Protocols-Based Sliding Mode Control This book discusses the Sliding Mode Control (SMC) problems of networked control systems (NCSs) under various communication protocols including static/ dynamic/periodic event-triggered mechanism, and stochastic communication, Round-Robin, weighted try-once-discard, multiple-packet transmission, and the redundant channel transmission protocol. The super-twisting algorithm and the extended-state-observer-based SMC scheme are investigated in this book for suppressing chattering. Besides, the SMC designs for one-dimensional (1-D) and two-dimensional (2-D) NCSs are illustrated as well. Features: • Captures recent advances of theories, techniques, and applications of net- worked sliding mode control from an engineering-oriented perspective. • Includes new design ideas and optimization techniques of networked sliding mode control theory. • Provides advanced tools to apply networked sliding mode control techniques in the practical applications. • Discusses some new tools to the engineering applications while dealing with the model uncertainties and external disturbances. This book aims at Researchers and professionals in Control Systems, Computer Networks, Internet of Things, and Communication Systems. Protocols-Based Sliding Mode Control 1-D and 2-D System Cases Jun Song Zidong Wang Yugang Niu First edition published 2023 by CRC Press 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742 and by CRC Press 4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN CRC Press is an imprint of Taylor & Francis Group, LLC © 2023 Jun Song, Zidong Wang and Yugang Niu Reasonable efforts have been made to publish reliable data and information, but the author and pub- lisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information stor- age or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, access www.copyright. com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact mpkbookspermis- [email protected] Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for identification and explanation without intent to infringe. ISBN: 9781032313870 (hbk) ISBN: 9781032313887 (pbk) ISBN: 9781003309499 (ebk) DOI: 10.1201/9781003309499 Typeset in CMR10 by KnowledgeWorks Global Ltd. Publisher’s note: This book has been prepared from camera-ready copy provided by the authors. To our families and our friends. Contents List of Figures xi List of Tables xv Preface xvii Author’s Biography xix Acknowledgments xxiii Symbols xxv 1 Introduction 1 1.1 Sliding Mode Control . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Network Communication Protocols . . . . . . . . . . . . . . 10 1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 PART I: 1-D System Case 21 2 H Sliding Mode Control Under Stochastic Communication ∞ Protocol 23 2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . 23 2.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2.1 Analysis of reachability . . . . . . . . . . . . . . . . . 27 2.2.2 Analysis of stochastic stability with H performance 29 ∞ 2.2.3 Solving algorithm. . . . . . . . . . . . . . . . . . . . . 32 2.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3 Static Output-Feedback Sliding Mode Control Under Round-Robin 41 3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . 41 3.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2.1 Token-dependent static output-feedback SMC law . . 44 3.2.2 Analysis of the asymptotic stability . . . . . . . . . . 45 3.2.3 Analysis of the reachability . . . . . . . . . . . . . . . 49 3.2.4 Solving algorithm. . . . . . . . . . . . . . . . . . . . . 52 vii viii Contents 3.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4 Observer-Based Sliding Mode Control Under Weighted Try-Once-Discard Protocol 61 4.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . 62 4.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.2.1 Token-dependent state-saturated observer . . . . . . . 65 4.2.2 Token-dependent sliding mode controller . . . . . . . . 65 4.2.3 Analysis of the asymptotic stability . . . . . . . . . . 66 4.2.4 Analysis of the reachability . . . . . . . . . . . . . . . 69 4.2.5 Solving algorithm. . . . . . . . . . . . . . . . . . . . . 71 4.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5 Asynchronous Sliding Mode Control Under Static Event-Triggered Protocol 79 5.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . 80 5.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.2.1 Designing of sliding surface and sliding mode controller 82 5.2.2 Analysis of sliding mode dynamics . . . . . . . . . . . 83 5.2.3 Analysis of reachability . . . . . . . . . . . . . . . . . 86 5.2.4 Synthesis of SMC law . . . . . . . . . . . . . . . . . . 90 5.2.5 Solving algorithm. . . . . . . . . . . . . . . . . . . . . 93 5.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6 Sliding Mode Control Under Dynamic Event-Triggered Protocol 101 6.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . 101 6.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.2.1 A novel sliding surface . . . . . . . . . . . . . . . . . . 103 6.2.2 Dynamic event-triggered SMC law . . . . . . . . . . . 103 6.2.3 The reachability of sliding surface . . . . . . . . . . . 104 6.2.4 The stability of sliding mode dynamics . . . . . . . . 106 6.2.5 Further discussions . . . . . . . . . . . . . . . . . . . . 109 6.2.5.1 Special case: Static event-triggered SMC of slow-sampling SPSs . . . . . . . . . . . . . . 109 6.2.5.2 Convergence of the quasi-sliding motion . . . 112 6.2.6 Solving algorithm. . . . . . . . . . . . . . . . . . . . . 112 6.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Contents ix 7 Reliable Sliding Mode Control Under Redundant Channel Transmission Protocol 117 7.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . 117 7.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 7.2.1 Sliding function and sliding mode controller . . . . . . 120 7.2.2 MSEUB of closed-loop system. . . . . . . . . . . . . . 123 7.2.3 The reachability of sliding surface . . . . . . . . . . . 126 7.2.4 Solving algorithm. . . . . . . . . . . . . . . . . . . . . 130 7.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 8 State-Saturated Sliding Mode Control Under Multiple-Packet Transmission Protocol 139 8.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . 140 8.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . 143 8.2.1 Sliding function and sliding mode controller . . . . . . 143 8.2.2 Analysis of sliding mode dynamics . . . . . . . . . . . 145 8.2.3 Analysis of reachability . . . . . . . . . . . . . . . . . 147 8.2.4 Synthesis of SMC law . . . . . . . . . . . . . . . . . . 151 8.2.5 Solving algorithm. . . . . . . . . . . . . . . . . . . . . 153 8.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 8.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 9 ESO-Based Terminal Sliding Mode Control Under Periodic Event-Triggered Protocol 161 9.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . 162 9.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 9.2.1 The design of ESO . . . . . . . . . . . . . . . . . . . . 163 9.2.2 Design of periodic event-triggered TSMC based on ESO 165 9.2.3 Estimation of actual bound for (cid:107)e(t)(cid:107) . . . . . . . . . 167 9.2.4 Selection criterion for periodic sampling period λ . . . 169 9.2.5 Reachability and stability . . . . . . . . . . . . . . . . 170 9.2.6 Solving algorithm . . . . . . . . . . . . . . . . . . . . 173 9.3 Simulation and Experiment . . . . . . . . . . . . . . . . . . . 177 9.3.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . 177 9.3.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . 183 9.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 PART II: 2-D System Case 191 10 2-D Sliding Mode Control Under Event-Triggered Protocol 193 10.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . 194 10.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 10.2.1 2-D sliding surface . . . . . . . . . . . . . . . . . . . . 195 10.2.2 Design of 2-D event generator . . . . . . . . . . . . . . 195 10.2.3 Stability of sliding mode dynamics . . . . . . . . . . . 198