesinouranalysis,wechoose tribution from AGN in our sample. For example, applying an toneglectthissourceoferrorinwhatfollows. m = 24 cut to the sample of Alonso-Herrero et al. (2006), R weestimatethefractionofX-rayundetectedAGNtobe∼30%, whileRisalitietal.(1999)find∼50%oflocalAGNtobeComp- 3.SAMPLESELECTIONANDMETHOD tonthick.Onthisbasis,itisconceivablethatupto30%of24μm luminosityisfromgalaxieswithAGN.24 ThegoalofthispaperistoexploretheSFRinmajormergers Second,eveningalaxieswithAGN,notalloftheIRemission between massive galaxies, from the pre-merger interaction to will come from the AGN. Although the data do not currently after the coalescence of the nuclei. We chose a stellar mass- existstoanswerthisquestionconclusively,itispossibletomake limited sample with M(cid:5) (cid:2) 1010M(cid:6) in the redshift slice of aroughestimateoftheeffect.Inordertoestimatethefraction 0.4 < z (cid:3) 0.8 (see Figure 1). This roughly corresponds to of mid-IR light that comes from the AGN (as opposed to star MV =−18.7forgalaxiesintheredsequenceandMV =−20.1 formationinthehost),wehavemadeuseoftheresultsofRamos for blue objects. We only included galaxies that fall into the Almeidaetal.(2007),whoattemptedtostructurallydecompose footprintofboththeACSsurveysGEMSandSTAGESandof mid-infrared imaging from Infrared Space Observatory for a existingSpitzerdata.Thesecriteriaresultedinafinalsampleof sample of both Seyfert 1 and 2 AGN in the local universe, 2551galaxies. some of which are very highly obscured in X-rays. Analyzing Given the flux limit mR (cid:4) 23.5 for which COMBO-17 the results in Tables 2 and 3 of Ramos Almeida et al. (2007), has reasonably complete redshifts (Wolf et al. 2004) we are wehavefoundthatonlyasmallfractionoftheIRradiationat completeforM∗ >1010M(cid:6)bluecloudgalaxiesovertheentire ∼10μm(inthispaperweworkatrestframe13–17μm)comes redshift range 0.4 < z < 0.8. For red sequence galaxies, fromthecentralpartsofthegalaxiesintheSeyfert2population, the sample becomes somewhat incomplete at z > 0.6, and findingatotalcontributionof at z = 0.8, the limit is closer to 2 × 1010M(cid:6). We chose to adopt a limit of 1010M(cid:6) in what follows, despite some FAGN mild incompleteness in the red sequence, for two reasons. FIRtotal =0.26±0.02. (3) First,adoptingacutof2×1010M(cid:6) acrossthewholeredshift IR range reduces the sample size by a factor of 30%, leaving too Thisresultshouldbeviewedasindicativeonly:obviously,the small a sample for the proposed experiment. Second, the vast systems being studied will be different in detail from those in majority of the star-forming galaxies are blue cloud galaxies oursample.Furthermore,the10μmluminositiesofthenuclei (83% of the star formation is occurring in blue galaxies), willbepreferentiallyaffectedbysilicateabsorption,makingit makingthemodestincompletenessintheredsequenceofminor possiblethatourvalueofFAGN/Ftotalisalowerlimit. importance. IR IR Later, we will use a subsample composed of star-forming 24 AlthoughnotethatinarecentinvestigationofX-rayundetectedIR-bright galaxies.Wewillreferto“starformers”asgalaxiesdefinedby galaxiesintheCDFS,Lehmeretal.(2008)foundthatradio-derived(1.4GHz) havingeitherblueopticalcolorsorhavingbeendetectedinthe SFRsagreewiththeUV+IR-derivedones.Thisimpliesthattherelative MIPS24μmband.Weselectopticallybluegalaxiesadoptinga strengthofanyAGNcomponentisnotdominantwhencomparedtothehost galaxy. stellarmass-dependentcutinrest-frameU−Vcolor,following 328 ROBAINAETAL. Vol.704 Belletal.(2007;seeourFigure1)25: Thefirstcriterionisthatthestellar-massratiofallsbetween1:1 and1:4.W√efurtheronlyallowamaximumredshiftdifference U −V (cid:5)1.06−0.352z+0.227(log10M∗−10). Δz=Δ= 2σz,whereσzistheerrorinredshiftoftheprimary galaxy(seeEquation(1)),and,dependingonthecase,eitherthe Weincludeallobjectsdetectedabovethe24μmlimitof83μJy primaryorbothgalaxiesinthepairhavetobestarformers(see asstarforming. Section4). Inordertotrackstarformationinveryclosepairs(<2(cid:4)(cid:4) and We can then study the possible enhancement of (specific) hence unresolved by the ground-based COMBO-17 data) and SFRbymeansofaprojectedmarked(orweighted)correlation merger remnants, we include only merging systems (from the function,whichcanbedefined ACSdata)withM∗ >2×1010M(cid:6):i.e.,theminimumpossible massforamergerbetweentwogalaxiesinoursample. E(r )= 1+W(rp)/Δ, (5) p 1+w(r )/Δ p 3.1.ProjectedCorrelationFunction whereW(r )=Δ(PP/PP −1)and p R The correlation function formalism is a convenient and (cid:7) powerfultooltocharacterizepopulationsofgalaxypairs(e.g., PP(r )= P D , Davis & Peebles 1983; Beisbart & Kerscher 2000). Here, we P ij ij useweightedprojectedtwo-pointcorrelationfunctionsbecause (cid:7)ij redshift uncertainties (1%–3%) from COMBO-17 translate to PP (r )= P R . R P ij ij line-of-sight distance errors of ∼100 Mpc, necessitating the ij useofprojectedcorrelationfunctionstoexploretheproperties P isthemark(orweight).WeadopttwodifferentweightsP of close physical pairs of galaxies (Bell et al. 2006). For our ij ij inwhatfollows,oneistheSFRofthepairofgalaxies sampleathand,weestimatetheweighted(ormarked)two-point correlationfunction(Boerneretal.1989;Beisbart&Kerscher P =S =SFR =SFR +SFR , ij ij ij i j 2000;Skibbaetal.2006;Skibba&Sheth2009),usingboththe SFR and the specific SFR (SFR per unit stellar mass) as the andtheotheristhespecificSFRofthegalaxypair weight. Theprojectedcorrelationfunctionw(r )istheintegralalong SFR +SFR P P =s =SpecificSFR = i j. thelineofsightofthereal-spacecorrelationfunction ij ij ij M +M (cid:5),i (cid:5),j (cid:2) ∞ (cid:3)(cid:4) (cid:5) (cid:6) Then,theestimatorthatweuseforE(r )is w(r )= ξ r2+π2 1/2 dπ, (4) p p p −∞ PP/DD E(r )= , (6) p (cid:11)P (cid:12) wherer isthedistancebetweenthetwogalaxiesprojectedon ij p the plane of sky and π the line-of-sight separation. A simple where (cid:11)P (cid:12) is the average value of the weight used (SFR, estimator for this unweighted correlation function is w(r ) = ij p or specific SFR) across the sample. This normalization is the Δ(DD/RR−1),whereΔisthepathlengthbeingintegratedover, averagevalueofpairSFRorSSFRfortheactualpairsamples DD(r ) is the histogram of separations between real galaxies P used in this analysis, out to a projected separation of 8 Mpc, and RR(r ) is the histogram of separations between galaxies P inordertoprobegalaxypairssamplingdifferentenvironments in a randomly distributed catalog (this is the same estimator tobuildarepresentativecosmic-averagedweight.TheSFRsor usedinBelletal.2006).Basically,theaimistofindtheexcess SSFRs of individual galaxies used to find the normalization probability (compared to a random distribution) of finding a are exactly the same as for the numerator, as described in galaxy at a given distance of another galaxy. This estimator Section 2.3. It is worth noting that with our definition of the accomplishes that by subtracting the random probability of enhancementgiveninEquation(5)therandomhistogramsRR findingtwogalaxiesatagivenseparationfromtheprobability and PP cancel in the process of obtaining the expression in in the real data sample and normalizing to the probability in R Equation (6), so they are not used in the computation of our the random case. Other estimators (i.e., Δ[(DD −DR)/RR] enhancement. or Δ[(DD −2DR +RR)/RR]) for the two-point correlation In the present work we perform two analyses: the cross- functiongiveresultsdifferentby<5%(lessthanothersources correlation of star-forming galaxies (as defined above) as pri- ofuncertainty).Thus, marygalaxieswithallgalaxiesassecondaries,andtheautocor- (cid:7) relationofstar-forminggalaxies.Wewillestimatetheerrorsin DD(r )= D , P ij ourmarkbymeansofbootstrappingresampling. ij (cid:7) 3.2.VisualMorphologies RR(r )= R , P ij A particular challenge encountered when constructing a ij census of star formation in pairs and mergers is accounting wherethesumisoverallnon-repeatedpairsinthesample,and for systems with separations of <2(cid:4)(cid:4) (which corresponds to D (R )equals1onlyifthepair-selectioncriteriaaresatisfied ij ij <15 kpc, the radius within which we can no longer separate inthereal(random)galaxycatalog,andisequalto0otherwise. two massive galaxies using COMBO-17; Bell et al. 2006). In order to pick up the SF in all the stages of the interaction, we 25 Duetominormagnitudeandcolorcalibrationdifferencesbetweenthetwo need to have an estimate of the SFR not only in galaxy pairs fields,theredsequencecutisslightlyfielddependent,withtheinterceptat 1010M(cid:6)andz=0beingU−V =1.01and1.06fortheECDFSandthe withseparations>15kpcbutalsoinextremelyclosepairsand A901/902fields. inrecentmergerremnants.Weconductourcensusofsuchclose No.1,2009 GALAXYINTERACTIONSANDSTARFORMATION 329 physical pairs by including in the <15 kpc range sources that One practical issue is that of passband choice and shifting. are not resolved by COMBO-17, but appear to be interacting We choose to classify the F606W images of the GEMS and pairsormergerremnantsonthebasisofvisualclassificationof STAGES fields (in STAGES because that is the only available the∼0(cid:4).(cid:4)1resolutionACSimages.Wetrytorecovervisuallyall HST passband and in GEMS for consistency and because <15kpcseparationpairsoftwoM∗ > 1010M(cid:6) galaxieswith F606WhashigherS/NthattheF850LPdata).Thiscorresponds a mass ratio between 1:1 and 1:4 missed by COMBO-17. In to rest-frame ∼430(330)nm at redshift 0.4(0.8). In previous additiontothoseextremelyclosepairs,wealsoaccountforthe papers (Wolf et al. 2005; Bell et al. 2005; Jogee et al. 2009), SF in recent merger remnants M∗ > 2×1010M(cid:6) (two times we have assessed whether the morphological census derived theminimummassofagalaxyinthesampleandtheminimum fromGEMS/STAGESwouldchangesignificantlyifcarriedout possiblemassofagalaxypairasdefinedbefore). data a factor of 5 deeper from the GOODS project (testing sensitivity to surface brightness limits), or if carried out at 3.2.1.DiscussionofVisualClassifications F850LP (always rest-frame optical at these redshifts). We foundthatthepopulationdoesnotshowsignificantlydifferent Our goal is to include very close pairs or already-coalesced morphologiesbetweenour(comparatively)shallowF606Wdata major merger remnants into the census of “mergers” in order andthedeeper/redderimagingdatafromGOODS(seeFigure5 to account for any SF triggered by the merger/interaction process.26 Wedosoonthebasisofvisualclassificationofthe inJogeeetal.2009). sample.Themotivationforvisualclassificationisapragmatic 3.2.2.Method one:whileanumberofautomatedmorphologicalclassification systemshavebeendevelopedinthelast15years(i.e.,Abraham An independent visual inspection of the galaxy sample has et al. 1996; Conselice et al. 2003; Lotz et al. 2004, etc.), it beencarriedoutbyfourclassifiers,A.R.R.,E.F.B.,R.E.S.,and seemsthatthesensitivityof theobservables used(asymmetry, D.H.M.,inordertoidentifymorphologicalsignaturesofmajor clumpiness,Ginicoefficient,second-ordermomentofthe20% gravitationalinteractions.Eachclassifierassignedeveryoneof brightest pixels) is insufficient for matching the performance the∼2500samplememberstooneofthethreefollowinggroups. ofvisualclassificationincurrentintermediateredshiftgalaxies 1. Non-majorinteractions:thebulkofgalaxiesinthisbinshow with the same level of precision that they display in the local no signatures of gravitational interactions. Asymmetric, universe samples used for their calibration (Conselice et al. irregular galaxies with patchy star formation triggered by 2003;Lisker2008;Jogeeetal.2009). internal processes lie in this category. A small fraction of Yet,thereisadegreeofsubjectivitytowhatonedeemstobe galaxiesinthisbinshowaclearlyrecognizablemorphology a major merger remnant. Many factors shape the morphology (e.g.,spiralstructure)butalsosignaturesofaninteraction ofagalaxymergerthatarebeyondthecontroloftheclassifier. (such as tidal tails, or warped, thick or lopsided disks) Bulge-to-total(B/T)massratioshaveanstrongeffectonboth but have no clear interaction companion; note that these the intensity of the SFR enhancement and the time at which objectscouldbeinteractingsystemswherethecompanion theintensitypeakshalloccur(e.g.,Mihos&Hernquist1996). isnowreasonablydistantand/orfaintandmoredifficultto Orbital parameters strongly shape the development of easily identify. The tidal enhancement of SF from such systems recognizabletidaltailsandbridges(coplanarornot,retrograde will not be missed by putting them in this bin; rather, it versusprograde,etc.).Priordustandgascontentoftheparent will be measured statistically and robustly from the two galaxies (“dry” versus “wet” mergers) will make a difference point correlation function analysis. Minor mergers and to the appearance of the final object during the coalescence. interactions(interactionswherethesecondaryisbelieved, Furthermore, merging timescales will depend on whether the onthebasisofluminosityratio,tobelessthan1/4ofthe galaxies are undergoing a first passage or are in the final massoftheprimary)alsobelongtothiscategory. stages of the merger. Finally, there is a degeneracy between 2. Majorcloseinteractions:closepairsresolvedinHSTimag- all these parameters and the relative masses of the galaxies ing but not in ground-based COMBO-17 data, consisting undergoingtheinteraction,whichmakesdifficultinsomecases oftwogalaxieswithmassratiosbetween1:1and1:4based to distinguish the morphological signatures of a major merger onrelativeluminosity,andclearsignaturesoftidalinterac- fromthoseofaminormerger. tion such as tidal tails, bridges or common envelope (see Someofthesefactors(e.g.,gasfraction,B/Tratios,etc.)will Figure2).Fromnowonweshallrefertoobjectsclassified also affect the enhancement of the SFR during the interaction inthisgroupas“veryclosepairs.” (e.g.,diMatteoetal.2007,2008;Coxetal.2008).Whilethere 3. Majormergerremnants:objectsthatarebelievedtobethe isconsiderablemerger-to-mergerscatter,encountersoftwogas- coalesced product of a recent major merger between two richdiskgalaxieswithparallelspinstendtodevelop,onaverage, individual galaxies. Signposts of major merger remnants the strongest morphological features, but at the same time are include a highly disturbed “train wreck” morphology, morelikelytothrowoutlargeamountsofcoldgasintidaltails, double nuclei of similar luminosity, tidal tails of similar preventingthefunnelingofthisgastothecentralregions.Thus, length,orspheroidalremnantswithlarge-scaletidaldebris samples selected to have the strongest morphological features (see Figure 3). Galaxies with clear signs of past merging mayhaveanaverageSFRenhancementdifferentfromtheactual but a prominent disk (e.g., highly asymmetric spiral arms meanenhancement.27 oronetidaltail)weredeemedtobeminormergerremnants and were assigned into the Group 1. Naturally, there 26 Notethataconsistentcomparisonwiththeprojectedcorrelationfunction is some uncertainty and subjectivity in the assignment samplerequirestheinclusionofallnon-interactingpairsthatarephysically associated(inthesamecluster,filament,etc.),areseentobecloseprojected of this class, in particular; such uncertainty is taken into pairsonthesky,butmaybeseparatedbyasmuchasafewMpcalongtheline account in our analysis by the Monte Carlo sampling of ofsight. all four classifications in order to properly estimate the 27 Thisbiasmightalsobepresentinthecaseofstudieslookingforsignsof dispersionintheopinionsoftheindividualclassifiers(see interactionsinthehostgalaxiesofAGNs,attemptingtoassesswhetherthe AGNactivityisprecededbyamerger. below). 330 ROBAINAETAL. Vol.704 Figure2.ObjectsclassifiedinGroup2:majorcloseinteractions.Thepresenceoftwogalaxiesandsignsofinteractionarerequired.Theclassifierbelievesthemass ratioisbetween1:1and1:4.Atthisstageoftheinteraction,drymergersarestillrecognizableasseeninpanelsattopcenter,bottomcenterandbottomright.The blackbaratthebottomofeverypanelshowsaproperdistanceof20kpcattheredshiftoftheobject.Someoftheobjectsclassifiedinthisgroupwerealsoseparated astwogalaxiesintheground-basedcatalogandtreatedinconsequence. We then assign the objects in the Groups 2 and 3 (very included in the two point correlation function analysis, and close pairs with morphological signatures of interaction and any SF triggered by major interactions or early-stage major merger remnants, respectively) to a small projected separation merging is accounted for by that method. As we have four andtreateveryoneofthemasagalaxypairinordertocombine different classifications for every object (one given by each themwiththecorrelationfunctionanalysisresultforpairswith human classifier), we randomly assign one of them, calculate separations>2(cid:4)(cid:4).AllobjectsinGroup2(extremelyclosepairs the average value of the weight we are using and repeat the with projected separations <15 kpc as measured by centroids processanumberoftimes.AsbydefinitionobjectsinGroups in HST imaging) are assigned to a separation of 10 kpc and 2 and 3 are considered to be a galaxy pair by themselves, we all objects in Group 3 (merger remnants) are assigned to a removeineveryMonteCarlorealizationtheobjectsassignedto separation of 0 kpc. We have checked for duplicate pairs in those groups before we run the weighted correlation function. both the visually selected sample and the COMBO-17 catalog This approach presents two clear advantages: (1) the resultant inordertoavoidrepeatedpairs.GalaxiesinGroup1arealready bootstrappingerrornotonlyrepresentsthestatisticaldispersion No.1,2009 GALAXYINTERACTIONSANDSTARFORMATION 331 Figure3.ObjectsclassifiedinGroup3:majormergerremnants.Theblackbaratthebottomofeverypanelshowsaproperdistanceof20kpcattheredshiftofthe object. butalsothedifferentcriteriaofthefourhumanclassifiers;and 1010M(cid:6) and the pair has a stellar-mass ratio between 1:1 and (2) the morphology of every object is weighted with the four 1:4.Ourprimaryanalysisisbasedonamarkedcross-correlation classifications given. This means that objects with discrepant between star-forming galaxies, as defined in Section 3, and classifications are not just assigned to one category when we all galaxies in the sample. For morphologically selected very calculate the SFR (or specific SFR) enhancement; rather, any close pairs or interactions (unresolved by COMBO-17), we dispersion in classifications is naturally accounted for (e.g., also require them to be blue or detected by Spitzer to be minor/major criteria). The numbers of such systems and their considered as part of the star-forming sample,28 with a mass uncertainties,estimatedfromtheclassifier-to-classifierscatter, ofM∗ >2×1010M(cid:6). aregiveninTable1. Weperformtwoanalysesinthispaper:thecross-correlation of star formers as primary galaxies with all galaxies as secon- 4.RESULTS daries(ourdefaultcase),andtheautocorrelationofstar-forming We are now in a position to quantify the triggering of star formation in galaxy interactions and mergers in the redshift 28 Allgalaxies,irrespectiveoftheircolororIRflux,wereclassified;the interval0.4<z<0.8,inthecaseswhereeachgalaxyhasM∗ > star-forminggalaxiesaresimplyasubsampleofthislargersample. 332 ROBAINAETAL. Vol.704 Figure4.PairspecificSFRenhancementasfunctionoftheprojectedseparationbetweentwogalaxies.Thetwosmallestradiibinsarederivedfrommorphologically selectedveryclosepairs(shownwithrP ∼10kpc)andmergerremnants(shownwithrP =0);enhancementsatlargerradiiaredeterminedusingweightedtwo-point correlationfunctions.Astatisticallysignificantenhancementispresentingalaxypairsandmergersbelow40kpcinboththecross–correlationbetweenstar-forming galaxiesasprimariesandallgalaxiesassecondaries(blackfilledsymbols)andtheautocorrelationofstar–forminggalaxies(emptydiamonds).Errorbarshavebeen calculatedbybootstrapping. Table1 starformation,ratherthanbeingduetoacorrelationwithsome ResultsfromtheMorphologicalClassification otherunidentifiedquantity:(1)itiswellknownfromsimulations (Mihos&Hernquist1996;diMatteoetal.2007;Coxetal.2008) LowerMassLimit SampleSize Group1 Group2 Group3 thataburstofstarformationisexpectedinthecollisionsofgas- 1010M(cid:6) 2551 2380±37±49 106±7±10 72±7±8 rich galaxies; and (2) the observed effect is in the opposite 2×1010M(cid:6) 1749 1640±32±40 69±6±8 44±5±7 sense of the usual SFR–density relation (e.g., Balogh et al. 2002), which says that galaxies in dense environments (where Notes. Galaxy and interaction sample. Group 1: isolated objects and minor interactions.Group2:extremelyclosepairs(rP <15kpc).Group3:merger preferentially close galaxy pairs tend to be found, as shown remnants.Thefirsterrorbarrepresentsclassifier-to-classifierscatter,whilethe inBartonetal.2007)have,onaverage,weakerstarformation secondonerepresentsPoissonnoise. activitythangalaxiesinlessdenseregions. Evenwhenweconsiderourmorphologicalclassificationand galaxies. While the first analysis is a rather more direct attack furtherMonteCarloresamplingmethodtobeveryrobust,po- onthequestionofinterest,weshowresultsfromtheautocorre- tentialclassificationerrorscouldactintwodifferentdirections. lationofstar-forminggalaxiestoillustratetheeffectsofmaking Interactingsystemsmisidentifiedasnon-interactingwillbedi- differentsamplechoicesonthefinalresults. lutedintothebackgroundstarformationassinglegalaxiescon- tributingtopairsatrandomseparations.WhilethisSFshouldbe 4.1.EnhancementintheStarFormationActivity losttotheinteractingbin,theeffectontheaverageSFRwould Our main results are shown in Figure 4, which shows the beminimal.Ontheotherhand,isolatedgalaxiesmisidentifiedas enhancementofthespecificstarformationrate(SSFR)inpairs interactingsystemsbecauseofinternalinstabilitiesorstochastic as a function of their projected separation. As explained in starformationwouldacttoreducetheenhancement. Section 2.3 we use UV+IR SFRs for the objects detected in As mentioned before, the SFR for the objects undetected at 24μmandonlyUVSFRsforthoseundetected.Forthewhole 24μmhasbeencalculatedbasedonlyontheUV.Inthe24μm sample, 38% of the galaxies where detected by Spitzer above detectedobjects,wehavefoundnocleartrendinboththeUV the 83 μm limit, while if we restrict to the Groups 2 and 3 versusUV+TIRSFRsandintheTIR/TUVversusopticaldust in our morphological classification we find a detected fraction attenuationbutfoundinsteadaconstantcorrectionfactorwitha of 60%. Figure 4 shows a clear enhancement in the SSFR for largescatter(4.1 ± 2.4asestimatedfromtherelationbetween projectedpairseparationsr <40kpc.Itcouldbearguedthat TIR/TUV versus optical attenuation.) We have checked the P the SSFR is a better measure of the SF enhancement than the effectsofsuchadust-correctionoftheUV-onlySFRs:theresults SFR-weightedestimator,becausethestrongscalingofSFRwith differinallbinsby<10%,comparabletoorsmallerthanother galaxy mass is factored out. The figure shows both the cross- sourcesofsystematicuncertainty. correlationbetweenstar-formingprimariesandallsecondaries Yet, in order to understand the degree of obscuration in (SF–All,solidline)andthestar-forminggalaxyautocorrelation galaxy interactions we have repeated our analysis including (SF–SF,dottedline).Thetwobinsatr (cid:3)15kpcarecalculated only UV–derived SFRs, this is, excluding the TIR compo- p from morphologically selected very close pairs (r = 10 kpc) nent in Equation (2) for 24 μm detections. The result of this p andmergerremnants(r =0).AlltheerrorsinE havebeen analysis is shown in Figure 5. The enhancement in the un- P SSFR computedbybootstrapresampling.Thisapproachallowsusto obscured SSFR measured for close pairs (r < 40 kpc) in P treat both the morphologically selected objects and the galaxy thiscaseisdramaticallysmallerthantheenhancementinclud- pairs exactly in the same way, having as a result a coherent ingthedust-obscured(IR-derived)SFR.Thisismoreapparent displayoftheerrorbars. in the very close pairs and merger remnants, where the ex- TherearetworeasonswhythisexcessinE inclosepairs cessintheSSFRevendisappearscompletelyinthecaseofthe SSFR andremnantsislikelyasignthatinteractionsinduceadditional SF–SFautocorrelation(E(r <15kpc)(cid:7)1).Thisimpliesthat P No.1,2009 GALAXYINTERACTIONSANDSTARFORMATION 333 Figure 5. Same as Figure 4 but tracing only unobscured (UV-derived) star formation. The unobscured SSFR enhancement found in galaxy pairs with Figure 7. SFR enhancement measured after randomizing the SFR between rseesppaercattiotonsthrePca<se4i0nkwphcicahndthmeeorbgsecrusreredmsntaarnftsorimsadtriaomnaistictaaklleynriendtuocaecdcowuintht goafl∼ax1i6es0okfpsci.mWilearsshtoewllatrhmeapsosi.nAtsmcoilrdreesnphoanndcienmgetnottihsefoSuFn–dSoFuatutotosceoprareralatitoionns (Figure4). atdistances>15kpc,wherenomorphologicalinformationisused. the SFR (rather than in the SSFR) is a better quantity to consider. WeshowinFigure6theenhancementintheSFR(E (r )) SFR p as a function of the projected pair separation. For the cross– correlation function (our default case) the enhancement in the SFR is similar to the one found in the SSFR at all separations except for the merger remnants (r = 0), in which the excess p abovethewholepopulationis∼50%lower.TheSFR–weighted autocorrelation of star-forming galaxies matches that of the SSFR–weighted one for r < 40 kpc but differs beyond: p E = 1.25 for 40 < r < 180 kpc. While most of these SFR P points in Figure 6 are individually compatible with the error bars shown in Figure 4, taken together they represent a ∼2σ significant difference between E and E for the entire SSFR SFR region40<r <180kpc. p Figure6.SFRenhancementingalaxyinteractions.Thetwosmallestradiibins A potential driver of the SFR enhancement in the regime aarneddmereivrgeedrfrreommnmanotrsph(sohloowgincawlliythserlPect=ed0e)x;treenmhaenlycecmloesnetpsaairtsla(rrgPe∼rra1d0iikparce) 40 < rP < 180 kpc is the fact that more massive galaxies determined using weighted two-point correlation functions. There is a clear tend to be both more clustered and have higher SFR (Noeske enhancement at rP < 40 kpc for the cross-correlation analysis (black-filled etal.2007);thiscouldtranslateintoaweakenhancementinthe symbols) which is compatible with ESSFR (Figure 4) except for the merger SFR in galaxy pairs living in dense environments (see Barton remnants,wheretheexcessis∼50%lower.Theautocorrelationofstar-forming et al. 2007, for a thorough discussion on the relation between galaxies(emptysymbols)presentsanunexpectedbehavior,showingaverymild galaxypairsandenvironment)whichwillnotbepresentinthe enhancementatrP <180kpc. SSFR,becausethenormalizationbygalaxymassfactorsoutthis dependence.Totesttherelevanceofthissystematiceffect,we mostofthedirectlytriggeredstarformationisdustobscured,in randomizedtheSFRsamonggalaxiesofsimilarmass500times goodagreementwiththeexpectationsfromMihos&Hernquist inthesampleandrepeatedtheanalysis.Weshowtheresultsof (1994,1996),diMatteoetal.(2007),Coxetal.(2008),andthe thisexerciseinFigure7,wherewecanseeatailofenhancement detailed models by Jonsson et al. (2006). In these simulations withabehaviorsimilartotheoneseeninFigure6.Webelieve mostofthestarformationistriggeredinthecentralregionsof thatacombinationofthedensity–mass–SFRrelationplusnoise thegalaxyafterthecoldgashasbeenfunneledtotheinnerkpc. isdrivingESFR >1(autocorrelation)between40and180kpc. This scenario is also supported by our measurement of Accordingly, we consider only the enhancement at rP < the mean ratio between the total SFR and the UV-derived, 40 kpc as produced by major merging in what follows, and which gives an idea of the degree of dust-obscuration use the differences between the SFR and SSFR enhancement (SFR /SFR ). We find 6.64 ± 0.66 in the case of the on <40 kpc scales as a measure of systematic uncertainty. IR+UV UV mergerremnants(Group3inSection3.2)and6.63 ± 0.64inthe Under those assumptions, we find a weak enhancement of caseoftheveryclosepairs(Group2),comparedto3.15 ± 0.53 star formation at rP < 40 kpc of (cid:8) = 1.50 ± 0.25 in the forallobjectsinthesample. SF–SF autocorrelation and (cid:8) = 1.80 ± 0.30 in the SF–All cross-correlation. These values have been computed as the average of the enhancement in the bins r < 40 kpc together 4.1.1.StarFormationRateversusSpecificStarFormationRate P in E and E . These (conservative) error bars include SSFR SFR To study the fraction of the global star formation directly boththestatisticaluncertaintiesandthesystematicsdrivingthe triggered by galaxy–galaxy interactions the enhancement in differencesbetweentheSFRandtheSSFR.

Description:
C 2009. The American Astronomical Society. All rights reserved. Printed in the U.S.A between automated classifications and visual morphologies), even in
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.