ebook img

PT Symmetry Breaking and Nonlinear Optical Isolation in Coupled Microcavities PDF

0.78 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview PT Symmetry Breaking and Nonlinear Optical Isolation in Coupled Microcavities

PT symmetry breaking and nonlinear optical isolation in coupled microcavities XinZhou1andY.D.Chong1,2,∗ 1DivisionofPhysicsandAppliedPhysics,SchoolofPhysicalandMathematicalSciences, NanyangTechnologicalUniversity,Singapore637371,Singapore 2CentreforDisruptivePhotonicTechnologies,NanyangTechnologicalUniversity,Singapore 6 637371,Singapore 1 ∗[email protected] 0 2 r Abstract: We perform a theoretical study of the nonlinear dynamics of a M nonlinearopticalisolatordevicesbasedoncoupledmicrocavitieswithgain andloss.Thisrevealsacorrespondencebetweentheboundaryofasymptotic 4 stability in the nonlinear regime, where gain saturation is present, and the 2 PT-breaking transition in the underlying linear system. For zero detuning and weak input intensity, the onset of optical isolation can be rigorously ] s derived, and corresponds precisely to the transition into the PT-broken c phase of the linear system. When the couplings to the external ports are i t unequal, the isolation ratio exhibits an abrupt jump at the transition point, p o whose magnitude is given by the ratio of the couplings. This phenomenon . couldbeexploitedtorealizeanactivelycontrollednonlinearopticalisolator, s c inwhichstrongopticalisolationcanbeturnedonandoffbytinyvariations i intheinter-resonatorseparation. s y © 2016 OpticalSocietyofAmerica h p OCIScodes:(230.4555)Coupledresonators;(230.3240)Isolators;(130.4310)Nonlinear. [ 3 v Referencesandlinks 5 1. M.Soljac˘ic´andJ.D.Joannopoulos,“Enhancementofnonlineareffectsusingphotoniccrystals,”NatureMat.3, 7 211–219(2004). 3 2. D.Jalas,A.Petrov,M.Eich,W.Freude,S.Fan,Z.Yu,andH.Renner,“Whatis andwhatisnot anoptical 1 isolator,”NaturePhot.7,579–582(2013). 0 3. H.Dtsch,N.Bahlmann,O.Zhuromskyy,M.Hammer,L.Wilkens,R.Gerhardt,P.Hertel,andA.F.Popkov, . “Applications of magneto-optical waveguides in integrated optics: review,” J. Opt. Soc. Am. B 22, 240–253 1 (2005). 0 4. M.Levy,“Nanomagneticroutetobias-magnet-free,on-chipFaradayrotators,”J.Opt.Soc.Am.B22,254–260 6 (2005). 1 5. K.Gallo,G.Assanto,K.R.Parameswaran,andM.M.Fejer,“Allopticaldiodeinaperiodicallypoledlithium : niobatewaveguide,”Appl.Phys.Lett.79,314–316(2001). v 6. A.E.Miroshnichenko,E.Brasselet,andY.S.Kivshar,“Reversibleopticalnonreciprocityinperiodicstructures i X withliquidcrystals,”Appl.Phys.Lett.96,063302(2010). 7. M. Krause, H. Renner, and E. Brinkmeyer, “Optical isolation in silicon waveguides based on nonreciprocal r a Ramanamplification,”Electron.Lett.44,691–693(2008). 8. C.G.Poulton,R.Pant,A.Byrnes,S.Fan,M.J.Steel,andB.J.Eggleton,“Designforbroadbandon-chipisolator usingstimulatedBrillouinscatteringindispersion-engineeredchalcogenidewaveguides,”Opt.Ex.20,21235– 21246(2010). 9. B.Peng,S.K.O¨zdemir,F.Lei,F.Monifi,M.Gianfreda,G.L.Long,S.Fan,F.Nori,C.M.Bender,andL.Yang, “Parity-time-symmetricwhispering-gallerymicrocavities,”NaturePhys.10,394–398(2014). 10. L.Chang,X.Jiang,S.Hua,C.Yang,J.Wen,L.Jiang,G.Li,G.Wang,andM.Xiao,“Parity-timesymmetryand variableopticalisolationinactive-passive-coupledmicroresonators,”NaturePhot.8,524–529(2014). 11. Y.Shi,Z.Yu,andS.Fan,“Limitationsofnonlinearopticalisolatorsduetodynamicreciprocity,”NaturePhot.9, 388–392(2015). 12. R.El-Ganainy,K.G.Makris,D.N.Christodoulides,andZ.H.Musslimani,“TheoryofcoupledopticalPT- symmetricstructures,”Opt.Lett.32,2632–2634(2007). 13. K.G.Makris,R.El-Ganainy,D.N.Christodoulides,andZ.H.Musslimani,“BeamdynamicsinPT-symmetric opticallattices,”Phys.Rev.Lett.100,103904(2008). 14. K.G.Makris,R.El-Ganainy,D.N.Christodoulides,andZ.H.Musslimani,“PT-symmetricopticallattices,” Phys.Rev.A81,063807(2010). 15. Z.H.Musslimani,K.G.Makris,R.El-Ganainy,andD.N.Christodoulides,“OpticalsolitonsinPTperiodic potentials,”Phys.Rev.Lett.100,030402(2008) 16. Z.H.Musslimani,K.G.Makris,R.El-Ganainy,andD.N.Christodoulides,“Analyticalsolutionstoaclassof nonlinearSchrdingerequationswithPT-likepotentials,”J.Phys.A41,244019(2008). 17. A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, “Observation of PT-symmetry breaking in complex optical potentials,” Phys.Rev.Lett.103,093902(2009). 18. C.E.Ru¨ter,K.G.Makris,R.El-Ganainy,D.N.Christodoulides,M.Segev,andD.Kip,“Observationofparity- timesymmetryinoptics,”Nature.Phys.6,192–195(2010). 19. A.Regensburger,C.Bersch,M.-A.Miri,G.Onishchukov,D.N.Christodoulides,andU.Peschel,“Parity-time syntheticphotoniclattices,”Nature488,167–171(2012). 20. L.Feng,Y.L.Xu,W.S.Fegadolli,M.H.Lu,J.E.Oliveira,V.R.Almeida,Y.F.ChenandA.Scherer,“Exper- imentaldemonstrationofaunidirectionalreflectionlessparity-timemetamaterialatopticalfrequencies,”Nature Mat.12,108–113(2013). 21. S.Longhi,“PT-symmetriclaserabsorber,”Phys.Rev.A82,031801(R)(2010). 22. Y.D.Chong,L.Ge,andA.D.Stone,“PT-symmetrybreakingandlaser-absorbermodesinopticalscattering systems,”Phys.Rev.Lett.196,093902(2011). 23. M.Wimmer,A.Regensburger,M.A.Miri,C.Bersch,D.N.ChristodoulidesandU.Peschel,“Observationof opticalsolitonsinPT-symmetriclattices,”NatureComm.6,7782(2015). 24. C. M. Bender and S. Boettcher, “Real spectra in non-Hermitian Hamiltonians having PT symmetry,” Phys.Rev.Lett.80,5243–5246(1998). 25. C. M. Bender, M. V. Berry, and A. Mandilara, “Generalized PT symmetry and real spectra,” J. Phys. A 35, L467–L471(2002). 26. W.D.Heiss,“Thephysicsofexceptionalpoints,”J.Phys.A:Math.Theor.45,444016(2012). 27. H.Ramezani,T.Kottos,V.Kovanis.andD.N.Christodoulides,“Exceptional-pointdynamicsinphotonichon- eycomblatticeswithPTsymmetry,”Phys.Rev.A85,013818(2012). 28. X.-Y.Lu¨,H.Jing,J.-Y.Ma,andY.Wu,“PT-symmetry-breakingchaosinoptomechanics,”Phys.Rev.Lett.114, 253601(2015). 29. K.V.Kepesidis,T.J.Milburn,K.G.Makris,S.Ro¨tter,andP.Rabl,“PT-symmetrybreakinginthesteadystate,” arXiv:1508.00594(2015). 30. A.U.Hassan,H.Hodaei,M.-A.Miri,M.Khajavikhan,andD.N.Christodoulides,“Nonlinearreversalofthe PT-symmetricphasetransitioninasystemofcoupledsemiconductormicroringresonators,”Phys.Rev.A92, 063807(2015). 31. B.Peng,S.K.O¨zdemir,S.Rotter,H.Yilmaz,M.Liertzer,F.Monifi,C.M.Bender,F.Nori,andL.Yang,“Loss- inducedsuppressionandrevivaloflasing,”Science346,328–332(2014). 32. H.A.Haus,WavesandFieldsinOptoelectronics(Prentice-Hall,EnglewoodCliffs,NJ,1984). 33. W.Suh,Z.Wang,andS.Fan,“Temporalcoupled-modetheoryandthepresenceofnon-orthogonalmodesin losslessmultimodecavities,”IEEEJ.QuantumElect.40,1511–1518(2004). 34. R.E.Hamam,A.Karalis,J.D.Joannopoulos,andM.Soljac˘ic´,“Coupled-modetheoryforgeneralfree-space resonantscatteringofwaves,”Phys.Rev.A75,053801(2007). 35. S.Zhang,D.A.Genov,Y.Wang,M.Liu,andX.Zhang,“Plasmon-inducedtransparencyinmetamaterials,” Phys.Rev.Lett.101,047401(2008). 36. S.H.Strogatz,NonlinearDynamicsandChaos(Westview,1994). 1. Introduction For many years, the implementation of compact optical isolators has been a major research goal in the field of integrated optics [1,2]. Optical isolation requires the breaking of Lorentz reciprocity;thisistraditionallyachievedusingmagneto-opticmaterials,butsuchmaterialsare challenging to incorporate into integrated optics devices [3,4]. The most commonly-pursued alternative method for breaking reciprocity is to exploit optical nonlinearity [1,5–11]. Two recent demonstrations of nonlinearity-based on-chip optical isolators, by Peng et al. [9] and Changetal.[10],havedrawnparticularattention.Theseexperimentsfeaturedapairofcoupled whispering-gallerymicrocavities,onecontaininglossandtheothersaturable(nonlinear)gain. Lighttransmissionacrossthestructurewasfoundtobestronglynonreciprocal,dependingon whether it first passed through the gain or loss resonator. Aided by the high Q factors of the resonators,isolationwasobservedforrecord-lowpowersof∼1µW[9]. Theuseofdualresonatorscontaininggainandlossin[9,10]wasinspiredby“PT symmetric optics”,whichconcernsopticalstructuresthatareinvariantundersimultaneousparity-flip(P) and time-reversal (T) operations [12–23]. The concept originated from the observation that PT symmetricHamiltonians,despitebeingnon-Hermitian,canexhibitrealeigenvaluespectra [24,25], as well as “PT-breaking transitions” between real and complex eigenvalue regimes. The PT-breaking transition point is an “exceptional point”, where two eigenstates coalesce and the effective Hamiltonian becomes defective [26,27]. Near the transition, the dynamical behavior of the opticalfields can exhibit highly interesting features[28–31]; for instance, the presence of gain saturation has been found to stabilize PT-symmetric steady states past the usualPT transitionpoint[29,30]. Despite these intriguing conceptual links, it was not clear from [9,10] how PT symmetry relatestotheworkingofthenonlinearopticalisolatorsinquestion.Strictlyspeaking,PT sym- metry holds in the dual-resonator structures only in the linear limit; in the nonlinear regime, thegainsaturatesandnolongermatchestheloss,sothestructuresarenotPT symmetricand do not possess distinct “PT-symmetric” or “PT-broken” phases. Peng et al., in [9], indicated thatopticalisolationoccurs(inthenonlinearregime)ifthesystemistunedsothatitwouldbe PT-broken in the linear regime; however, the actual correspondence was not shown theoreti- callynorexperimentally.Thedynamicalbehaviorofthesystem,includingtheuniquenessand stabilityofthesteady-statesolution(s),wasalsounexplored. In this paper, we present a theoretical analysis of the dual-resonator structure, aiming to clarify the relationships between the PT phase, the performance of the nonlinear optical iso- lator,andtheuniquenessandstabilityofthesteady-stateopticalmodes.Usingcoupled-mode theory[32–35],westudytheconditionsforsteady-statesolutionstoexist,andtheasymptotic stability of those solution(s). We find that stability in the nonlinear system has a close corre- spondencewiththePT transitionboundaryoftheunderlyinglinearsystem. In the “weak-input limit”, where the input intensity is low relative to the gain saturation threshold within the amplifying resonator, we show that the nonlinear solutions at non-zero frequency detunings are asymptotically stable in the PT-symmetric phase. In the PT-broken phase, the solutions become unstable at sufficiently large frequency detunings, and the non- linearsystemexhibitslimit-cycleoscillations,whichmightbeusefulforfrequencygeneration applications(suchasfrequencycombs). For small frequency detunings, multiple steady-state solutions can exist in the PT-broken phase,butonlythehighest-intensitysolutionisasymptoticallystable.Specificallyatzerode- tuning, there is always one stable steady-state solution, and the nonlinear system exhibits a sharptransitionbetweenisolatingbehavior(correspondingtothePT-brokenphase)andrecip- rocalbehavior(correspondingtothePT-symmetricphase).Althoughthistransitioncoincides exactly with the PT transition point, it is an inherently nonlinear effect, arising from a jump betweendifferentsolutionbranchesofthetransmissionintensityequations.However,theper- formance of the isolator can be significantly limited by the contributions to the nonlinearity causedbyareflectedwave[11]. Wealsoshowthattheperformanceofthenonlinearopticalisolatorisalsomodifiedinause- fulwaywhenthetworesonator-to-waveguidecouplingratesareunequal.Inthiscase,asmall shiftacrossthetransitionpointcausestheisolationratio(theratiobetweenforwardandback- wardtransmissionintensities)toundergoanabruptjump,whichapproachesadiscontinuityin theweak-inputlimit.Themagnitudeofthisjumpisgivenbytheratioofthecouplingrates.This phenomenoncanbeusedtorealizeanonlinearopticalisolatorthatexhibitsverylargechanges intheisolationratio,activelycontrolledbytinyshiftsin(e.g.)theinter-resonatorseparation. 2. Coupled-modeequations Thedual-resonator structureisshown schematicallyin Fig.1(a).The setupisidentical tothe experimentsreportedin[9,10],consistingoftwoevanescentlycoupledmicrocavitieswithres- onant frequencies ω and ω . One resonator contains saturable gain, and the other is lossy. 1 2 Theresonatorsarecoupledtoseparateopticalfiberwaveguides,whichactasinput/outputports (labeled 1–4), with couplings κ and κ . The direct inter-resonator coupling rate is µ. In the 1 2 “forward transmission” configuration, light is injected from port 1 at a fixed operating fre- quencyω,exitingatports2and4.Alternatively,inthe“backwardtransmission”configuration, light is injected at port 4 and exit at ports 1 and 3. We are interested in the level of isolation betweenports1and4,whichserveastheoperationalinputandoutputportsforthedevice. Thedual-resonatorsystemcanbedescribedbycoupled-modeequations[9,10],formulated using the standard framework of coupled-mode theory [32–35]. In this section and the next, we briefly summarize these equations, which have previously been presented in [9,10]. For forwardtransmission,thecoupled-modeequationsare da 1 =(i∆ω +g)a −iµa (1) 1 1 2 dt da √ 2 =(i∆ω −γ)a −iµa + κ s (2) dt 2 2 1 2 in I =κ |a |2. (3) F 1 1 Here,a anda denotethecomplexamplitudesfortheslowly-varyingfieldamplitudesinthe 1 2 gain resonator and loss resonators, respectively; ∆ω ≡ω−ω denote the operating fre- 1,2 1,2 quency’s detuning from each resonator’s natural frequency; g>0 and γ >0 are the net gain rateinresonator1andthenetlossrateinresonator2;s istheamplitudeoftheincominglight in inport1;andI isthepowertransmittedforwardintoport4.Forthemoment,weassumethat F there is no reflected wave re-entering the system from port 4; the effects of such a reflected wavewillbediscussedinSection7. Forbackwardtransmission,adifferentsetofcoupled-modeequationsholds: da √ 1 =(i∆ω +g)a −iµa + κ s (4) dt 1 1 2 1 in da 2 =(i∆ω −γ)a −iµa (5) 2 2 1 dt I =κ |a |2, (6) B 2 2 whereI isthepowertransmittedintoport1. B Thegain/lossratesgandγ consistofseveralradiativeandnon-radiativeterms[9]: g= 1(cid:0)g(cid:48)−γ −κ (cid:1) (7) 1 1 2 1 γ = (γ +κ ), (8) 2 2 2 whereg(cid:48) istheintrinsicamplificationrateinresonator1,andγ aretheintrinsiclossratesin 1,2 104 103 102 101 100 Backward 10-1 Transmission -2.0 -1.0 0.0 1.0 2.0 106 Forward 104 Backward 102 100 10-2 -2.0 -1.0 0.0 1.0 2.0 10-2 10-3 Forward Transmission 10-4 -2.0 -1.0 0.0 1.0 2.0 Fig.1.(a)Schematicofaresonatorwithsaturablegaincoupledtoalossyresonator,with bothresonatorscoupledtoopticalfiberports.Solidarrowsindicateforwardtransmission (port 1→4), and dashed arrows indicate backward transmission (port 4→1). (b)–(d) Transmissioncharacteristicsinthelinear(non-gain-saturated)regime,whenthegainand loss are PT symmetric (g=γ =0.4). Here, we plot the intensity in the active resonator (|a |2)underforwardtransmission(solidlines),andinthepassiveresonator(|a |2)under 1 2 backward transmission (dashes), versus the frequency detuning. These resonator intensi- tiesareproportionaltotheforwardandbackwardtransmissionintensitiesviaEqs.(3)and (6).InthePT-symmetricphaseµ>γ,therearetwotransmissionpeaks;inthePT-broken phaseµ<γ,thesemergeintoasinglepeak. theresonators.Untilstatedotherwise,wewillimposethefollowingsimplifyingrestrictions: κ =κ =γ =γ , (9) 1 2 1 2 ∆ω =∆ω ≡∆ω, (10) 1 2 g g(cid:48)= 0 . (11) 1+|a /a |2 1 s Equation(9)correspondstoa“criticalcoupling”criterionwithrespecttotheindividualcavity- waveguidecouplings.Theintrinsiclossandoutcouplingratesarealltunedtothesamevalue; note also that g = g(cid:48)/2−γ. Equation (10) states that the resonators have the same natural frequency.Equations(9)–(10)serveassimplifyingassumptions,toavoiddealingwithaprolif- erationoffreeparameters;later,wewilldiscusstheimplicationsofrelaxingtheseassumptions. Anotherimportantconstraint,PT symmetry,willbeimposedinthenextsection.Equation(11) describessaturablegain,whereg istheunsaturatedamplificationrate,anda ∈R+ isagain 0 s saturationthreshold. Theexperimentallyrealizedsystemsreportedin[9,10]operatedinthe1550nmwavelength band,withrateparametersµ,g ,γandκ ontheorderof10MHzin[9],and100MHzin[10]. 0 1,2 The coupling rates µ and κ can be tuned via the inter-resonator and resonator-waveguide 1,2 separations.Theinputpower|s |2rangedfromzerotoaround10–100µW[9,10]. in Thesuitabilityofthesystemasanopticalisolatorischaracterizedusingthe“isolationratio”, whichistheratioofforwardtobackwardtransmittanceatfixedinputpower: T I (I ) R≡ F = F in , (12) T I (I ) B B in whereI isobtainedbysolvingEqs.(1)–(3)witha˙ =a˙ =0(steadystate),andI isobtained F 1 2 B from Eqs. (4)–(6). When the system is reciprocal, R=1. The isolation ratio was also used in[9,10]asthefigureofmeritforopticalisolation.However,itisworthnotingthattheforward andbackwardtransmissionsarebeingcomparedundertheassumptionthat,ineithercase,no reflectedwaveispresent.WewilldiscussthislimitationingreaterdetailinSection7. 3. Linearoperation Wenowimposetheimportantconstraintg=γ.Thismeansthatinthelinearregime,a →∞, s the gain and loss resonators become PT symmetric. To understand the implications, consider the“closed”systemwithoutresonator-fibercouplings.Itsdetuningeigenfrequenciesare (cid:115) g−γ (cid:18)g−γ(cid:19)2 ∆ω =i ± µ2−γg− . (13) 2 2 (cid:112) When g=γ, these reduce to ∆ω =± µ2−γ2. As µ and γ are varied while keeping g=γ, thesystemhasaPT symmetry-breakingtransitionatµ =γ.Forµ >γ,thedetuningsarereal (PT-symmetricphase),andforµ <γ theyarepurelyimaginary(PT-brokenphase). With the resonator-fiber couplings introduced, the eigenmodes become transmission reso- nances. In the PT-symmetric phase µ >γ, the resonator modes and transmission amplitudes (cid:112) exhibittwointensitypeaks,at∆ω =± µ2−γ2,correspondingtothe(real)detuningsofthe closed system, as shown in Fig. 1(b). In the PT-broken phase µ <γ, there is a single peak at zero detuning, as shown in Fig. 1(d). As noted by Peng et al. [9], the PT-symmetric and PT-brokenphaseswillgiveverydifferentbehaviorsoncegainsaturationisintroduced. Inthelinearregime,Eqs.(1)–(3)andEqs.(4)–(6)obeyopticalreciprocitybyexplicitcon- struction [33]. For fixed s , the forward and backward transmission amplitudes are exactly in equal,I =I ;theisolationratioisR=1,asshowninFig.1(b)–(d). F B 4. Nonlinearoperation:multiplesolutionsandstability Weturnnowtothenonlinear,gain-saturatedregime,settingg =4γ,sothatg→γ asa →∞. 0 s This means the system would be PT symmetric in the absence of gain saturation. If we use a asthenaturalintensityscaleforthecoupled-modeequations,thenonlinearsystemhasfour s remainingindependentparameters:∆ω,µ,γ,and|s |2. in Forfinitea ,opticalreciprocityisbroken.However,thesystemisnolongerPT symmetric, s since g(cid:54)=γ, and thus we can no longer rigorously define “PT symmetric” or “PT broken” phases. Still, we can relate the nonlinear system’s behavior to the PT symmetric phases as definedinthelinearlimit. In the linear regime, the solutions to the coupled-mode equations were unique. With non- linearity, the coupled-mode equations can have multiple steady-state solutions. For forward transmission,steady-statesolutionsaredeterminedbycombiningEqs.(1)–(2)into: (cid:16) (cid:17) (cid:16) (cid:17) |α|2x3+ 2|α−1|2−2−β x2+ |α−2|2−2β x−β =0, (14) whereα,β,andxarethefollowingdimensionlessvariables: α = (−i∆ω+γ)2+µ2, β = µ2 1 (cid:12)(cid:12)(cid:12)sin(cid:12)(cid:12)(cid:12)2, x=(cid:12)(cid:12)(cid:12)a1(cid:12)(cid:12)(cid:12)2. (15) γ(−i∆ω+γ) ∆ω2+γ2 γ (cid:12)as(cid:12) (cid:12)as(cid:12) Sincex∈R+,thereiseitherone,two,orthreephysicalsteady-statesolutions.Theremustbe at least one solution, since the polynomial has a positive third-order coefficient and negative 3.0 1.0 Forward Transmission Forward Transmission 0.5 2.0 Unstable Asymptotically 0.0 Unstable 3-sol stable 1.0 -0.5 -1.0 0.0 1.0 Backward Transmission 0.05 Backward Transmission 0.5 Unstable 0.00 Asymptotically 0.0 3-sol stable -0.5 Unstable 0.05 -1.0 0.10 0.00 0.25 0.50 0.75 1.00 1.25 0 0.2 0.4 0.6 0.8 1.0 PT critical point Fig. 2. (a)–(b) Domains in which the nonlinear coupled-mode equations have multiple steady-statesolutions,forforward(a)andbackward(b)transmission.Here,weshowthe parameter space defined by the frequency detuning ∆ω and inter-resonator coupling µ, with fixed γ =0.4, sin =0.5, and as =3; symbols indicate the points in the parameter spacecorrespondingtothecurvesin(c)and(d).Withinthesmall-∆ω regionboundedby theredcurves,thehighest-intensity(oronly)solutionisasymptoticallystable.(c)–(d)Plots showingtheemergenceofmultiplesolutionsatseveralvaluesofµ,fixing∆ω=0.Thehor- izontalaxisisthenormalizedintensityinthegainresonator,|a1/as|2;theverticalaxisis theleft-handsideofthecubicEq.(14),anditscounterpartforbackwardtransmission;the steady-statecoupled-modeequationsaresatisfiedwhenthecurvescrosszero. zeroth-ordercoefficient.Thebackwardtransmissioncaseishandledsimilarly,usingEqs.(4)– (5);itgivesthesamecubicequationasEq.(14),butwiththereplacement β = 1 (cid:12)(cid:12)(cid:12)sin(cid:12)(cid:12)(cid:12)2. (16) γ (cid:12)as(cid:12) Solvingthepolynomialrevealsadomaininparameterspacewheretherearethreephysical steady-statesolutions,outsideofwhichthesolutionisunique.ThisisshowninFig.2(a)–(b). Thethree-solutiondomainlieswithinthe“PT-broken”phaseofthelinearsystem,µ <γ. Theboundariesofthethree-solutiondomaindependonγ ands ,asthechoiceofforward in or backward transmission. It consists of two sets of curves; the black curves in Fig. 2(a)–(b) involveadegeneracyoftwolow-intensityrootsofthecubicpolynomial[Fig.2(c)–(d)].Cross- ing this boundary causes no discontinuity in the intensity of the stable steady-state solution. TheredcurvesinFig.2(a)–(b)involvethedegeneracyoftwohigh-intensityrootsofthecubic polynomial(14);crossingthisboundarydestabilizesthesteady-statesolution. Through numerical stability analysis, detailed in Appendix A, we find that the highest- intensitysolutioninthethree-solutiondomainisasymptoticallystable(i.e.,theLyapunovex- ponents are all negative). The two lower-intensity solutions are unstable: small perturbations from these steady states eventually evolve into the highest-intensity state. In the one-solution domain,thesolutionisasymptoticallystableforsmalldetuning∆ω,andunstableforlarge∆ω. Interestingly,theregionofasymptoticstabilityinthenonlinearsystemiscloselyconnected to the PT symmetry phases of the linear system. For µ <γ, which corresponds to the PT- brokenphase,thefrequencyrangeofasymptoticstabilityisboundedbythesolidanddashed red curves shown in Fig. 2(a)–(b). These bounds diverge at µ =γ, which corresponds to the transitionfromthePT-brokentothePT-symmetricphaseinthelinearsystem.Forµ >γ,the steadystatesolutionbecomesasymptoticallystableforall∆ω. In the one-solution domain, the onset of asymptotic instability (at sufficiently large ∆ω) is PT critical point PT critical point Fig.3.Isolationratioversusµ/γatzerofrequencydetuning(∆ω=0),for(a)weakinputs sin=0.15andas=3,and(b)stronginputsregimesin=9andas=3,usingseveralchoices ofγ.Intheweak-inputregime,theisolationratioismainlydeterminedbythePT-breaking parameter µ/γ. The system becomes reciprocal for µ/γ >1, corresponding to the PT- symmetric phase of the linear system. (c) Close-up of the isolation ratio behavior in the weak-inputregime,showingthekinkinthedependenceonµ/γ atthePT transitionpoint µ/γ=1.Circlesshowexactnumericalsolutionsofthecoupled-modeequations,andthe solidcurveshowstheanalyticapproximationsofEqs.(22)–(23). associated with the appearance of sustained time-domain beating in both the resonator inten- sities and the transmittance. This is a Hopf bifurcation [36] from a stable state to limit cycle behavior(seeFig.7inAppendixA). 5. Isolationratiosatzerodetuning Let us now focus on zero detuning, ∆ω =0. In this case, there is always an asymptotically stablesteady-statesolution,andweshallbeabletoderiveanimportantconnectiontothePT transitionofthelinearsystem.Thevariablesα andβ,definedinEq.(15),simplifyto (cid:18) (cid:19)2 µ α =1+ (17) γ  (cid:18) (cid:19)2 β = |sin/as|2 × µγ , (Forward) (18) γ  1, (Backward). Hence,thecubicpolynomialinEq.(14)isentirelydeterminedbytwoquantities:(i) µ/γ and (ii)|s /a |2/γ.ThefirstquantityisalsothetuningparameterforthePT transition.Thesecond in s quantitydeterminesthestrengthoftheinputrelativetothegainsaturationthreshold.Wewill beparticularlyinterestedinthe“weak-input”limit,definedas √ s (cid:28) γa . (19) in s Whenβ (cid:28)1,thesteadystatebehaviorwillbeprincipallydeterminedbythePT-tuningparam- eterµ/γ. Figure3plotstheisolationratioR≡I /I versusµ/γ,forseveraldifferentvaluesofγ and F B s . In the weak-input regime, the isolation ratio curves are almost identical for different γ, in whichverifiesthatthesystemiscontrolledbythecombinationµ/γ.Forµ/γ <1,correspond- ing to the PT-broken phase of the linear system, we find that R>1, and hence the system functions as a good optical isolator. For µ/γ >1, we find that R≈1. This agrees with the qualitativebehaviorsreportedin[9]. Letusexaminethevicinityofthetransitionpointingreaterdetail.Figure3(c)showsthatin theweakinputregime,theisolationratiocurveexhibitsakinkatµ/γ =1.Tounderstandthis, wereturntothedefinitionoftheisolationratio: I x R= F =(µ/γ)−2 F, (20) I x B B wherex andx arethesolutionstoEq.(14)fortheforwardandbackwardtransmissioncases. F B Forβ →0,Eq.(14)reducesto (cid:18) 1−(µ/γ)2(cid:19)2 x x− ≈0. (21) 1+(µ/γ)2 For µ/γ <1, the double-root in Eq. (21) is positive. Hence, in this approximation, the three- solutiondomaindiscussedinSection4extendsovertheentirerange µ/γ <1alongthezero- detuningline.Theasymptoticallystablesolutioncorrespondstothedouble-root,whichisequal for forward and backward transmission, to lowest order in β. Hence, we can use Eq. (20) to showthat √ R≈(µ/γ)−2 for µ/γ <1, s (cid:28) γa . (22) in s For µ/γ >1,thedouble-rootisnegative,sotheonlyvalidrootintheβ →0limitisx=0. Fornon-zeroβ,thisrootbecomesO(β),soEq.(18)impliesthatx /x ≈(µ/γ)2.Thisyields F B theisolationratio √ R≈1 for µ/γ >1, s (cid:28) γa . (23) in s Thelimitingexpressions(22)–(23)areplottedinFig.3(c),andagreewellwiththenumerical solutions.ThishelpsexplainwhythePT phaseofthelinearsystemaffectstheisolationfunc- tionalityofthenonlinearsystem.Bothphenomenaaredeterminedbytheparameterµ/γ,witha criticalpointatµ/γ=1.Thekinkintheisolationratioarisesfromswitchingsolutionbranches atthecriticalpoint. 6. Imbalancedinput/outputcouplings Thusfar,wehaveassumedthatthewaveguide-resonatorcouplings,κ andκ ,areequal.Ifthe 1 2 couplingsareunequal,theisolationbehaviorofthesystemcanbequitedifferent.Tostudythis, wereplaceEq.(9)with γ +κ =γ +κ =2γ. (24) 1 1 2 2 Forg =4γ,thegaininresonator1is 0 2γ g= −γ, (25) 1+|a /a |2 1 s whichensuresthatthe decoupledsystemremainsPT symmetricwithcriticalpoint µ =γ,as before. With this generalization, the steady-state equations (14)–(16) are altered only by the replacements κ β → 2β (Forward) γ (26) κ β → 1β (Backward). γ Fig.4.Isolationratioversusµ/γ fordifferentmicrocavity-waveguidecouplingrates.The system parameters are ∆ω =0, sin=0.03, as=3, γ =1, and√g0=4γ. Thin solid lines showtheanalyticapproximationintheweak-inputlimit(sin(cid:28) γas),givenbyEq.(27). ByvaryingthecouplingsandlossessothatEq.(24)issatisfied,wecanaccessdifferentvalues ofκ /κ ,subjecttotheconstraint0<κ ,κ <2γ. 1 2 1 2 The discussion of Section 5 generalizes to this case in a straightforward way. Using the previous zero-detuning and weak-input assumptions, we find that x /x ≈1 for µ/γ <1, as F B before;butfor µ/γ >1,Eq.(26)givesx /x ≈β /β =(κ /κ )(µ/γ)2.Theisolationratio F B F B 2 1 nowbecomes R=(κ /κ )(µ/γ)−2x /x 1 2 F B (cid:26) (κ /κ )(µ/γ)−2 for µ/γ <1 (27) ≈ 1 2 1 for µ/γ >1. Forκ (cid:54)=κ ,thispredictsadiscontinuityintheisolationratioatµ/γ =1. 1 2 Figure4plotsdependenceoftheisolationratiosonµ/γ,atzerodetuning,forthecasesof(i) κ (cid:28)κ ,(ii)κ (cid:29)κ ,and(iii)κ =κ .Inallthreecases,theisolationratioapproachesunity 1 2 1 2 1 2 for µ/γ >1. However, for µ/γ <1, the unequal-coupling curves exhibit an abrupt change corresponding to a factor of κ /κ (which is two orders of magnitude for these examples). 1 2 Interestingly, for κ (cid:28)κ , the isolation ratio in fact decreases below unity, before increasing 1 2 againasµ/γ →0.ThenumericalresultsmatchEq.(27)verywell. Thisphenomenonmaybeexploitedindeviceapplicationsforrealizinganactivelyswitch- able optical isolator. Using a small variation in the µ/γ parameter (e.g., by varying the inter- cavityseparation,whichaffectsµ),wecanswitchbetweenstrongopticallyisolatingandrecip- rocalregimes. 7. Effectofasimultaneousreflectedwave We have analyzed the nonlinear system and its isolation ratio under the assumption that light propagates in one direction at a time (i.e., forward or backward). This is a good assumption if the isolator is part of a optical circuit operating with optical pulses, such that any reflected pulse re-entering the isolator (due to scattering from other parts of the circuit) does so at a latertime,aftertheinitialpulsehasalreadydiedaway.Whenforwardandbackwardwavesare simultaneouslypresent,however,bothcontributetothenonlinearity,causingtheisolatortofail. Thisisagenerallimitationofopticalisolatorsbasedonnonlinearity[11].

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.