ebook img

PSL(3,q) as a totally irregular collineation group PDF

80 Pages·1994·3.1 MB·English
by  RadasSonja1961-
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview PSL(3,q) as a totally irregular collineation group

PSL(3,q)ASATOTALLYIRREGULARCOLLINEATIONGROUP By SONJARADAS ADISSERTATIONPRESENTEDTOTHEGRADUATESCHOOL OFTHEUNIVERSITYOFFLORIDAINPARTIALFULFILLMENT OFTHEREQUIREMENTSFORTHEDEGREEOF DOCTOROFPHILOSOPHY UNIVERSITYOFFLORIDA 1994 N ACKNOWLEDGEMENTS Gratefulacknowledgementsareduetopersonswhosehelpmadethisworkpossi- ble. IwishtothankmyadvisorProf. ChatYinHoforgivingmesuchaninteresting problemtoworkonandforintroducingmetotechniquesneededforsolvingit. IamalsogratefultoProf. A.GongalvesandProf. E.Moorehousefortheirhelpful suggestions. IalsowishtothankProf. MirkoPolonijowhowasmyfirstteacherintheareaof finitegeometryandwhodirectedmymagisterthesis. AndfinallyIwishtoexpressmygratitudetomymotherMirjanaandhersisters VjeraandDunjaforinspiringmebytheirexample,andtomyhusbandHrvojefor hisunwaveringsupportandencouragementthroughallthestagesofmywork. 9 TABLEOFCONTENTS ACKNOWLEDGEMENTS ii ABSTRACT iv CHAPTERS 1 PRELIMINARIES 1 1.1 Theproblemandtheresults 1 1.2 Backgroundoftheproblemandsomedefinitions 3 1.3 Reviewofallknownresults 11 1.4 AboutPSL{3,q) 15 1.5 Factsaboutperspectivities 20 2 ONELEMENTSOFG 23 22..12 IEnlveomleunttisonwihsoasepeorrsdpeercstidviivtiyde9, +1,orq—1aregeneralizedperspec- 23 tivities 34 3 THETYPEOFTHEPLANEn 42 3.1 OnfixedsetsofS-groups 42 33..23 WOhnatthecatnypbeeosfaHidiafbSo-ugtroHupwihsesnpeSc-igalroupsarenotspecial 4566 4 CONCLUSION 69 REFERENCES 71 BIOGRAPHICALSKETCH 73 111 AbstractofDissertationPresentedtotheGraduateSchool oftheUniversityofFloridainPartialFulfillmentofthe RequirementsfortheDegreeofDoctorofPhilosophy PSL(3,q)ASATOTALLYIRREGULARCOLLINEATIONGROUP By SonjaRadas April1994 Chairman: Dr. ChatYinHo MajorDepartment: Mathematics AcollineationgroupofaprojectiveplaneH,istotallyirregularifeverypointis fixedbyanontrivialcollineation. Non-abeliansimplestronglyirreduciblecollineation groups containingaperspectivityhavebeen characterizedby Reifart and Stroth. TheyarePSL[2,q), qodd, PSL(3,q), PSU{3,q), A7or J2. Heringand Walker provedthattheprojectiveplanewhichadmitsPSL{3,q),qodd,asastronglyirre- duciblecollineationgroupwithaperspectivity,isisomorphictoPG{2,q). Thefollowingaremajorresultsinthisdisertation. Let PSL{3,q) beatotally irregular,notstronglyirreduciblecollineationgroupcontainingaperspectivity. By anS-groupwedenoteacyclicsubgroupoforder(9^+9-|-1)/(3, —1)inG. Ifevery elementofanS-groupSfixesthesamesetofpointsasSitself,thenHiseitherof orderq(Desarguesianplane),orderq^(DesarguesianorgeneralizedHughesplane), oroforderq^(Desarguesian,Figueroaplaneorperhapssomeotherplanes). IfaS-groupdoesnothavetheaboveproperty,thenanupperboundfortheorder ofnis9^/3. IfnisasubplaneofHwhichisleftinvariantbyalltheperspectivities inAuf(H),thenthegroupAuf(H)antsonHwithkernelK. WehaveeitherH= IV n=PG{2,q')fori=1,2,3,orft=PG(2,q)^II. InthelattercaseAui(II)/A:< PTH3,q). V CHAPTER 1 PRELIMINARIES 1.1 Theproblemandtheresults Letnbeafiniteprojectiveplane,andletPSL{3,q)=G<Auf(H),q=p"*,pan oddprime,beatotallyirregularcollineationgroupwithanontrivialperspectivity. OurgoalistodeterminewhatisthestructureoftheplaneH. ByS-groupwemeanthemaximalcyclicsubgroupoforder{q^+q+l)/(3,q—1) inG. (ThisgroupisisomorphictoanintersectionofaSingercycleinPGL{3,q) withPSL{3,q).) Herearetheresults: 1)IfndenotestheorderoftheplaneH,thenn=qorn=Lq^{q—1)+ where L>0. 2)IfanS-groupisspecial,i.e. Fix{s)=Fix{S)foreverys£S,thenwehave oneofthefollowing: (i)n=qandH=PG{2,q). (ii)n=q^andH=PG{2,q^)orHisgeneralizedHughesplane. (iii)n=q^(possibleplanesincludePG{2^q^)andFigueroaplane). 3)IfanS-groupisnotspecial,and|Fix(5)|=3,thenAu<(H)<PTL{3,q). 4)IfanS-groupisnotspecial,and |F’ia:(5)lgreaterthan3,thenAut{U)/K< PTL(3,q), where K is kernelofAuf(H) on an invariant subplane isomorphicto PG(2,q). 5)IfanS-groupisnotspecial,thenn<9^/3. 1 2 Herewewillgiveashortoverviewofthemainidea;sweusedinprovingtheabove results. IfPSL{3,q) ^ G < Aut(n), q = an odd prime, is atotallyirregular collineationgroup withanontrivialperspectivity,then theexistenceofthat per- spectivityimpliesthataninvolutioninGisaperspectivity,asprovedinsection2.1 (theorem2.1.2). SincealltheinvolutionsinGareconjugate,everyinvolutionisa perspectivity. TheexistenceofaninvolutoryperspectivityinGimpliestheexistenceofaDe- sarguesiansubplane0oforderqintheplaneH(lemma2.1.5). Thisfacthelpsusto controltheactionofGonthepointsofHoutsideoffl. Asaconsequenceofsections 2.1 and2.2itwasshownthatalltheelementsoforderdividingq,q—1 orq I aregeneralizedperspectivitiesandtheirfixedpointsareonthelinesof (theorem 2.2.1). SinceGistotallyirregular,pointsofHwhicharenotonthelinesofflmustbe fixedbyelementsoforderdividing(?^+?+1)/(3,9—1),i.e.byelementsofS-groups. AtthispointS-groupsstartplayinganimportantrole. Insection3.2weassumedS-groupsarespecial,i.e. pointsfixedbyanyelement ofagroupaxefixedbythewholegroup. UsingthepartitionoftheplaneHtogether withsomeresultsoriginatingfromcodingtheory,weprovethattheorderofHis9, q^orq^(theorem3.2.2). IfS-groupsarenotspecial,asinsection3.3,itisveryhardtospecifytheplane order,andevenhardertopindownthegeometricstructureoftheplaneH. Inlemma 3.3.1someboundsfortheorderofHaregiven.ThesetofpointsfixedbyaS-group isverycomplicated. Itcouldbeaunionofplaneswhichdoordonotintersect. In lemma3.3.1wealsogivesomedetailsaboutthatset. 3 TogathermoreinformationonII,weintroduceH,asubplaneofIIwhichisleft invariantbythegroupofalltheperspectivitiesofII. Thetotalcollineationgroup y4ut(n)actsonftwithacertainkernelK. Inlemma3.3.2itwasshownthateither ft / nandthenft=0 ^PG{2,q)orU= U ^ PG{2,q^),fort = 1,2or3. If ft n,thenAut{U)IK<PTL{^,q). ItwasprovedthatKiscontroledbyS-groups andtheirfixedstructuresasshowninlemma3.3.4. 1.2 Backgroundoftheproblemandsomedefinitions Themotivationforconsideringwhichtypesoffiniteprojectiveplanesadmitto- tallyirregulaxcollineationgroups(i.e.suchthatstabilizerofanypointisnontrivial) comesfromourwishtoclassifyallfiniteprojectiveplanes. Sinceallknownfinite projectiveplanesexceptfortranslationplaneswithtrivialcomplementadmittotally irregularcollineationgroups,itisreasonabletoconsidersuchgroupsandlookatthe planestheyacton. Ourhopeisthat inthatwaywecoulddiscoveranewfinite projectiveplane. Wewillbeginwithdefinitionsofsomebasicgeometricobjects. Othernotation andterminologyconcerninggroupsandprojectiveplanescanbefoundinGorenstein [6],Hupert[16]orSuzuki[21](forgroups),andDembowski[5]andHughesandPiper [15](forplanes). Definition1.2.1 LetVbeasetofpoints,CasetofsubsetsofVcalledlines, andI anincidencerelation. Wesay{V,C,X)isaprojectiveplaneifthefollowingistrue: 1)Foreverytwopointsthereisexactlyonelineincidentwiththem. 2)Foreverytwolinesthereisexactlyonepointincidentwiththem. 3) TherearefourpointsinVsuchthatnothreeofthemarecollinear. WhenVisfinite, wesay{V,C,T) isafiniteprojectiveplane. Wedenotepointswithcapitallettersandlineswithlowercaseletters. . 4 Aneasyconsequenceofthedefinitionisthefollowingfact. Assume('P,£,X)isafiniteprojectiveplane.Thenumberofpointsonthelineis thesameforeveryline,sayn+1. Thenumberoflinesthroughapointisalsothe sameforeverypoint,andisequalton 1. Thenumberofpointsintheplaneis equaltothenumberoflinesintheplane,andthatnumberis +n+1 Wesaythat(P,£,J)isafiniteprojectiveplaneofordern. Nowwewillintroducetheconceptofcollineation. — Definition1.2.2Ass—ume(P,£,J) isafiniteprojectiveplane. Leta:V >Vhea bijection. Letfi:£ >Cbeabijectioninducedbya, i.e. {PQY=P°‘Q°‘ Ifotand fipreserveincidence, i.e. PII-4==^P“/l^, wesaythataisacollineation. Undertheusual definitionofproducts ofmappingsit isclearthat theset of edlcollineationsofagivenplane IIformsagroup. This group is calledthefull collineationgroupandisdenotedbyAut(II).Whenwerefertoacollineationgroup, wemeanasubgroupofAut(II). LetGbeagroupandflafiniteset. AnactionofGonfiisahomomorphism — a:G >Sym{Q),whereSym(fl)isthesymmetricgroupof17. WesaythatGacts faithfullyon17ifker{a)=1. (WewillwriteP®insteadofP°‘^^\forgGG.) ForapointX€ II,Gx = {gEG: =X} isthestabilizerofthepointX. ThepointsetX^={X^:g£G}istheG-orbitcontainingX. Thefollowingistrue: =|G|/|Gx|. Letqbeanoddprimepowerthroughout,i.e. q=p*",m>1andpanoddprime. Foraprimepowerq,wecanalwaysconstructafiniteprojectiveplaneasfollows. T^lkeanyfieldGF{q). Wedefine{V,C,I)inthefollowingway:letPbetheset oftillone-dimensionalsubspacesin{GF{q)Y,let£bethesetofalltwo-dimensional 5 subspcicesin{GF{q))^,andletIbetheinclusion. SuchaplaneiscalledDesarguesian andisdenotedbyPG{2,q). Uptonow,therehasbeennofiniteprojectiveplanewhoseorderisnotaprime power,anditisthusconjecturedthataplaneofcompositeorderdoesnotexist.One facttosupporttheconjecturewasprovedbyBruckandRyser[15]. Theyshowed thatcompositenumberswhichsatisfycertainconditionscannotbeordersofplanes. Theorem1.2.1 (Bruck-Ryser) Letn= 1 or2 {mod4). Thenthereisnoplane ofordern, except ifn canbe representedasasumoftwosquares. Nothingisknownaboutnumbersn^10whichcanberepresentedassumoftwo squares. Bruck-Rysertheoremdoesnotsayifsuchaplaneexists. Thefirstnumber thatcouldnotberuledoutusingBruck-Rysertheoremis10. Foralongtimeexistence ofaplaneoforder10wasanopenquestion,untilC.Lamcameupwithacomputer prooffornon-existenceofsuchplanein1991. (Remark; forn=2,3,4,5,7,8there isonlyDesarguesianplaneofsuchorder. Forn=9therearemoreplanes,andthey areallclassifiedbyC.Lamin1992.) Now we will definefixed substructure ofa collineation and related concepts. Thesesubstructuresareimportanttodeterminegeometrywhichcorresponds toa collineationgroup. Definition 1.2.3Forg eG<Au<(II), wedefineV{g) asthesetofpointsfixedby g, andC{g) asthesetoflinesfixedbyg. Also we defineV{G) = Dg^aV{g), and C{G)=Hg^aCig). Notethat{V{g),C{g),l)satisfiesthefirsttwoaxiomsofaprojectiveplane. The incidencestructurewiththesetwopropertiesiscalledaclosedconfiguration ora

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.