ebook img

Pseudo-localization of singular integrals and noncommutative Littlewood-Paley inequalities PDF

0.4 MB·
by  Tao Mei
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Pseudo-localization of singular integrals and noncommutative Littlewood-Paley inequalities

PSEUDO-LOCALIZATION OF SINGULAR INTEGRALS AND NONCOMMUTATIVE LITTLEWOOD-PALEY INEQUALITIES 9 0 TAOMEIANDJAVIERPARCET 0 2 n a J Contents 6 2 Introduction 1 1. Martingale transforms 5 ] 2. Caldero´n-Zygmundoperators 16 A Appendix A. Hilbert space valued pseudo-localization 26 O Appendix B. Background on noncommutative integration 32 . h References 37 t a m [ Introduction 3 Understood in a wide sense, square functions play a central role in classical v 1 Littlewood-Paley theory. This entails for instance dyadic type decompositions of 7 Fourier series, Stein’s theory for symmetric diffusion semigroups or Burkholder’s 3 martingalesquarefunction. Allthesetopicsprovideadeeptechniquewhendealing 4 withquasi-orthogonalitymethods,sumsofindependentvariables,Fouriermultiplier . 7 estimates... The historical survey [34] is an excellent exposition. In a completely 0 different setting, the rapid development of operator space theory and quantum 8 probability has given rise to noncommutative analogs of several classical results 0 in harmonic analysis. We find new results on Fourier/Schur multipliers, a settled : v theory of noncommutative martingale inequalities, an extension for semigroups on i X noncommutativeLpspacesoftheLittlewood-Paley-Steintheory,anoncommutative ergodic theory and a germ for a noncommutative Caldero´n-Zygmund theory. We r a refer to [6, 8, 10, 11, 17, 24, 27] and the references therein. The aim of this paper is to produce weak type inequalities for a large class of noncommutative square functions. In conjunction with BMO type estimates interpolation and duality, we will obtain the corresponding norm equivalences in the whole L scale. Apart from the results themselves, perhaps the main novelty p relies on our approach. Indeed, emulating the classical theory, we shall develop a row/column valued theoryof noncommutativemartingale transformsandoperator valuedCaldero´n-Zygmundoperators. Thisseemstobenewinthenoncommutative settingandmayberegardedasafirststeptowardsanoncommutativevector-valued theory. To illustrate it, let us state our result for noncommutative martingales. 2000Mathematics SubjectClassification: 42B20,42B25,46L51, 46L52,46L53. Keywords: Caldero´n-Zygmundoperator,almostorthogonality, noncommutative martingale. 1 2 TAOMEIANDJAVIERPARCET Theorem A1. Let ( ) stand for a weak dense increasing filtration in a n n 1 ∗ M ≥ semifinite von Neumann algebra ( ,τ) equipped with a normal semifinite faithful M trace τ. Given f =(f ) an L ( ) martingale, let n n 1 1 ≥ M ∞ ∞ T f = ξ df with sup ξ 2 .1. m km k km | | k 1 Xk=1 ≥ mX=1 Then, there exists a decomposition T f =A f +B f, satisfying m m m ∞ (A f)(A f) 12 + ∞ (B f) (B f) 12 . sup f . m m ∗ m ∗ m n 1 1, 1, n 1k k (cid:13)(cid:16)mX=1 (cid:17) (cid:13) ∞ (cid:13)(cid:16)mX=1 (cid:17) (cid:13) ∞ ≥ (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) In the statement above, df denotes the k-th martingale difference of f relative k tothefiltration( ) and refersto thenormonL ( ). Inthe result n n 1 1, 1, M ≥ kk ∞ ∞ M below, we also need to use the norm on BMO( ) relative to our filtration as well M as the norm on L ( ;ℓ2). All these norms are standard in the noncommutative p M rc setting and we refer to Section 1 below for precise definitions. Moreover, in what followsδ ande willstandforunitvectorsofsequencespacesandmatrixalgebras k ij respectively. Theorem A2. Let us set = ¯ (ℓ ). Assumethat f is an L ( )martingale 2 R M⊗B ∞ M relative to the filtration ( ) and define T f with coefficients ξ satisfying n n 1 m km M ≥ the same condition above. Then, we have ∞ ∞ T f e + T f e . sup f . m 1m m m1 n ⊗ BMO( ) ⊗ BMO( ) n 1k k∞ (cid:13)mX=1 (cid:13) R (cid:13)mX=1 (cid:13) R ≥ (cid:13) (cid:13) (cid:13) (cid:13) Therefo(cid:13)re, given 1<p<(cid:13) and f (cid:13)Lp( ), we ded(cid:13)uce ∞ ∈ M ∞ T f δ c f . m m p p (cid:13)mX=1 ⊗ (cid:13)Lp(M;ℓ2rc) ≤ k k (cid:13) (cid:13) Moreover, the reverse i(cid:13)nequality also h(cid:13)olds if m|ξkm|2 ∼1 uniformly on k. P Let us briefly analyze Theorems A1 and A2. Taking ξ to be the Dirac delta km on (k,m), we find T f = df and our results follow from the noncommutative m m Burkholder-Gundy inequalities [27, 30]. Moreover, taking ξ = 0 for m > 1 we km simplyobtainamartingaletransformwithscalarcoefficients andourresultsfollow from [29]. Other known examples appear by considering (ξ ) of diagonal-like km shape. For instance, taking an arbitrary partition 1 if k Ω , N= Ω and ξ = ∈ m m km (0 otherwise. m 1 [≥ It is apparent that ξ 2 =1 and Theorem A2 gives e.g. for 2 p< m| km| ≤ ∞ ∞ P df 2 21 + ∞ df 2 12 c f . k p k∗ p ∼ pk kp (cid:13)(cid:13)(cid:16)mX=1(cid:12)(cid:12)kX∈Ωm (cid:12)(cid:12) (cid:17) (cid:13)(cid:13) (cid:13)(cid:13)(cid:16)mX=1(cid:12)(cid:12)kX∈Ωm (cid:12)(cid:12) (cid:17) (cid:13)(cid:13) Except fo(cid:13)r p = 1(cid:12), this follo(cid:12)ws fr(cid:13)om t(cid:13)he nonc(cid:12)ommutati(cid:12)ve K(cid:13)hintchine inequality in conjunctionwiththeL boundednessofmartingaletransforms. The newexamples p appear when consideringmore generalmatrices (ξ ) and will be further analyzed km in the body of the paper. NONCOMMUTATIVE LITTLEWOOD-PALEY INEQUALITIES 3 In the framework of Theorems A1 and A2, the arguments in [27, 29, 30] are no longer valid. Instead, we think in our square functions as martingale transforms with row/columnvalued coefficients ξr k ∞ (Tmf)(Tmf)∗ 21 ∞ dfk e1,1 ∞ ξk,m1 e1m , ∼ ⊗ z }|M⊗ { (cid:16)mX=1 (cid:17) Xk=1(cid:0) (cid:1)(cid:16)mX=1 (cid:17) ∞ (T f) (T f) 21 ∞ ∞ ξ 1 e df e , m ∗ m k,m m1 k 1,1 ∼ M⊗ ⊗ (cid:16)mX=1 (cid:17) Xk=1(cid:16)mX=1 (cid:17)(cid:0) (cid:1) ξc k where means to have the same L ( |) or L {(z ) norm}. Tensorizing with the 1, p ∼ ∞ M M identity on (ℓ ), we have df e = d(f e ) and we find our row/column 2 k 1,1 1,1 k B ⊗ ⊗ valued transforms. According to [29], we might expect ∞ ∞ ξrd(f e ) c sup ξr df e . c f k ⊗ 1,1 k p ≤ p k 1k kkB(ℓ2) k⊗ 1,1 p pk kp (cid:13)kX=1 (cid:13) ≥ (cid:13)Xk=1 (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) andthe(cid:13)sameestimatefort(cid:13)heξc’s. However,itis(cid:13)essentialin[29](cid:13)tohavecommuting k coefficients ξ , where = ¯ (ℓ ) in our setting. This is k ∈ Rk−1 ∩ R′k Rn Mn⊗B 2 not the case. In fact, the inequality above is false in general (e.g. take again ξ = δ with 1 < p < 2) and Theorems A1 and A2 might be regarded as the km (k,m) rightsubstitute. Thesamephenomenonwilloccuristhecontextofoperator-valued Caldero´n-Zygmundoperators below. OurmaintoolstoovercomeitwillbethenoncommutativeformsofGundy’sand Caldero´n-Zygmunddecompositions[24,26]formartingalestransformsandsingular integral operators respectively. As it was justified in [24], there exists nevertheless a substantial difference between both settings. Namely, martingale transforms are local operators while Caldero´n-Zygmund operators are only pseudo-local. In this paper we will illustrate this point by means of Rota’s dilation theorem [33]. The pseudo-localization estimate that we need in this setting, to pass from martingale transforms to Caldero´n-Zygmund operators, is a Hilbert space valued version of that given in [24] and will be sketched in Appendix A. Now we formulate our results for Caldero´n-Zygmund operators. Let ∆ denote the diagonalofRn Rn andfixa Hilbertspace . We willwriteinwhatfollowsT to denote an integr×aloperatorassociatedto a keHrnelk :R2n ∆ . This means \ →H that for any smooth test function f with compact support, we have Tf(x)= k(x,y)f(y)dy for all x / suppf. ZRn ∈ Given two points x,y Rn, the distance x y between x and y will be taken ∈ | − | for convenience with respect to the ℓ (n) metric. As usual, we impose size and ∞ smoothness conditions on the kernel: a) If x,y Rn, we have ∈ 1 k(x,y) . . x y n H | − | (cid:13) (cid:13) (cid:13) (cid:13) 4 TAOMEIANDJAVIERPARCET b) There exists 0<γ 1 such that ≤ x x γ 1 k(x,y)−k(x′,y) . x| −y n′|+γ if |x−x′|≤ 2|x−y|, H | − | (cid:13) (cid:13) y y γ 1 (cid:13) (cid:13) ′ k(x,y)−k(x,y′) . x| −y n|+γ if |y−y′|≤ 2|x−y|. H | − | (cid:13) (cid:13) We will r(cid:13)efer to this γ as t(cid:13)he Lipschitz parameter of the kernel. The statement of our results below requires to consider appropriate -valued noncommutative H functionspacesasin[10]. Letusfirstconsiderthealgebra ofessentiallybounded B A functions with values in M = f :Rn f strongly measurable s.t. ess sup f(x) < , B A →M x Rn k kM ∞ n (cid:12) ∈ o equipped with the n.s.f. t(cid:12)race ϕ(f) = τ(f(x))dx. The weak-operator closure Rn of is a von Neumann algebra. Given a norm 1 element e , take p to be B e A A R ∈H the orthogonal projection onto the one-dimensional subspace generated by e and define L ( ; ) = (1 p )L ( ¯ ( )), p r e p A H A⊗ A⊗B H L ( ; ) = L ( ¯ ( ))(1 p ). p c p e A H A⊗B H A⊗ Thisdefinitionisessentiallyindependentofthechoiceofe. Indeed,givenafunction f L ( ; )wemayregarditasanelementofL ( ¯ ( )),sothattheproduct p r p ∈ A H A⊗B H ff belongs to (1 p )L ( ¯ ( ))(1 p ) which may be identified with ∗ e p/2 e A ⊗ A⊗B H A ⊗ L ( ). When f L ( ; ) the same holds for f f and we conclude p/2 p c ∗ A ∈ A H kfkLp(A;Hr) = (ff∗)12 Lp(A) and kfkLp(A;Hc) = (f∗f)21 Lp(A). Arguing as in [10, Cha(cid:13)pter 2],(cid:13)we may use these identities to(cid:13)regard(cid:13)L ( ) as (cid:13) (cid:13) (cid:13) (cid:13) p A ⊗H a dense subspace of L ( ; ) and L ( ; ). More specifically, given a function p r p c A H A H f = g v L ( ) , we have k k⊗ k ∈ p A ⊗H 1 P f = v ,v g g 2 , k kLp(A;Hr) (cid:13)(cid:16)Xi,j h i ji i j∗(cid:17) (cid:13)Lp(A) (cid:13) (cid:13) f = (cid:13) v ,v g g 21(cid:13) . k kLp(A;Hc) (cid:13)(cid:16)Xi,j h i ji i∗ j(cid:17) (cid:13)Lp(A) (cid:13) (cid:13) This procedure may also be used to(cid:13)define the spaces (cid:13) L ( ; ) and L ( ; ). 1, r 1, c ∞ A H ∞ A H It is clear that L ( ; )=L ( ; ) and we will denote it by L ( ; ). 2 r 2 c 2 oh M H M H M H Theorem B1. Given f L ( ), define formally 1 ∈ A Tf(x)= k(x,y)f(y)dy ZRn where the kernel k :R2n ∆ satisfies the size/smoothness conditions imposed \ →H above. Assume further that T defines a bounded map L ( ) L ( ; ). Then 2 2 oh A → A H we may find a decomposition Tf =Af +Bf, satisfying Af + Bf . f . L1,∞(A;Hr) L1,∞(A;Hc) k k1 (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) NONCOMMUTATIVE LITTLEWOOD-PALEY INEQUALITIES 5 To state the following result, we need to define the corresponding -valued H BMO norm. Assume for simplicity that is separable and fix an orthonormal H basis (v ) in . Then, given a norm 1 element e , we may identify (as k k 1 ≥ H ∈ H above) f = g v BMO( ) with k k⊗ k ∈ A ⊗H fP= g (e v ) = (1 p ) g (e v ) , e k k⊗ ⊗ k A⊗ e k k⊗ ⊗ k fe = Pkgk⊗(vk⊗e) = kgk⊗(cid:16)(Pe⊗vk) (1A⊗pe(cid:17)), (cid:16) (cid:17) wheree v isundePrstoodastherank1operPatorξ v ,ξ eandv estands k k k ⊗ ∈H7→h i ⊗ for ξ e,ξ v . Then we define the spaces BMO( ; ) and BMO( ; ) as k r c ∈H7→h i A H A H the closure of BMO( ) with respect to the norms A ⊗H f = f and f = f . k kBMO(A;Hr) ke kBMO(A⊗B(H)) k kBMO(A;Hc) k ekBMO(A⊗B(H)) In the following result, we also use the standard terminology L ( ; )+L ( ; ) 1 p 2, Lp(A;Hrc)= Lpp(A;Hrr) Lpp(A;Hcc) 2≤p≤ . (cid:26) A H ∩ A H ≤ ≤∞ Theorem B2. If f L ( ), we also have ∈ ∞ A Tf + Tf . f . BMO(A;Hr) BMO(A;Hc) k k∞ Therefore, given 1<(cid:13)p<(cid:13) and f L(cid:13)( (cid:13)), we deduce (cid:13) (cid:13) ∞ ∈ (cid:13)p A(cid:13) Tf c f . Lp(A;Hrc) ≤ pk kp Moreover, the reverse inequa(cid:13)lity (cid:13)holds whenever Tf = f . (cid:13) (cid:13) k kL2(A;Hoh) k kL2(A) In Section1 we proveTheoremsA1 andA2. Then we study anspecific example on ergodic averages as in [35]. In conjunction with Rota’s theorem, this shows therelevanceofpseudo-localizationintheCaldero´n-Zygmundsetting. Wealsofind somemultilinearandoperator-valuedformsofourresults. TheoremsB1andB2are proved in Section 2. The proof requires a Hilbert space valued pseudo-localization estimate adapted from [24] in Appendix A. After the proof, we list some examples and applications. Although most of the examples are semicommutative, we find several new square functions not considered in [10, 19] and find an application in the fully noncommutative setting which will be explored in [12]. Finally, follow- ing a referee’s suggestion, we also include an additional Appendix B with some backgroundonnoncommutativeL spaces,noncommutativemartingalesandafew p examples for nonexpert readers. 1. Martingale transforms In this section, we prove Theorems A1 and A2. As a preliminary, we recall the definition of some noncommutative function spaces and the statement of some auxiliaryresults. We shallassumethatthe readerisfamiliarwithnoncommutative L spaces. Given ( ,τ) a semifinite von Neumann algebra equipped with a n.s.f. p M trace, the noncommutative weak L -space L ( ) is defined as the set of all 1 1, ∞ M τ-measurable operators f for which the quasi-norm f =sup λτ f >λ k k1, | | ∞ λ>0 n o 6 TAOMEIANDJAVIERPARCET is finite. In this case, we write τ f > λ to denote the trace of the spectral | | projection of f associated to the interval (λ, ). We find this terminology more | | (cid:8) (cid:9) ∞ intuitive, since itis reminiscentofthe classicalone. The space L ( )satisfies a 1, ∞ M quasi-triangle inequality that will be used below with no further reference λτ f +f >λ λτ f >λ/2 +λτ f >λ/2 . 1 2 1 2 | | ≤ | | | | n o n o n o We refer the reader to [4, 28] for a more in depth discussion on these notions. Let us now define the space BMO( ). Let L ( ) stand for the -algebra of 0 M M ∗ τ-measurable operators affiliated to and fix a filtration ( ) . Let us write n n 1 E : for the correspondMing conditional expectaMtion. ≥Then we define n n BMOMr a→ndMBMOc as the spaces of operators f L ( ) with norm (modulo 0 multipMles of 1 ) M ∈ M M 1 kfkBMOrM = nsup1 En (f −En−1(f))(f −En−1(f))∗ 2 , ≥ (cid:13) (cid:16) (cid:17) (cid:13)M (cid:13) 1(cid:13) kfkBMOcM = nsup1(cid:13)En (f −En−1(f))∗(f −En−1(f)) 2(cid:13) . ≥ (cid:13) (cid:16) (cid:17) (cid:13)M (cid:13) (cid:13) It is easily checked that we hav(cid:13)e the identities (cid:13) 1 kfkBMOrM = sup En dfkdfk∗ 2 , n 1 ≥ (cid:13)(cid:13) (cid:16)kX≥n (cid:17) (cid:13)(cid:13)M kfkBMOcM = sup(cid:13)En dfk∗dfk 12(cid:13) . n 1 ≥ (cid:13)(cid:13) (cid:16)kX≥n (cid:17) (cid:13)(cid:13)M We define BMO( )=BMOr BMOc(cid:13) with norm given(cid:13)by M M∩ M kfkBMO(M) =max kfkBMOrM,kfkBMOcM . n o Finally, the space L ( ;ℓ2) was already defined in the Introduction. p M rc A key tool in proving weak type inequalities for noncommutative martingales is due to Cuculescu. It can be viewed as a noncommutative analogue of the weak type (1,1) boundedness of Doob’s maximal function. Cuculescu’s construction [2]. Let f = (f ,f ,...) be a positive L martingale 1 2 1 relative to the filtration ( ) and let λ be a positive number. Then there exists n n 1 M ≥ a decreasing sequence of projections q(λ) ,q(λ) ,q(λ) ,... 1 2 3 in satisfying the following properties M i) q(λ) commutes with q(λ) f q(λ) for each n 1. n n 1 n n 1 − − ≥ ii) q(λ) belongs to for each n 1 and q(λ) f q(λ) λq(λ) . n n n n n n M ≥ ≤ iii) The following estimate holds 1 τ 1 q(λ) sup f . n n 1 M− ≤ λ n 1k k (cid:16) n^≥1 (cid:17) ≥ Explicitly, we set q(λ) =1 and define q(λ) =χ (q(λ) f q(λ) ). 0 n (0,λ] n 1 n n 1 M − − NONCOMMUTATIVE LITTLEWOOD-PALEY INEQUALITIES 7 AnotherkeytoolforwhatfollowsisGundy’sdecompositionfornoncommutative martingales. We need a weak notion of support which is quite useful when dealing withweaktypeinequalities. Foranon-necessarilyself-adjointf ,thetwosided ∈M null projection of f is the greatest projection q in satisfying qfq =0. Then we M define the weak support projection of f as supp f =1 q. ∗ A− Itisclearthatsupp f =suppf when isabelian. Moreover,thisnotionisweaker ∗ M than the usual support projection in the sense that we have supp f suppf for ∗ ≤ any self-adjoint f and supp f is a subprojection of both the left and right ∗ ∈ M supports in the non-self-adjoint case. Gundy’s decomposition [26]. Let f = (f ,f ,...) be a positive L martingale 1 2 1 relative to the filtration ( ) and let λ be a positive number. Then f can be n n 1 M ≥ decomposed f = α+β +γ as the sum of three martingales relative to the same filtration and satisfying 1 ∞ max sup α 2, dβ , λτ supp dγ . sup f . λ k nk2 k kk1 ∗ k k nk1 n 1 n 1 n ≥ kX=1 (cid:16)k_≥1 (cid:17)o ≥ We may write α,β and γ in terms of their martingale differences dα = q (λ)df q (λ) E q (λ)df q (λ) , k k k k k 1 k k k − − dβk = qk 1(λ)dfkqk 1(λ) q(cid:0)k(λ)dfkqk(λ)+(cid:1)Ek 1 qk(λ)dfkqk(λ) , − − − − dγ = df q (λ)df q (λ). k k k 1 k k 1 (cid:0) (cid:1) − − − 1.1. Weak type (1,1) boundedness. Here we prove Theorem A1. Let us begin with some harmless assumptions. First, we shall assume that is a finite von M Neumann algebra with a normalized trace τ. The passage to the semifinite case is just technical. Moreover, we shall sketch it in Section 2 since the von Neumann algebra we shall work with can not be finite. Second, we may assume that the A martingale f is positive and finite, so that we may use Cuculescu’s construction and Gundy’s decomposition for f and moreover we do not have to worry about convergence issues. Now we provide the decomposition T f = A f +B f. If (q (λ)) denotes m m m n n 1 ≥ the Cuculescu’s projections associated to (f,λ), let us write in what follows q(λ) for the projection q(λ)= q (λ). n n 1 ^≥ Then we define the projections π = q(2s) and π = q(2s) q(2s) 0 k − s 0 s k s k 1 ^≥ ^≥ ≥^− for k 1. Since π =1 , we may write ≥ k≥0 k M dfP= π df π + π df π =∆ (df )+∆ (df ). k i k j i k j r k c k i j i<j X≥ X Then, our decomposition T f =A f +B f is given by m m m ∞ ∞ A f = ξ ∆ (df ) and B f = ξ ∆ (df ). m km r k m km c k k=1 k=1 X X 8 TAOMEIANDJAVIERPARCET Since both terms can be handled in a similar way, we shall only prove that supλτ ∞ (A f)(A f) 12 >λ . sup f . m m ∗ 1 k k λ>0 n 1 n(cid:16)mX=1 (cid:17) o ≥ By homogeneity, we may assume that the right hand side equals 1. This means in particular that we may also assume that λ 1 since, by the finiteness of , the ≥ M left hand side is bounded above by 1 for 0 < λ < 1. Moreover, up to a constant 2 it suffices to prove the result for λ being a nonnegative power of 2. Let us fix a nonnegative integer ℓ, so that λ=2ℓ for the rest of the proof. Let us define w = q(2s). ℓ s ℓ ^≥ By the quasi-triangle inequality, we are reduced to estimate λτ wℓ ∞ (Amf)(Amf)∗ wℓ >λ2 +λτ(1 wℓ)=A1+A2. M− n (cid:16)mX=1 (cid:17) o According to Cuculescu’s theorem, A is dominated by 2 1 λ τ(1 q(2s)) 2ℓ sup f 2 sup f . M− ≤ 2s n 1 k nk1 ≤ n 1 k nk1 Xs≥ℓ (cid:16)Xs≥ℓ (cid:17) ≥ ≥ LetusnowproceedwiththetermA . Wefirstnoticethatw π =π w =0forany 1 ℓ k k ℓ integer k > ℓ. Therefore, we find w ∆ (df ) = w ( π df π ) = w ∆ (df ). ℓ r k ℓ j i ℓ i k j ℓ rℓ k Similarly, we have ∆ (df ) w =∆ (df ) w and letti≤ng≤ r k ∗ ℓ rℓ k ∗ ℓ P ∞ A f = ξ ∆ (df ), mℓ km rℓ k k=1 X we conclude A =λτ w ∞ (A f)(A f) w >λ2 . 1 ℓ mℓ mℓ ∗ ℓ n (cid:16)mX=1 (cid:17) o Moreover,usingthefactthatthespectralprojectionsχ (xx )andχ (x x) (λ, ) ∗ (λ, ) ∗ are Murray-von Neumann equivalent, we may kill the p∞rojection w ab∞ove and ℓ obtain the inequality A λτ (A f)(A f) > λ2 . Now we use Gundy’s 1 ≤ m mℓ mℓ ∗ decomposition for (f,λ) and quasi-triangle inequality to get (cid:8)P (cid:9) A . λτ ∞ (A α)(A α) >λ2 1 mℓ mℓ ∗ nmX=1 o ∞ + λτ (Amℓβ)(Amℓβ)∗ >λ2 nmX=1 o + λτ ∞ (A γ)(A γ) >λ2 = A +A +A . mℓ mℓ ∗ α β γ nmX=1 o We claim that A is identically 0. Indeed, note that γ ∆ (dγ )= π df q (2ℓ)df q (2ℓ) π =0 rℓ k i k k 1 k k 1 j − − − j≤Xi≤ℓ (cid:16) (cid:17) NONCOMMUTATIVE LITTLEWOOD-PALEY INEQUALITIES 9 since π q (2ℓ) = π and q (2ℓ)π = π for i,j ℓ. Therefore, it remains to i k 1 i k 1 j j control th−e terms A and A .−Let us begin with A ≤. Applying Fubini to the sum α β α defining it, we obtain ∞ ∞ ∞ (A α)(A α) = ξ ξ ∆ (dα )∆ (dα ) . mℓ mℓ ∗ jm km rℓ j rℓ k ∗ mX=1 jX,k=1(cid:16)mX=1 (cid:17) It will be more convenient, to write this as follows ∞ (A α)(A α) mℓ mℓ ∗ m=1 X ∞ ∞ ∞ ∞ = ∆rℓ(dαj)e1j ξjmξkm ejk ∆rℓ(dαk)∗ek1 (cid:16)Xj=1 (cid:17)(cid:16)jX,k=1hmX=1 i (cid:17)(cid:16)kX=1 (cid:17) ∞ ∞ ∞ ∞ = ∆ (dα )e ξ e ξ e ∗ ∆ (dα ) e . rℓ j 1j jk jk jk jk rℓ k ∗ k1 (cid:16)Xj=1 (cid:17)(cid:16)jX,k=1 (cid:17)(cid:16)jX,k=1 (cid:17) (cid:16)Xk=1 (cid:17) In particular, Chebychev’s inequality gives A 1 ∞ ∆ (dα )e ∞ ξ e 2 α rℓ j 1j jk jk ≤ λ(cid:13)(cid:16)Xj=1 (cid:17)(cid:16)jX,k=1 (cid:17)(cid:13)L2(M⊗¯B(ℓ2)) (cid:13) (cid:13) 1 (cid:13) ∞ ∞ (cid:13)2 = ∆ dα e ξ e , rℓ j 1j jk jk λ(cid:13) h(cid:16)Xj=1 (cid:17)(cid:16)jX,k=1 (cid:17)i(cid:13)L2(M⊗¯B(ℓ2)) with∆ =∆ id (cid:13)(cid:13)datriangulartruncation,bounded(cid:13)(cid:13)onL ( ¯ (ℓ )). Thus, rℓ rℓ⊗ B(ℓ2) 2 M⊗B 2 we get d A . 1 ∞ dα e ∞ ξ e 2 α j 1j jk jk λ(cid:13)(cid:16)Xj=1 (cid:17)(cid:16)jX,k=1 (cid:17)(cid:13)L2(M⊗¯B(ℓ2)) (cid:13) (cid:13) 1 (cid:13)∞ ∞ (cid:13) ∞ 1 ∞ = ξ ξ τ(dα dα ) = sup ξ 2 τ(dα dα ). λ jm km j ∗k | km| λ k ∗k k 1 jX,k=1(cid:16)mX=1 (cid:17) (cid:16) ≥ mX=1 (cid:17) Xk=1 Therefore, the estimate for A follows from our hypothesis on the ξ ’s and from α km the estimate for the α-term in Gundy’s decomposition. Let us finally estimate the term A . Arguing as above, we clearly have β A ∞ (A β)(A β) 12 β mℓ mℓ ∗ ≤ 1, (cid:13)(cid:16)mX=1 (cid:17) (cid:13) ∞ (cid:13) (cid:13) (cid:13) ∞ ∞ (cid:13) = ∆ dβ e ξ e . rℓ j 1j jk jk (cid:13) h(cid:16)Xj=1 (cid:17)(cid:16)jX,k=1 (cid:17)i(cid:13)L1,∞(M⊗¯B(ℓ2)) Then we use the wea(cid:13)(cid:13)kdtype (1,1) boundedness of triang(cid:13)(cid:13)ular truncations to get A . ∞ ∞ ξ dβ e β jk j 1k (cid:13)Xk=1(cid:16)Xj=1 (cid:17)⊗ (cid:13)L1(M⊗¯B(ℓ2)) (cid:13) (cid:13) (cid:13)sup ∞ ξ 2 21 ∞ d(cid:13)β . sup f . km j 1 n 1 ≤ | | k k k k k 1 n 1 (cid:16) ≥ mX=1 (cid:17) Xj=1 ≥ The last inequality follows from our hypothesis and Gundy’s decomposition. (cid:3) 10 TAOMEIANDJAVIERPARCET 1.2. BMO estimate, interpolation and duality. In this paragraph we prove TheoremA2. ThekeyfortheBMOestimateiscertaincommutationrelationwhich can not be exploited in L for finite p. Namely, we have p ∞ ∞ ∞ ∞ T f e = ξ 1 e df 1 = d ξr(f 1 ) m ⊗ 1m km M⊗ 1m k⊗ B(ℓ2) k ⊗ B(ℓ2) k mX=1 Xk=1(cid:16)mX=1 (cid:17)(cid:0) (cid:1) kX=1 (cid:0) (cid:1) ξr k where the last marting|ale diffe{rzence is }considered with respect to the filtration = ¯ (ℓ ) of . Note that ξr commutes with df 1 and therefore we Rn Mn⊗B 2 R k k⊗ B(ℓ2) find that (cid:13)(cid:13)mX∞=1Tmf ⊗e1m(cid:13)(cid:13)2BMOrR = (cid:13)(cid:13)snu≥p1kX≥nEn(cid:0)(dfk⊗1B(ℓ2))ξkrξkr∗(dfk⊗1B(ℓ2))∗(cid:1)(cid:13)(cid:13)R (cid:13) (cid:13) (cid:13)sup ∞ ξ 2 f 1 2 (cid:13) ≤ k 1 | km| ⊗ B(ℓ2) BMOrR (cid:16) ≥ mX=1 (cid:17)(cid:13) (cid:13) (cid:13) (cid:13) . f 1 2 f 2 f 2 . ⊗ B(ℓ2) BMOrR ≤ k kBMOrM ≤ k k∞ Similarly, k mTmf ⊗e1mkBMO(cid:13)(cid:13)cR .kfkBM(cid:13)(cid:13)OcM ≤kfk∞ so that P ∞ T f e . f sup f . m 1m BMO( ) n ⊗ BMO( ) k k M ≤n 1k k∞ (cid:13)mX=1 (cid:13) R ≥ (cid:13) (cid:13) The estimate f(cid:13)or mTmf ⊗em(cid:13)1 is entirely analogous. This gives the L∞−BMO estimate, or even better the BMO BMO one. Note that we make crucial use of P − the identity f 1 = f ! However, f 1 = f for p k ⊗ B(ℓ2)k∞ k k∞ k ⊗ B(ℓ2)kLp(R) 6 k kLp(M) finite. That is why we can not reduce the L estimate to the commutative case. p With the weak type (1,1) and the BMO estimates in hand, we may follow by interpolation. Namely, since the case p = 2 is trivial, we interpolate for 1 <p < 2 following Randrianantoanina’s argument [30] and for 2 < p < following Junge ∞ and Musat [13, 21]. This gives rise to ∞ T f δ c f m m p p (cid:13)mX=1 ⊗ (cid:13)Lp(M;ℓ2rc) ≤ k k (cid:13) (cid:13) for all 1<p<∞. Assu(cid:13)ming further th(cid:13)at m|ξkm|2 =γk ∼1, we find ∞ P f = sup df ,dg p k k k k kgkp′≤1 Xk=1(cid:10) (cid:11) ∞ 1 ∞ = sup ξ df ,ξ dg km k km k γ kgkp′≤1 Xk=1 k mX=1(cid:10) (cid:11) ∞ ∞ ∞ ξkm = sup ξ df , dg km k k kgkp′≤1 mX=1DXk=1 Xk=1 γk E ∞ ∞ ∞ ξkm T f δ sup dg δ . m m k m ≤ (cid:13)mX=1 ⊗ (cid:13)Lp(M;ℓ2rc)kgkp′≤1 (cid:13)mX=1kX=1 γk ⊗ (cid:13)Lp′(M;ℓ2rc) (cid:13) (cid:13) (cid:13) (cid:13) Therefore, th(cid:13)e reverse inequa(cid:13)lity follows by dua(cid:13)lity whenever ξ (cid:13)2 1. (cid:3) m| km| ∼ P

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.