ebook img

pseudogenization dynamics in bats reveal ancestral vomeronasal signaling, then pervasive loss PDF

13 Pages·2017·0.34 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview pseudogenization dynamics in bats reveal ancestral vomeronasal signaling, then pervasive loss

ORIGINAL ARTICLE doi:10.1111/evo.13187 Trpc2 pseudogenization dynamics in bats reveal ancestral vomeronasal signaling, then pervasive loss LaurelR.Yohe,1,2 RamatuAbubakar,1 ChristinaGiordano,1 ElizabethDumont,3 KarenE.Sears,4,5 StephenJ.Rossiter,6 andLilianaM.Da´valos1,7 1DepartmentofEcologyandEvolution,StonyBrookUniversity,StonyBrook,NewYork11794 2E-mail: [email protected] 3DepartmentofBiology,UniversityofMassachusetts,Amherst,Massachusetts01003 4CarlR.WoeseInstituteforGenomicBiology,UniversityofIllinois,Urbana,Illinois61801 5SchoolofIntegrativeBiology,InstituteforGenomeBiology,UniversityofIllinois,Urbana,Illinois61801 6SchoolofBiologicalandChemicalSciences,QueenMaryUniversityofLondon,LondonE14NS,UnitedKingdom 7ConsortiumforInter-DisciplinaryEnvironmentalResearch,StonyBrookUniversity,StonyBrook,NewYork11794 ReceivedSeptember25,2016 AcceptedDecember30,2016 Comparative methods are often used to infer loss or gain of complex phenotypes, but few studies take advantage of genes tightly linked with complex traits to test for shifts in the strength of selection. In mammals, vomerolfaction detects chemical cues mediating many social and reproductive behaviors and is highly conserved, but all bats exhibit degraded vomeronasal structureswiththeexceptionoftwofamilies(PhyllostomidaeandMiniopteridae).Thesefamilieseitherregainedvomerolfaction afterancestralloss,orthereweremanyindependentlossesafterdiversificationfromanancestorwithfunctionalvomerolfaction. Inthisstudy,weusetheTransientreceptorpotentialcationchannel2(Trpc2)asamolecularmarkerfortestingtheevolutionary mechanismsoflossandgainofthemammalianvomeronasalsystem.WesequencedTrpc2exon2inover100batspeciesacross 17of20chiropteranfamilies.MostfamiliesshowedindependentpseudogenizingmutationsinTrpc2,butthereadingframewas highly conserved in phyllostomids and miniopterids. Phylogeny-based simulations suggest loss of function occurred after bat familiesdiverged,andpurifyingselectionintwofamilieshaspersistedsincebatssharedacommonancestor.Asmostbatsstill displaypheromone-mediatedbehavior,theymightdetectpheromonesthroughthemainolfactorysystemwithoutusingtheTrpc2 signalingmechanism. KEY WORDS: Pheromone,purifyingselection,relaxedselection,Trpc2,vomeronasalsystem. Discoveringtheevolutionarytrajectoryandselectiveforcesshap- Lynch and Wagner 2010; Wiens 2011). These studies infer the ing complex traits across the Tree of Life is a central task of re-evolution of traits after ancestral loss, sometimes multiple evolutionary biology. The intricate mechanisms underlying or- times. Those analyses remain controversial, however, as unsuit- ganismal complexity inspired Louis Dollo’s evolutionary “law” ableinferencemethodshavebeenused,andthetruecomplexity in1893(Dollo1893).Dollodescribesevolutionas“irreversible” oftraitsisoftenignored(GoldbergandIgic´ 2008).Fewstudies and“discontinuous,”andtraitcomplexitypreventsevolutionfrom have actually turned to the molecular mechanisms determining returningorganismstotheirpreviousstate.Butphylogeniesand traitfunction(Sassietal.2007;ChristinandBesnard2009;Se- comparativemethodstoinfercomplextraitevolutionhavechal- her et al. 2012), or the selective forces shaping traits. Here, we lengedDollo’slaw(CollinandCipriani2003;Domesetal.2007; analyzethemolecularevolutionofamammalianchemosensory (cid:2)C 2017TheAuthor(s).Evolution(cid:2)C 2017TheSocietyfortheStudyofEvolution. 1 Evolution L. R. YOHE ET AL. accessory (Fig. 2, Table S1) and nonfunctional genes for detecting olfactory bulb pheromones(CooperandBhatnagar1976;FrahmandBhatnagar 1980;WibleandBhatnagar1996;BhatnagarandMeisami1998; main olfactory epithelium BhatnagarandSmith2007;Youngetal.2010).Thislossispuz- zlingbecausebatsarenocturnal,andoftenliveincoloniesofmany vomeronasal organ individualsandexhibitadiversityofsocialsystemsofthekindre- quiringpheromonecommunication.Basedontheseobservations, onehypothesismightlinktheevolutionofflightandecholocation olfactory bulb toreducedselectivepressureonawell-developedsocialsmellsys- tem,generatingapotentialshiftbetweenprimarysensorymodal- ities in bats. There are, however, two major exceptions to bat Figure 1. Schematicofasagittalinteriorviewofabatnosede- vomeronasal loss: New World leaf-nosed bats (Phyllostomidae) picting the two nasal chemosensory systems in mammals. The main olfactory system primarily innervates the olfactory bulb, andlong-fingeredbats(Miniopteridae).Speciesinthesefamilies whereas the vomeronasal organ primarily innervates the acces- have well developed vomeronasal machinery (Wible and Bhat- soryolfactorybulb(dottedline). nagar1996;BhatnagarandMeisami1998;BhatnagarandSmith 2007; Zhao et al. 2011). Exactly how this pattern has evolved system,examiningchangesinselectionunderlyingthelossofthis remains poorly understood and the selective forces shaping this complexsystemthroughoutthediversificationofbats. systemareunclear. Chemical signaling and perception among conspecifics in Inmammalianvomerolfaction,theTransientreceptorpoten- mammals occurs via pheromones and other chemical cues de- tialcationchannel,subfamilyC,member2(Trpc2)geneisanin- tected in the secondary olfactory system by a sense known as dicatorofafunctioningvomeronasalsystem,asitisseeminglyin- vomerolfaction (Fig. 1). Pheromones play an important role in dispensableforpheromonesignaltransduction(Mastetal.2010). social communication and mediate many behaviors critical to Trpc2 is a transmembrane ion channel that becomes activated fitness,includingconspecificrecognition,courtshipandmating, after a pheromone binds to the G-protein-coupled vomeronasal parental care, territoriality, and even the detection of sick indi- receptors in the neurons of the vomeronasal organ (Liman and viduals (Fortes-Marco et al. 2013; Boillat et al. 2015; Mart´ın- Dulac2007).Thissignalisprimarilyrelayedtotheaccessoryol- Sa´nchezetal.2015).Pheromonesareoftenhighlyspecific,and factorybulbinthebrain(Fig.1),whereitisinterpreted(Keverne arekeyregulatorsofoffspringandgrouprecognitioninmammals 1999).Thedisruptionofnumeroussocialbehaviorsthroughloss (SmadjaandButlin2009;Pitcheretal.2011,2015;Rizvanovic ofTrpc2signalinghasbeenwellestablished(Yu2015).Inrodents, etal.2013;Cinkova´andPolicht2014;Pe´ronetal.2014).Witha Trpc2 knockout males mount both males and females, whereas fewexceptions,vomerolfactionisubiquitousacrossmammals. knockoutfemalesmountasiftheyweremalesandreducetheir Different environments and resources may select for fine- maternalcareforpupsbecausetheycannotdetectandprocessthe tuned perception of one particular sense over another. Because pheromonal cues that normally mediate this behavior (Leypold theneuralpathwaysofsensorysystemsareenergeticallyexpen- et al. 2002; Stowers et al. 2002; Kimchi et al. 2007; Hasen and sivetomaintain(NivenandLaughlin2008),selectiononsenses Gammie2009;Yu2015).AfunctionalTrpc2istightlylinkedtoa no longer critical to fitness may relax, and sensory organs may functioningmammalianpheromone-signalingpathway,providing become vestigial (Fong et al. 1995). Well-known examples in- anidealmolecularmarkerformodelingvomeronasalevolution. cludeblindnessincavefish(Jefferyetal.2003;Jeffery2005),and Pseudogenes are the genetic signatures of once-functional loss of sweet taste in carnivores (Jiang et al. 2012). Because of systems on which selection has relaxed. Mammalian lineages itsimportancetosurvivalandreproduction,mammalianvomerol- lackingvomeronasalstructuresfrequentlyhaveapseudogenized factionhasbeenlostinonlyafewgroups,andinmostsuchcases Trpc2,indicatingasensenolongerundernegativeselection.Mul- theselossesareassociatedwithchangesinecology.Forexample, tipleaquaticandamphibiousmammals,OldWorldprimates,and independent losses in cetaceans, sirenians, and some pinnipeds 12speciesofbatshavepseudogenizedTrpc2genes(Zhangand probablyrelatetorelaxedselectionfornasalchemosensoryper- Webb2003;Yuetal.2010;Zhaoetal.2011).Apreviousstudy ception under water (Yu et al. 2010; Kishida et al. 2015). In notedonlythreeofthe15analyzedspeciesofbatswithanintact contrast,lossesinOldWorldprimateshavebeenexplainedbythe Trpc2, including two phyllostomids and one miniopterid (Zhao switchtoadiurnalniche,presumablyfollowinggreaterreliance etal.2011).Theratioofratesofnonsynonymoustosynonymous onvisualcues(Garrettetal.2013). substitutions(ω)canbeusedtocharacterizeselection(oritsab- The loss of vomerolfaction in bats is poorly understood. sence)onagene,withneutrallyevolvinggeneshavingequalrates Mostbatsexhibithighlydegradedorabsentvomeronasalorgans ofamino-acid-changingandsilentsubstitutions(ω=1).Theshift 2 EVOLUTION 2017 Trpc2 INFERS LOSS, NOT GAIN, OF BAT VOMEROLFACTION fromstrongpurifyingselectiononfunctionalgenes(ω<<1)to relaxedselectivepressurewillgraduallyshiftωcloserto1,sothat genesonwhichselectionhasrelaxedmorerecentlywilldisplay lower ω than genes pseudogenized for longer. Although some mammalianTrpc2studiesquantifyω,notinglowerωinbranches with lineages with an intact Trpc2, most focus on the presence and absence of disruptive mutations. Here, we use the molecu- larevolutionofvomeronasalsignalingmechanismstoexplicitly modelalternativeevolutionaryhypotheses,anddiscovertheevo- lutionarydynamicsleadingtothepresent-daypatternoffunction andlossinthevomeronasalsystem. We propose two evolutionary scenarios for vomeronasal loss in bats. First, and more parsimonious based on the distri- bution of vomeronasal system loss (see Fig. 1 for morphology, Fig.S1forparsimonyreconstruction),theancestorofallbatslost vomeronasalfunction,withtwoinstancesofsecondarygainofthe systemintwofamiliesofbats(WibleandBhatnagar1996).Ifso, Trpc2 reactivated after ancestral selection had relaxed, perhaps tothepointofinactivation.Inthesecond,andless-parsimonious scenario, Trpc2 has remained under strong purifying selection throughouttheearlydiversificationofbats,andhasmorerecently lostfunctionatleastsixdifferenttimes(Zhaoetal.2011).Given sufficientsamplingandappropriatemodels,itispossibletodis- tinguish between these two scenarios by estimating the rates of synonymous and amino-acid-changing substitutions of internal branchesofthephylogeny(Sassietal.2007). Todistinguishbetweenthesehypotheses,andilluminatethe evolutionary forces shaping vomeronasal evolution in bats, we modeled the evolution of Trpc2 with a large taxonomic sample acrossnearlyallfamiliesofbats.Usingratesofmolecularevolu- tionestimatedthroughoutthephylogeny,wesimulatedancestral sequences to model the probability of the two alternative evo- lutionary histories of the bat vomeronasal system. Our findings demonstratehowmodelsofmolecularevolutioncaninformthe Nonsense mutations occur first in the reading frame unless the mutation is shared, for which the first shared mutation in the readingframeislisted(Fig.S2forfulldescription).Subordersand familiesarelabeled.SeeTableS1forreferencesformorphologi- calcharacters.Arrowstotherespectivenodeorbranchindicate either environmental shifts or sensory specializations or losses (TableS3forreferences).Dichromacyistheabilitytodetecttwo distinctcolorwavelengthsandallspecies,includingMusmusculus Figure 2. Patterns of pseudogenization in Trpc2 exon 2 in bats aredichromaticunlessotherwisenoted.Imagenumberdesignates sampled.Redslashesindicateeitherstopcodonorindelmutation thecorrespondinglineageandillustration.Illustrationcredit:Ernst that rendered the protein nonfunctional. Some mutations were Haeckel, public domain (1, 2, 5, 11, 19); Alcide d’Orbigny, public sharedamonglineages.Blackbrancheswereusedtocalculatethe domain (3); G. H. Ford, public domain (4); Adria´n Tejedor, under backgroundrates(ω )forPAMLandRELAXtests.Branches background license(6,7,8,9,13,14,15,18);GeorgeE.Dobson,publicdomain markedinredarelineageswithpseudogenizedTrpc2experiencing (10,12);NicholasHolowka,withpermission(16);BonnieSumner, relaxedselectionandwereusedasforegroundrates(ω ). foreground withpermission(17,20). EVOLUTION 2017 3 L. R. YOHE ET AL. mechanismsshapingcomplextraitgainorlossinacomparative reading frame of M. musculus and the reading frame presented framework.Besidesilluminatingtheevolutionarymechanismsof in Zhao et al. (2011) as proxies for the functional exon. Trpc2 loss of a seemingly indispensable sense for perceiving and re- was considered a pseudogene if a stop codon and/or frameshift sponding to chemically mediated social behaviors, our analyses mutationwaspresentinthesequence. illuminateasensorysystemwhosefunctioncontinuestopuzzle biologists. ANALYSES OF MOLECULAR EVOLUTION Earlyinpseudogeneevolution,singlebasepairsubstitutionsaccu- mulate(Marshalletal.1994).Intheabsenceofconstraints,amino- Materials and Methods acid-changing substitutions occur at a higher rate than when Trpc2 AMPLIFICATION the protein was under purifying selection (Marshall et al. 1994; Tomodelevolutionarychangesinvomeronasalsignaltransduc- Sassietal.2007).Eventually,moredramaticdisruptivemutations, tioninbats,wegeneratednewTrpc2sequencesfor104species suchasnonsensemutationsorindelsshiftingthecodonreading (Fig.2,TableS2),representinganorder-of-magnitudegainintax- frame, may fix (Marshall et al. 1994). Pseudogenes have likely onomicsamplingovertheonlypreviousstudy(Zhaoetal.2011). evolvedneutrallyformanygenerations,accumulatingnonsynony- WefocusedmostofoursamplingonfamiliesinwhichTrpc2was mouschangesasquicklyassynonymoussubstitutionsbeforestop hypothesizedtobefunctional: Miniopteridae(n= 7)andPhyl- codonsorindelsbecomefixed.Inthecontinuedabsenceofselec- lostomidae(n=85).Phyllostomidsareparticularlyspeciesrich, tion,theformerlyfunctionalgenewilleventuallybecomeasetof with >170 lineages, and we sampled (cid:2)50% of known species. nucleotidesimpossibletorelatetotheproteinitonceencoded. Usingapreviouslypublishedprimerpairforeachspecies(Zhao If a nonsense mutation or indel is present, Trpc2 may be etal.2011),weamplifiedthesecondexonoftheTrpc2β-isoform evolving neutrally. In contrast, an intact gene reflects purifying ((cid:2)496 bp), the form of the protein primarily expressed in the selection,althoughinsomecasestheopenreadingframemayhave vomeronasal organ (Yu et al. 2010). This is the longest exon of evolvedneutrallyintherecentpast.Wetestedforpurifyingandre- the13-exongene((cid:2)900aminoacidsintheentiretyofTrpc2)for laxedselectionbyestimatingtheratioofratesofnonsynonymous thisisoform,andencodesforanankyrin-repeatdomainassociated tosynonymousmutations(ω),inwhichωcloseto0indicatespu- withprotein–proteininteraction(Yuetal.2010).Weobtainedbat rifyingselection,andωnearerto1suggestsrelaxedselection.To tissuesamplesfromseveralmuseumcollections(TableS2formu- estimatetheserates,weusedtwomaximum-likelihoodmethods seumaccessionnumbers).WeusedthefollowingPCRprotocol implementedinPAMLandRELAX(Yang2007;Wertheimetal. for each 25 µL reaction: 12.5 µL Econotaq Plus Green (Luci- 2014). PAML estimates ω for different branch classes and RE- gen),3µL10µMforwardprimer,3µL10µMreverseprimer, LAXdistinguishesifωestimatescorrespondtorelaxedorstrong 2–4 µL template DNA, and 2.5–4.5 µL dH2O. The following selection.Bothprogramsrequiredaphylogeny.Weinferredthe protocol was used for amplification: 94˚C for 5 min; 35 cycles Trpc2 gene tree using maximum-likelihood (see Supporting In- of94˚C30secdenaturation,(cid:2)58˚C30secannealing,and72˚C formation),butthistreewasincongruentwithestablishedspecies extension; and 72˚C 5 min final extension. Annealing tempera- trees,likelybecauseoftheshortexonreadingframe.Therefore, tureswereadjustedfordifferentspecies,butallprotocolshadan we used a published phylogeny of phyllostomids (Rojas et al. annealingtemperaturebetween52and60˚C.Ampliconswerese- 2016),andcombineditwithapublisheddatedphylogenyofall quencedusingstandardSangersequencingmethodsprovidedby bats(ShiandRabosky2015).Thetreewasprunedtomatchthe theUniversityofArizonaGeneticsCoreFacility.Allsequences datausingthegeigerpackageinR(Harmonetal.2008).Branch weremanuallycheckedforqualityusingGeneiousversion8.1.7 lengthswereignored,asPAMLandRELAXestimatethese.Both (Kearseetal.2012). programsalsorequiredthecodonstructuretobemaintained,with Forcomparativeanalyses,wecombinednewsequencesfrom nostopcodonmutationsinthereadingframe.Thus,weremoved 103specieswithpreviouslypublishedbatTrpc2exon2sequences nonsense sites by converting stop codons to gaps andremoving (13species),andtheTrpc2exon2forM.musculus(Zhaoetal. theentirecolumnfrominsertionmutations.Deletionswerekept 2011). Two species (Pteropus vampyrus and Myotis lucifugus) intacttomaintainthereadingframe.Downstreamsequencesafter presentinapreviousanalysis(Zhaoetal.2011)werenotincluded these mutations were kept in order to maximize the amount of here,aspublishedsequenceswerefromadifferentexon,unavail- information in the alignment. After removing and editing these able from published bat genomes. All sequences were aligned sites, 163 codons were available for nearly all lineages. We ex- using the Geneious aligner. The alignment of previously pub- pectedhigherωinpseudogenizedbranchescomparedtolineages lishedsequenceswasvisuallyinspectedandmanuallycorrected withanintactgene. toensureouralignmentsmatchedthosefromZhaoetal.(2011). To model molecular evolution across bats, we first set up Toidentifynonsenseandindelmutations,weusedboththeopen a null model estimating a single ω across all branches (M0) 4 EVOLUTION 2017 Trpc2 INFERS LOSS, NOT GAIN, OF BAT VOMEROLFACTION in the PAML version 4.8e codeml routine (Bielawski and Yang Hypothesis A: Hypothesis B: 2005;Yang2007).Wethentestedtwomodelsinwhichbranches Trpc2 was retained Trpc2 was reactivated were binned into distinct classes. First, we classified the tree into two distinct classes (M2.1): those with nonsense and in- del mutations (test/foreground branches) and those retaining an intactTrpc2exon,includinginternalbranchesonthetree(back- ground branches). Our second test classified the tree into three distinctclasses(M2.2):thosewithnonsenseandindelmutations (same test branches as M2.1), those terminal branches for lin- eageswithanintactreadingframe,andallinternalbrancheson thetree.WethenfittedthecodemlM2branchmodeltoestimate ωforthebackgroundbranches(ω )andtest(ω ) background foreground branchesforM2.1(BielawskiandYang2004).ForM2.2,wefit theM2branchmodeltoestimateωforthebackgroundbranches (ω ),andtwotestbranchclasses(ω forfunctionalfore- background 1 Trpc2 functional groundbranches,ω fornonfunctionalforegroundbranches).To Trpc2 nonfunctional 2 determine which model better fit the data, we used a likelihood Figure 3. HypothesizedevolutionaryscenariosofTrpc2through- ratiotestofM2againstthenullM0. outthediversificationofallbatfamilies. WealsousedtheprogramRELAXimplementedinHyPhy version2.22totestfortwodistinctratesofωbetweenlineages withpseudogenizingmutationsversusallotherbranches,andto recovered from the data are consistent with a null process of distinguish positive from relaxed selection because increased ω evolutionatasingleωthroughoutthetree. may be indicative of either (Pond et al. 2005; Wertheim et al. Second, to distinguish between alternative hypotheses of 2014). RELAX first estimates ω among three rate classes for vomeronasalevolution,wemodeledtwoscenariosofTrpc2evo- each branch using a branch site-random effects likelihood (BS- lution. If Trpc2 were functional in the ancestor of bats and was REL)methodandthenfitsaparameterkindicatingthestrengthof subsequently pseudogenized on multiple independent branches, selection.ωrateclassesaretransformedbyraisingtothepower thenωestimatedforthebackgroundbranchesofthetreewouldre- ofk(ωk),suchthatk>1pusheshighandlowclassesawayfrom flectstrongpurifyingselection,andwouldbedistinctlylowerthan 1 (indicative of strong selection) or k < 1 scales the high and estimatesforpseudogenizedforegroundbranches.Hence,values low rate classes toward 1 (indicative of relaxed selection). We estimated from the data should fit within nonoverlapping dis- estimated a single k (k = 1) for all branches and then fitted a tributions for background (ωbackground) and foreground branches modelestimating kforeachofthetwobranchclassesspecified (ωforeground) simulated ω from the M2.1 model (Hypothesis A, inthePAMLanalyses. Fig.3). Alternatively, if Trpc2 had been reactivated twice after evolving neutrally as bats first evolved, then Trpc2 background SIMULATION EXPERIMENTS brancheswouldreflectthesehighωvalues,untilthetwo“reac- We used simulations to validate our ω estimates. Using the tivation” events on the ancestral branches of the families Phyl- evolverNSbranches routine in PAML, we simulated 1000 sets lostomidae and Miniopteridae. We simulated background and of codon alignments modeled under the same evolutionary pa- foreground branches with increased ω values (ω = 0.5). If the rameters as the Trpc2 data for all simulated scenarios. To test evolutionaryhistoryofTrpc2wereconsistentwiththisscenario, therobustnessoftheobservedωestimates,weexpandedonthe then frequency distributions of background and foreground ω frameworkofapreviousstudythatusedcodonmodelstotestfor shouldoverlap(HypothesisB,Fig.3),andvaluesestimatedfrom relaxed selection (Sassi et al. 2007). First, to evaluate the false thedatashouldfallwithinthedistributionsofthissimulation.For positiverate,wesimulatedalignmentsunderanullmodelcentered all simulations, we tested whether resulting distributions were ontheestimatedM0valueofω.Thesimulatedcodonalignments distinctusingatwo-sampleStudent’st-test. matchedthenumberofcodonsandnumberofspeciesofthealign- ment, and the estimated branch lengths, transition/transversion Results ratio,andcodonfrequenciesofM0.WethenappliedM2.1branch modelsincodemltoeachreplicatedatasettoobtainadistribution To estimate the evolutionary history of vomerolfaction in bats, ofω andω .Thisanalysistestedwhethervalues wesequencedthesecondexonofTrpc2ofmorethan100species background foreground EVOLUTION 2017 5 L. R. YOHE ET AL. Table 1. EstimatedparametersofrelaxedselectiontestsusingbranchmodelsinPAML. Model ω ω κ TL np lnL LR P background foreground M0(null):oneratiomodel 0.216 0.216 6.76 6.72 231 −6054 — — M2.1:two-branchclasses 0.096 0.541 6.80 6.71 232 −5975 157.2 <<0.001 M2.2:three-branchclasses 0.085 ω :0.541 6.80 6.71 233 −5975 157.2 <<0.001 1 ω :0.101 2 Grayindicatesthebest-fitmodelusedforinterpretationandsimulations.ω,ratioofnonsynonymoustosynonymoussubstitutions;ωbackground forM0is ωforallbranches,forM2ωforinternalandfunctionalbranchesfortheM2,two-branchclassmodel;ω1,foregroundfornonfunctionalbranches;ω2, foregroundforfunctionalbranches,transition/transversionrate;TL,treelength;np,numberofparameters;lnL,loglikelihood;LR,likelihoodratio;P,P-value oflikelihoodratiotestofM2modelsrelativetothenullM0model. of bats, including every chiropteran super family and three quartersofthe20familiesintheorder(seeFig.2,TableS2for 400 M2.1background M0 species sampled). The alignment spanned 163 codon positions, background M2.1 approximately20%ofthe891aminoacidproteinsdescribedin 300 foreground the mouse (Yu et al. 2010), and included all sites analyzed by cy M0foreground n e Zhaoetal.(2011).Wedetected13independentpseudogenizing u eq200 mutations in Trpc2 across bats (Table S4, Fig. 2), twice the Fr numberfoundinapreviousstudy(Zhaoetal.2011),withseveral speciescontainingmultiplepseudogenizingmutationswithinthe 100 sequence (Table S4, Fig. S2). New sequencing revealed intact genesinallsurveyedmembersofthefamilyMiniopteridae(n= 0 7),andinamajorityofsurveyedmembersofPhyllostomidae(n= 0.00 0.25 0.50 0.75 1.00 ω 81).Surprisingly,however,twoinstancesofTrpc2pseudogeniza- tion were recorded within phyllostomids: a small monophyletic Figure 4. Background and foreground ω estimates of null and clade of three Caribbean endemic nectar-feeding bats shared a alternativecodemlsimulations. singlebasepairdeletionatcodonposition88(TableS4,Fig.S2), demonstratingarecentpseudogenizationintheancestorofthese threespecies,andaprematurestopcodonatcodonposition154 of negative selection (Table 1). As stop codon and frameshift inthenectarivorousphyllostomidChoeroniscusminor(TableS4; triplets were removed from the alignment to run the routines, Figs. 2, S1). Wider taxonomic sampling also revealed pseudo- the estimates of ω severely underestimate ω, and thus foreground genization events in six other families, all within the suborder providealowerlimittothetruevalueofωforthesebranches. Yangochiroptera. The ratio of the rates of nonsynonymous Thevariationinωassociatedwithpseudogenizationwascor- to synonymous substitutions was used to model molecular roboratedwithRELAX,whichestimatestheωstatisticforevery evolution in Trpc2. We tested whether separate estimates of branchonthetreeandaparameterktoindicatevaryingstrength ω for nonfunctional lineages and functional/internal branches ofselection.Thenullmodelestimatesωforeachbranchofthe (M2) were a better model fit than a single ω for all branches treebutdoesnottransformthebranches,whereasthealternative in PAML. All models were tested with five different initial model estimates a value of k that transforms ω for two speci- values for ω, and all parameter estimates converged on the fiedbranchclassesandtestsifthealternativebetterfitsthedata. same values. M2.1 and M2.2 provided significantly bet- TheRELAXmodelwithakparametertransformingωacrossthe ter fit than the null model (Table 1; M2.1: χ2(1) = 157.2, tree for two branch classes, fit significantly better than the null P = 1.0 × 10–6; M2.2: χ2(2) = 157.2, P = 1.0 × 10–6), and (Table 2; χ2(1) = 124.8 P = 1.0 × 10–6). This indicates selec- we were able to estimate two distinct ω values for two branch tioninlineageswithnonfunctionalTrpc2relaxedrelativetothe classes.Thetwo-branchclassmodel(M2.1)andthethree-branch background and functional branches, as k is much less than 1 (M2.2) class model had identical likelihoods. Thus, we used (k=0.10). M2.1forallsubsequentanalyses,asitwasthebest-fitmodelwith TheωestimatesfromthesimulatedM2.1datadidnotoverlap the fewest parameters. Nonfunctional species had ω five times withanybackground(t=–144.8,degreesoffreedom[df]=1471, higher (ωforeground = 0.541) than the background ω of species P=2.2×10–16)andforeground(t=132.5,df=1381,P=2.2 withfunctionalTrpc2(ωbackground=0.096),indicatingrelaxation ×10–16)estimatesfromthenullmodelsimulations(Fig.4).This 6 EVOLUTION 2017 Trpc2 INFERS LOSS, NOT GAIN, OF BAT VOMEROLFACTION Table 2. EstimatedparametersofrelaxedselectionusingRELAX. Model lnL np AIC TL k LR p c ω v.ω background foreground Null −5941 254 12,397 6.50 1 — — Alternative −5878 255 12,273 6.54 0.10 124.8 <<0.001 k=1isthenullhypothesis.k>1indicatespositiveselectionandk<1indicatesrelaxedselection.lnL,log-likelihood;np,numberofparameters;AICc, samplesizedcorrectedAkaikeInformationCriterion;TL,treelength;k,selectionintensity;LR,likelihoodratio;P,p-valueoflikelihoodratioofalternative relativetonullforeachtest. implies low type I error and that our estimates of ω from the calexplanation.Whiletheexplanationforvomerolfactorylossin best-fitM2.1modelarerobust. batsremainsmysterious,ourfindingsalsohighlightthepowerof Figure5displaysresultsofthesimulatedevolutionarysce- molecular evolution to inform the evolution of complex pheno- narios modeled using the M2.1 branch classes (Fig. 5A), in typesacrossphylogenies. which Trpc2 had experienced purifying selection along internal branches(Fig.5B: x¯background =0.097;95%confidenceinterval Trpc2 LOSS IN MAMMALS [CI]:0.096,0.097;x¯foreground=0.479;CI:0.477,0.482)orselec- Innearlyallmammals,pheromone-mediatedbehavioriscritical tionhadrelaxedthroughoutinternalbranchesofthetree(Fig.5 tosurvivalandreproduction.Frommaternalaggressionwhenpro- x¯background=0.545;CI:0.544,0.546;x¯foreground=0.546;CI:0.542, tectingyoungfromintruderstosexidentificationduringcourtship 0.550). The values of ωbackground and ωforeground estimated from and mating (Stowers et al. 2002; Kimchi et al. 2007; Liberles the data (Table 1) fall well within the respective simulated dis- 2014;CoronaandLe´vy2015),andfromterritorialurine-marking tributionsinHypothesisAandarecompletelyinconsistentwith to reproductive synchronization (Rasmussen and Schulte 1998; HypothesisB(Fig.3).ThisstronglysuggestsTrpc2functionhas Hurst and Beynon 2004; Stockley et al. 2013), the machinery been independently lost and was functional during early bat di- to detect and respond to pheromones is conserved and under versification. strong selection from the platypus to platyrrhine (New World) primates.SeveredisruptionsinsocialbehavioroccurwhenTrpc2 isrenderednonfunctional,suchasfailingtocareforoffspring,or Discussion mistakingmalesfromfemales,andviceversa(LimanandDulac Pheromone chemosensation mediated by the vomeronasal sys- 2007;HasenandGammie2009;FraserandShah2014;Yu2015). temhasrarelybeenlostinterrestrialmammals(Yuetal.2010). Unsurprisingly, this gene is highly conserved. In fact, among Hence,thewidespreadpseudogenizationofTrpc2inbatsissur- nonvolantmammals,widespreadsamplinghasrevealedjustfour prising,andcountertoexpectationsbasedontrait-basedanalyses independentcasesofpseudogenizationoftheTrpc2gene:inthe ofvomeronasalfunctionandloss.Wesoughttocharacterizethe ancestor of the fin whale (Balaenoptera physalus) and dolphin forcesshapingtheevolutionofTrpc2andvomerolfactioninbats (Tursiopstruncatus),intheriverotter(Lutralutra),intheharbor bymodelingmolecularevolutiontotestwhetherselectionrelaxed seal(Phocavitulina),andintheancestorofcatarrhineprimates priorto,orfollowingthediversificationofmajorextantbatfam- (ZhangandWebb2003;Yuetal.2010;Ibarra-Soriaetal.2014). ilies.Understandingthesequenceofshiftsinselectionprovides Inbats,wefoundmorethanthreetimesasmanylossesoffunction evidenceforexplanationsforrelaxedselection,suchasinvading asinallnonflyingmammals.Whileextantbatshaveevolved13 anewenvironmentorsensoryexchange.Wediscoveredthatthe independentnonsensemutationsinTrpc2sincetheylastshareda evolutionary history of vomerolfaction in bats is more complex commonancestor(cid:2)60Ma(ShiandRabosky2015),similardis- than previously appreciated. We outline three key findings: (1) ruptionshaveevolvedonlyfourtimesinthe(cid:2)150Madivergence complete pseudogenization of Trpc2 has independently evolved amongallothermodernmammals(dosReisetal.2012). at least 13 times across bats, including twice within one family Mapping the absence of vomeronasal structures across bat in which most species have functional vomeronasal organs; (2) familiessupportsancestralorganlossfollowedbyasmallnumber whilerelaxedselectionexplainsthesemultiplelossesoffunction, ofsystemgains(WibleandBhatnagar1996).Trpc2mayhavebeen atleasttwolargecladeshaveretainedTrpc2understrongpurify- evolvingneutrallybeforeselectionstrengtheneditintheancestors ingselection;and(3)onceTrpc2functionwaslost,itwasnever offamiliespossessingafunctionalgenetoday.Whilereactivation regained. Unlike in aquatic mammals or mammals switching to ofapseudogeneisuncommon,itisnotimpossible(Marshalletal. primarily visual communication, the pattern of vomerolfactory 1994;Takunoetal.2008).Apseudogenewithaframeshiftorstop lossesinbatsseemstobedecoupledfromanyobviousecologi- codonmutationcouldberepairedbyback-mutation,apreviously EVOLUTION 2017 7 L. R. YOHE ET AL. A B C 100 400 Simulated outcome ω ωbackground 75 foreground 300 Observed outcome y ω enc ωbfoarcekggrroouunndd u200 50 q e r F 100 25 0 0 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 purifying ω relaxed purifying ω relaxed Figure 5. (A) Background (black) and foreground (pink) branches from the M2.1 used in the simulation experiment. (B) Simulated andestimatedratiosofnonsynonymoustosynonymoussubstitutions(ω)inTrpc2.IfTrpc2hadbeenunderstrongpurifyingselection, simulated distributions of functional lineages and internal branches (ω ) should be distinct from simulated distributions of background estimates of nonfunctional lineages (ω ) and the null model. (C) If Trpc2 had been reactivated, ω estimates should foreground background overlapwithω .Dottedlinesindicatevaluesofωestimatedfromthedata. foreground deletedsegmentbyaninsertionfromacloselyrelatedgene,exon McGowen et al. 2014; Kishida et al. 2015). For aquatic mam- shuffling,orgeneconversion(Doxiadisetal.2006;Takunoetal. mals,ashifttolifeunderwatermadeitimpossibletodisperseand 2008). detect pheromonal cues in a manner similar to terrestrial mam- Alternatively,strongpurifyingselectiononTrpc2couldhave mals. Cetaceans and sirenians have highly degraded olfactory persistedduringdiversificationofallmajorbatlineages,andsub- andvomeronasalmorphology;dolphinsandwhalesshowances- sequentlyrelaxedindependentlyinmultiplebatfamilies.Losses tralpseudogenizationofTrpc2,andcarnivoranharborsealsand offunctionincriticalvomeronasalsignaltransductionhavebeen sea otters have pseudogenized Trpc2 (Mackay-Sim et al. 1985; independent, with the first loss occurring (cid:2)50 Ma or before Yu et al. 2010; McGowen et al. 2014). Bats are the only mam- (Table S4, Fig. S2). Estimates of ω for internal branches and mals capable of powered flight, but this shift seems unrelated functionallineages(ω )weremuchlowerthanthosefrom to vomeronasal loss. Airborne pheromonal cues and chemical background lineages with detectable loss-of-function mutations (ω ), cuestransmittedduringroostinginteractionsarestilleffectivein foreground indicatingselectionhasrelaxedinmanybranches.Theωvalues the aerial environment of bats. Bats also possess a diversity of estimatedfromthedatawerecompletelyinconsistentwithsimu- external glands, many of them sexually dimorphic, that excrete lationswithconstantlowω(uniformstronglynegativeselection) scented compounds, suggesting chemical cues are widely used orhigherω(uniformrelaxedselection),andwereconsistentwith (Scully et al. 2000). Finally, the evolution of flight in the an- simulations of distinct ω background and foreground branches. cestorofextantbatsisdecoupledfromthemultipleindependent Together,theseresultssupportstrongpurifyingselectiononTrpc2 pseudogenizationeventsdetected(Fig.2). haspersistedinbothinternalbranchesandextantfunctionallin- A shift from nocturnal to diurnal habits has also been eages. Additionally, the narrow distribution and low value of suggested to change selective pressure on vomerolfaction. ω indicates selection did not relax in those branches, Thoughnotalldiurnalprimateslackvomerolfaction,allnoctur- background whilethehighervalueandgreatervarianceofω reflects nal primates have functional vomeronasal systems (Evans and foreground thevaryingageofpseudogenizationeventsacrossthephylogeny Schilling1995;BhatnagarandMeisami1998;Smithetal.2011; (Fig.5B):recentpseudogenizationeventshavenotaccumulated Garrettetal.2013).Nocturnalmouselemurs,inparticular,show asmanymutationsasolderevents.Insteadofreactivation,quan- diversifyingselectiontoexpandvomeronasalreceptorrepertoires titative analyses of evolutionary rates support the retention of (Youngetal.2010;Yoderetal.2014).Severalstudieshavenoted functionalTrpc2intwobatfamilies. detecting chemical cues in low-light conditions is under strong selection among nocturnal mammals, which have refined and CHANGES IN ENVIRONMENT DID NOT INFLUENCE well-developed nasal chemosensory systems and a more dis- Trpc2 LOSS IN BATS criminating sense of smell (Barton et al. 1995; Wang et al. Change in environment is one of two main explanations 2010;Garrett etal.2013).Assomeprimates evolveddiurnality of vomeronasal loss and pseudogenization of Trpc2 among and became more visual, the selective pressure to maintain a nonvolant mammals (Zhang and Webb 2003; Liman 2006; well-developed social chemosensory system may have relaxed. 8 EVOLUTION 2017 Trpc2 INFERS LOSS, NOT GAIN, OF BAT VOMEROLFACTION This explanation for the loss of vomerolfaction is unlikely to Meisami1998).Similarly,apreviousstudyfoundnosupportfor apply for bats, as nearly all bats are nocturnal and most lack anexchangebetweendichromaticvisionandvomeronasalfunc- vomerolfactorysystems. tion(Zhaoetal.2011;Jonesetal.2013).Finally,andmostsur- prisingly,phyllostomidswithwell-developedvomeronasalorgans SENSORY SYSTEM EXCHANGE DID NOT INFLUENCE alsohavelargernumbersofdistinctolfactoryreceptors,indicat- Trpc2 LOSS IN BATS ing a lack of exchange between olfaction and vomerolfaction Sensory exchange is another mechanism through which selec- (Hayden et al. 2014). With increased sampling of Trpc2 among tioncanchangeovertime,perhapsshapingthecuriouspatterns phyllostomid bats with diverse sensory adaptations, we find no of vomerolfaction in bats (Zhao et al. 2011; Jones et al. 2013; support for a simple sensory exchange between vomerolfaction Hayden et al. 2014). Maintaining neural sensory tissue is ener- andothersenses.Ourfindingschallengenovelenvironmentsor geticallyexpensive(NivenandLaughlin2008).Ifenvironmental sensoryexchangeasexplanationsforthelossofvomerolfaction, demandsselectforspecializationoradaptationinanothersense, andopenupnewinterpretationsformechanismsofloss. natural selection on a less constrained sensory system may re- lax. The relationship between trichromatic vision in primates MAIN OLFACTORY SYSTEM MAY COMPENSATE FOR and decreased numbers of olfactory receptors is one proposed VOMERONASAL LOSS example of sensory exchange (Gilad et al. 2004), though this Compensation between the main olfactory and vomerolfactory exampleremainscontentious(Matsuietal.2010).Mostbatspri- systemisahithertounexploredmechanismfortherelaxationof marily forage using echolocation and many communicate with selection on vomerolfaction and its eventual loss. Instead of an ultrasonicsocialcallsandhaveevolvedaremarkablediversityof increaseorexpansioninthemainolfactorysystemcorrelatedwith adaptationsforacutehearing(Jonesetal.2013),suggestingasen- vomeronasalloss(ahypothesisrejectedbyHaydenetal.2014), soryexchange.Butthereisnoevidenceofdecreasedrelianceon olfactionandvomerolfactioncouldberedundant,allowingselec- olfaction among echolocating bats, or of decreased importance tivepressuresonvomerolfactiontorelaxinsomespecies.Recent of echolocation among bats with vomerolfaction. For example, neurobiological, developmental, and behavioral studies suggest Tadaridabrasiliensis,anefficientecholocatinginsectivore,hasa there is more interaction between the two nasal chemosensory disruptedTrpc2,butmothersstillscent-marktheirpupstoiden- systems than previously thought (Sua´rez et al. 2012; Baum and tify them within the crowded colonies (Gustin and McCracken Cherry2014;OmuraandMombaerts2014;Ma2015).Inmice, 1987).Additionally,allminiopteridshavewell-conservedTrpc2 for example, some pheromone receptors may also be present in genes, but also rely on vocalizations to locate their insectiv- themainolfactoryepithelium(OmuraandMombaerts2014;Kan- orous prey (Miller-Butterworth et al. 2007). The evolution of ageswaranetal.2015),possiblyexplainingwhysomeapparently constant-frequency echolocation with Doppler shift compensa- pheromone-mediated behavior is maintained in species lacking tion is an extreme sensory adaptation that enables focusing on thevomeronasalorgan.WhileTrpc2hasbeenpseudogenizedin insectpreydespiteaclutteredbackground(Fentonetal.2012).If theharborsealandriverotter(Yuetal.2010),bothspeciesretain this adaptation resulted in sensory exchangefor vomerolfactory awell-developedmainolfactorysystemandbehavioralstudiesin- function, the pseudogenization of Trpc2 should roughly corre- dicatethepresenceofsomeolfactorysocialcommunication(van spondwithitsevolution.Thispatternisnotevident:mostlossof Valkenburghetal.2011;Stoffeletal.2015).Finally,thedebateon functionmutationsoccurredamongnon-constant-frequencybats, whetherhumansarecapableofdetectingpheromonesisstillfar and Pteronotus parnellii —the only New World bat capable of fromresolved,asanatomicaladvancesareongoing(Smithetal. constant-frequencyecholocation—stillpossessesanintactTrpc2 2014; Wessels et al. 2014; Vasuki et al. 2016), and behavioral geneandvomeronasalstructures(BhatnagarandMeisami1998; experimentssuggestthatwecanperceiveconspecificchemosen- Fentonetal.2012). sorycues(RadulescuandMujica-Parodi2013;Lu¨bkeandPause Some bats have other extreme sensory adaptations besides 2015;Gelsteinetal.2011). echolocation (Jones et al. 2013). Many of these adaptations Wealsofindsimilarcuriousexceptionsacrossbatslacking are found within phyllostomids, one of two families with con- vomeronasalorgans.Despitethegregariousnessofmanybats— served vomerolfaction. For example, the common vampire bat somespeciesresideincaveswithmillionsofindividuals(Kunz (Desmodus rotundus) is the only mammal capable of infrared 1982; Iskali and Zhang 2015), while others in smaller roosts thermoperception (Gracheva et al. 2011), and UV vision has maintain stable relationships among individuals (Kunz et al. evolvedinthenectarivorousGlossophagasoricina(Winteretal. 1994)—most lack the vomeronasal organ that mediates social 2003;Mu¨lleretal.2009).Nevertheless,bothofthesespecieshave interactions in most mammals. Relying only on the main well-developedvomeronasalorgansandanintactTrpc2(Frahm olfactorysystemmaybesufficientformanyanimalsthatspend andBhatnagar1980;WibleandBhatnagar1996;Bhatnagarand part of their lives underwater or in the air, as long as some EVOLUTION 2017 9 L. R. YOHE ET AL. of the chemical detection mechanisms in the vomeronasal and DATA ARCHIVING main olfactory systems are redundant. The loss of a sensory Models, code, and input for analyses are deposited on Dryad (DOI: http://dx.doi.org/10.5061/dryad.gr1pk);newsequencedataaredeposited system does not preclude processing of the signal in some toGenbank(KX537508-KX537612). other way; indeed many “earless” frogs can still detect sound (Lindquistetal.1998;Boisteletal.2013).Ifthishypothesiswere correct, the main olfactory system should contain mechanisms LITERATURE CITED todetectpheromoneligands,andexpressvomeronasalreceptors. Barton,R.A.,A.Purvis,andP.H.Harvey.1995.Evolutionaryradiationof visualandolfactorybrainsystemsinprimates,batsandinsectivores. Functional assays testing for chemosensory redundancy offer a Philos.Trans.R.Soc.LondonSer.BBiol.Sci.348:381–392. promisingavenueforfuturework. Baum,M.J.,andJ.A.Cherry.2014.Processingbythemainolfactorysystem ofchemosignalsthatfacilitatemammalianreproduction.Horm.Behav. 68:53–64. Conclusion Bhatnagar, K. P., and E. Meisami. 1998. Vomeronasal organ in bats and primates:extremesofstructuralvariabilityanditsphylogeneticimpli- Because of its importance to social communication, vomerol- cations.Microsc.Res.Tech.43:465–475. faction is rarely lost in mammals. Here, we have identified the Bhatnagar,K.P.,andT.D.Smith.2007.Lightmicroscopicandultrastruc- greatest number of losses of function in this crucial system in tural observations on the vomeronasal organ of Anoura (Chiroptera: Phyllostomidae).Anat.Rec.(Hoboken)290:1341–1354. anymammalianorder,andquantifiedandmodeledthemolecular Bielawski,J.P.,andZ.Yang.2004.Amaximumlikelihoodmethodforde- evolutionaryhistoryofthekeyregulatorofvomeronasalsystem tectingfunctionaldivergenceatindividualcodonsites,withapplication function,Trpc2.Theseanalysesreveallosseshavebeenindepen- togenefamilyevolution.J.Mol.Evol.59:121–132. dentandvariedthroughtime,incontrastwithstrongandsustained ———.2005.Maximumlikelihoodmethodsfordetectingadaptiveprotein purifyingselectionintwobatfamiliesandtheirancestors.Neither evolution.Pp.103–124inStatisticalmethodsinmolecularevolution. Springer,NewYork. shiftstonovelenvironmentsnorpreviouslyproposedsensoryex- Boillat,M.,L.Challet,D.Rossier,C.Kan,A.Carleton,andI.Rodriguez. changesexplainvomerolfactorylossinbats.Instead,wepropose 2015. The vomeronasal system mediates sick conspecific avoidance. the olfactory system may compensate for vomeronasal loss, as Curr.Biol.25:251–255. manybatswithoutTrpc2stilldemonstratepheromone-mediated Boistel,R.,T.Aubin,P.Cloetens,F.Peyrin,T.Scotti,P.Herzog,J.Gerlach,N. Pollet,andJ.-F.Aubry.2013.Howminutesooglossidfrogshearwithout behaviors.ThemolecularevolutionofTrpc2inbatssuggeststhat, amiddleear.Proc.Natl.Acad.Sci.USA110:15360–15364. inlinewithDollo’slaw,oncevomerolfactionislost,itdoesnot Christin,P.A.,andG.Besnard.2009.TwoindependentC4originsinAris- evolveback. tidoideae (Poaceae) revealed by the recruitment of distinct phospho- enolpyruvatecarboxylasegenes.Am.J.Bot.96:2234–2239. Cinkova´,I.,andR.Policht.2014.Discriminationoffamiliarityandsexfrom ACKNOWLEDGMENTS chemicalcuesinthedungbywildsouthernwhiterhinoceros.Anim. ThisworkwassupportedbytheNationalScienceFoundationGraduate Cogn.18:385–392. Research Fellowship and NSF-DEB 1442142. The Indiana University Collin,R.,andR.Cipriani.2003.Dollo’slawandthere-evolutionofshell Mason server funded through NSF-DBI 1458641 provided computing coiling.Proc.Biol.Sci.270:2551–2555. resourcesforthesimulationsinthisstudy.Fortissuesamples,wethank Cooper, J. G., and K. P. Bhatnagar. 1976. Comparative anatomy of the thefollowingindividualsandcollections:N.B.Simmonsandstaffofthe vomeronasalorgancomplexinbats.J.Anat.122:571–601. AmbroseMonellCryo-CollectionattheAmericanMuseumofNatural Corona,R.,andF.Le´vy.2015.Chemicalolfactorysignalsandparenthoodin History;B.PattersonandJ.D.PhelpsattheFieldMuseum;J.Cook,J. mammals.Horm.Behav.68:77–90. Dunnum,andM.CampbellattheMuseumofSouthwesternBiology;V. Dollo, L. 1893. The laws of evolution. Bull. Soc. Belge Ge´ol. Pale´ontol. PachecoattheMuseodeHistoriaNaturalattheUniversidadNacional Hydrol.7:165–166. MayordeSanMarcos;C.ConroyattheMuseumofVertebrateZoology Domes,K.,R.A.Norton,M.Maraun,andS.Scheu.2007.Reevolutionof oftheUniversityofCalifornia,Berkeley;K.HelgenattheSmithsonian sexuality breaks Dollo’s law. Proc. Natl. Acad. Sci. USA 104:7139– Institution;B.LimandJ.EngerattheRoyalOntarioMuseum;andR.J. 7144. BakerandtheMammalogystaffattheMuseumofTexasTechUniversity. dosReis,M.,J.Inoue,M.Hasegawa,R.J.Asher,P.C.J.Donoghue,andZ. Wethank E. Leung for assistancewithlaboratory work. Wethank the Yang.2012.Phylogenomicdatasetsprovidebothprecisionandaccuracy University of Arizona Genetics Core Facility for Sanger sequencing. inestimatingthetimescaleofplacentalmammalphylogeny.Proc.R. Forhelpfulcommentsandsuggestionsonthemanuscript,wethankN. Soc.BBiol.Sci.279:3491–3500. Holowka, two anonymous reviewers, and B. Igic´ for suggestions and Doxiadis,G.G.M.,M.K.H.vanderWiel,H.Brok,N.Groot,N.Otting, stimulatingdiscussion.WethankN.Holowka,B.Sumner,andA.Tejedor B.’tHart,J.vanRood,andR.Bontrop.2006.Reactivationbyexon forcontributingillustrations. shufflingofaconservedHLA-DR3-likepseudogenesegmentinaNew Theauthorscontributedasfollows.LRYconceivedtheideas,designed Worldprimatespecies.Proc.Natl.Acad.Sci.USA103:5864–5868. andexecutedthestudy,collectedandanalyzedthedata,andwrotethe Evans,C.,andA.Schilling.1995.Theaccessory(vomeronasal)chemorecep- manuscript. RA and CMG assisted in data cxollection and edited the torsysteminsomeprosimians.Pp.393–411inL.Alterman,A.Gerald manuscript.LMDhelpeddesignthestudy,collectedsamples,andwrote Doyle,andM.K.Izard,eds.Creaturesofthedark.Springer,York,NY. themanuscript.SJRassistedinsamplecollection.SJR,KES,andERD Fenton,M.B.,P.A.Faure,andJ.M.Ratcliffe.2012.Evolutionofhighduty wereinvolvedinfundingacquisitionandprovidedfeedback. cycleecholocationinbats.J.Exp.Biol.215:2935–2944. 10 EVOLUTION 2017

Description:
vomeronasal loss: New World leaf-nosed bats (Phyllostomidae) nal ribonuclease: pseudogene reactivation or multiple gene inactivation events?
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.