ebook img

Protoclusters associated with z > 2 radio galaxies. I. Characteristics of high redshift protoclusters PDF

1.9 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Protoclusters associated with z > 2 radio galaxies. I. Characteristics of high redshift protoclusters

Astronomy&Astrophysicsmanuscriptno.3941 February5,2008 (DOI:willbeinsertedbyhandlater) Protoclusters associated with z > 2 radio galaxies ⋆ I. Characteristics of high redshift protoclusters B.P.Venemans1,2,H.J.A.Ro¨ttgering1,G.K.Miley1,W.J.M.vanBreugel3,8,C.DeBreuck4,J.D.Kurk5,L. Pentericci6,S.A.Stanford3,9,R.A.Overzier1,S.Croft3,8,andH.Ford7 7 0 1 SterrewachtLeiden,P.O.Box9513,2300RA,Leiden,TheNetherlands 0 2 InstituteofAstronomy,UniversityofCambridge,MadingleyRoad,Cambridge,CB30HA,UnitedKingdom 2 3 LawrenceLivermoreNationalLaboratory,P.O.Box808,LivermoreCA,94550,USA n 4 EuropeanSouthernObservatory,KarlSchwarzschildStraße2,D-85748Garching,Germany a 5 INAF,OsservatorioAstrofisicodiArcetri,LargoEnricoFermi5,50125,Firenze,Italy J 6 OsservatorioAstronomicodiRoma,ViadiFrascati33,00040MontePorzioCatone,Italy 3 7 Dept.ofPhysics&Astronomy,TheJohnsHopkinsUniversity,3400NorthCharlesStreet,BaltimoreMD,21218-2686,USA 8 UniversityofCalifornia,Merced,P.O.Box2039,Merced,CA95344,USA 2 9 UniversityofCalifornia,Davis,1ShieldsAve,Davis,CA95616,USA v 7 Received29July2005/accepted5October2006 6 5 0 Abstract.WepresenttheresultsofalargeprogramconductedwiththeVeryLargeTelescopeandaugmentedbyobservations 1 withtheKecktelescopetosearchforformingclustersofgalaxiesnearpowerfulradiogalaxiesat2.0<z<5.2.BesidesMRC 6 1138–262 atz = 2.16,theradiogalaxyobservedinourpilotprogram,weobtainednarrow-andbroad-bandimagesofeight 0 radiogalaxiesandtheirsurroundings.TheimagingwasusedtoselectcandidateLyαemittinggalaxiesin∼3×3Mpc2 areas / neartheradiogalaxies.Atotalof300candidateemitterswerefoundwitharest-frameLyαequivalentwidthofEW > 15Å h 0 andsignificanceΣ≡EW /∆EW >3.Follow-upspectroscopywasperformedon152candidatesinsevenoftheradiogalaxy p 0 0 - fields.Ofthese,139wereconfirmedtobeLyαemitters,fourwerelowredshiftinterlopersandninewerenon-detections.With o theadoptedcriteriathesuccessrateis139/152=91%.Inaddition,14objectswithEW <15and/orΣ<3wereconfirmedto 0 r beLyαemitters.Combinedwiththe15LyαemittersnearMRC1138–262,wehavedeterminedLyαredshiftsfor168objects t s neareightradiogalaxies. a AtleastsixofoureightfieldsareoverdenseinLyαemittersbyafactor3–5ascomparedtothefielddensityofLyαemitters : v atsimilarredshifts,althoughthestatisticsinourhighestredshiftfield(z = 5.2)arepoor.Also,theemittersshowsignificant i clusteringinvelocityspace.Intheoverdensefields,thewidthofthevelocitydistributionsoftheemittersisafactor2–5smaller X thanthewidthofthenarrow-bandfilters.Takentogether,weconcludethatwehavediscoveredsixformingclustersofgalaxies ar (protoclusters).Weestimatethatroughly75%ofpowerful(L2.7GHz >1033ergs−1Hz−1sr−1)highredshiftradiogalaxiesreside inaprotocluster.Theprotoclustershavesizesofatleast1.75Mpc,whichisconsistentwiththestructuresizesfoundbyother groups.Byusingthevolumeoccupiedbytheoverdensitiesandassumingabiasparameterofb = 3−6,weestimatethatthe protoclustershavemassesintherange2−9×1014M⊙.Theseprotoclustersarelikelytobeprogenitorsofpresent-day(massive) clustersofgalaxies.Forthefirsttime,wehavebeenabletoestimatethevelocitydispersionofclusterprogenitorsfromz∼5to ∼2.Thevelocitydispersionoftheemittersincreaseswithcosmictime,inagreementwiththedarkmattervelocitydispersion innumericalsimulationsofformingmassiveclusters. Keywords.galaxies:active—galaxies:clusters:general—cosmology:observations—cosmology:earlyUniverse—cos- mology:largescalestructureofUniverse 1. Introduction Send offprint requests to: B. P. Venemans, e-mail: [email protected] Clusters of galaxiesare the largestand most massive gravita- ⋆ Based on observations carried out at the European Southern tionallyboundstructuresintheUniverse.Theyareinteresting Observatory, Paranal, Chile, programs 66.A-0597, LP167.A-0409, objectstostudyformanyreasons. 68.B-0295and70.A-0589.AlsobasedondataobtainedattheW.M. KeckObservatory,whichisoperatedasascientificpartnershipamong theCaliforniaInstituteofTechnology,theUniversityofCaliforniaand wasmadepossiblebythegenerousfinancialsupportoftheW.M.Keck theNationalAeronauticsandSpaceAdministration.TheObservatory Foundation. 2 B.P.Venemansetal.:Protoclustersassociatedwithz>2radiogalaxies First,clusterscontainlargenumbersofgalaxiesatspecific powerful high redshift radio galaxies might be such tracers, redshifts,makingthemexcellentlaboratorieswithwhichtoin- as they are forming massive galaxies in dense environments vestigate the formation and evolution of galaxies. For exam- (e.g., Carillietal., 1997; Deyetal., 1997; Athreyaetal., ple, the analysis of galaxies in z ∼ 1 clusters showed that 1998; Pentericcietal., 1998; Papadopoulosetal., 2000; the stars in massive, early-type galaxies formed at z > 2 Pentericcietal., 2000b; Archibaldetal., 2001; Jarvisetal., (e.g., Ellisetal., 1997; Stanfordetal., 1998; Blakesleeetal., 2001; DeBreucketal., 2002, 2003a,b; Stevensetal., 2003; 2003; vanDokkum&Stanford, 2003; Holdenetal., 2005). Zirmetal., 2003; Reulandetal., 2004, see e.g. Carilli et al. Investigatingthegalaxypopulationof(forming)clustersatz> 2001fora review).Targetedsearchesforcompaniongalaxies 2 could provide knowledge of the formation process of such nearpowerfulradiosourcesatz>1havelongyieldedpromis- massivegalaxies(e.g.,Eggenetal.,1962;Larson,1974).Also ing results (e.g., LeFe`vreetal., 1996; Pascarelleetal., 1996; becauseclustersarethemostextremeoverdenseregionsinthe Keeletal., 1999; Sa´nchez&Gonza´lez-Serrano, 1999, 2002; Universe, they allow an efficient investigation of the interac- Best, 2000; Halletal., 2001; Nakataetal., 2001; Bestetal., tionbetweengalaxiesandtheirenvironment(e.g.,Milesetal., 2003;Woldetal.,2003;Barretal.,2004). 2004; Tanakaetal., 2004; vanZeeetal., 2004; Goto, 2005; We therefore started a large program with the Very Large Nakataetal.,2005;Tranetal.,2005). Telescope(VLT) tosystematically searchforgalaxyoverden- Asecondreasontostudyclustersisthattheycanplacecon- sities near radio galaxies in the redshift range 2 < z < 5.2. straints on cosmology. The number density of massive clus- This program was initiated after a successful pilot project in ters is a strong function of the fundamentalcosmological pa- whichtheenvironmentoftheradiogalaxyMRC1138–262at rametersΩ and σ , and the evolutionof cluster abundances z=2.16wasinvestigated.Deepnarrow-bandimagesofthera- M 8 withredshiftdependsprimarilyonΩ (e.g.,Ekeetal.,1996). dio galaxy and the surrounding field were obtained to search M The number density of rich clusters at z > 0.5 has already foranexcessofLyαemittinggalaxies(Kurketal.,2000).The been successfully used to constrain the values of cosmologi- imagingandfollow-upspectroscopyresultedin∼40candidate calparameters(e.g.,Bahcalletal.,1997;Bahcall&Fan,1998; Lyαemitters(Kurketal.,2000,2004b)ofwhich15werecon- Ettorietal.,2003). firmedatz = 2.16±0.02(Pentericcietal.,2000a;Croftetal., Several studies of massive clusters with redshifts up to 2005).ThepresenceofaformingclusterassociatedwithMRC z=1.4havefoundlittleevolutionintheclusterproperties(e.g., 1138–262 was firmly established by the subsequent discov- Tozzietal., 2003; Hashimotoetal., 2004; Maughanetal., eryofsignificantpopulationsof(spectroscopically-confirmed) 2004;Rosatietal.,2004;Mullisetal.,2005).Despitethelarge Hα emitters (Kurketal., 2004a,b), QSOs (Pentericcietal., lookbacktimes, clusters at z ∼ 1 appear to be verysimilar to 2002;Croftetal.,2005)andextremelyredobjects(Kurketal., localclusters.Forexample,thez = 1.3clusterRDCS1252.9- 2004b). The VLT large program was augmented by observa- 2927 has thermodynamicalpropertiesand metallicity that are tionswith the Kecktelescope, to take advantageof the excel- very similar to those of lower redshift clusters (Rosatietal., lent UV throughputof LRIS-B for spectroscopy and imaging 2004). To study when and how clusters and their galaxies belowtheLymanbreakofsomeofthez∼3objects. formed,asampleofclustersatz≫1isneeded. In this paper, we present the results of our program to Unfortunately, conventional methods for finding distant search for forming clusters (protoclusters) near radio galax- clustersbecomeimpracticalatz>1.SearchesforextendedX- ies up to z = 5.2. Early results of the program, the discov- ray sources are difficult because the surface brightness of the ery ofgalaxyoverdensitiesat z = 4.1and z = 5.2,havebeen X-ray emission fades as (1+z)4. Although large optical sur- presented in Venemansetal. (2002) and in Venemansetal. veyshave been successful in finding galaxyclusters at z . 1 (2004).Adetailedanalysisofthefieldtowardstheradiogalaxy bysearchingforconcentrationsofredgalaxies(e.g.,Gladders, MRC0316–257atz = 3.13isgiveninVenemansetal.(2005, 2002), the detection of z > 1 clusters with the same method hereafterV05).InV05thedatareductionsteps,selectionpro- requiressensitive, wide field near-infraredcameras which are cedureofcandidateLyαemittersandtheassessmentofthedata notyetavailable.Inthefuture,surveysexploitingtheSunyaev- quality are described in detail. Here we will follow the same Zeldovich(SZ)effect(e.g.,Carlstrometal.,2002)willbeable steps as V05 for the data reduction and analysis of the other todetectclustersofgalaxiesatz≫1.However,atthismoment fields.Whileinthispaperwewillfocusontheenvironmentof thesensitivityofSZsurveysisnotsufficienttodetectanyofthe radio galaxies, in the second paper of this series we will de- known clusters at z > 1 (Carlstrometal., 2002; Rosatietal., scribe the properties of the individual Lyα emitting galaxies 2004). In recent years, several distant forming clusters (pro- discoveredinourprogram. toclusters) have been serendipitously discovered in field sur- The structure of this paper is as follows: in Sect. 2.1 we veys (e.g., Steideletal., 1998, 2005; Shimasakuetal., 2003; presentthetargetsofourprogram,andinSect.2.2–2.4wegive Ouchietal., 2005). For example, Steideletal. (1998) found thedetailsoftheimagingobservations,theselectionofcandi- a large scale structure of Lyman Break galaxies (LBGs) at date Lyα emitters and follow-up spectroscopy.In Sect. 3, the z ∼ 3.1 in one of their fields. This single discovery demon- resultsoftheimagingandspectroscopyaredescribedforeach stratedthepowerofsuchstructuresasitcouldbederivedthat individualfield.Asummaryoftheresultsandtheevidencefor LBGsmustbeverybiasedtracersofmass. thepresenceofprotoclustersneartheradiogalaxiesaregiven A different approach to find (forming) clusters is to inSect.4.Thepropertiesoftheprotoclustersarepresentedin search for a galaxy concentration near a presumed tracer Sect.5,followedbyadiscussionofourresultsinSect.6anda of high density regions. There is considerable evidence that summaryinSect.7. B.P.Venemansetal.:Protoclustersassociatedwithz>2radiogalaxies 3 Table1. Detailsoftheradiogalaxiesobservedinourprogram. 2.2.Imagingobservations To search for structures of Lyα emitting galaxiesnear the ra- Name α δ z La diogalaxies,thefieldssurroundingtheradiogalaxieswereob- J2000 J2000 2.7GHz BRL1602–174 160501.7 −173418.4 2.04 2.0×1034 servedin a narrow-bandfilter andat least onebroad-bandfil- MRC2048–272 205103.5 −270304.1 2.06 6.3×1033 ter.Thenarrow-bandfilterswerechosentoencompasstheLyα MRC1138–262 114048.2 −262909.5 2.16 1.3×1034 lineattheredshiftoftheradiogalaxy,andthebroad-bandfil- MRC0052–241 005429.8 −235131.1 2.86 8.6×1033 terswereselectedtomeasuretheUVcontinuumredwardofthe MRC0943–242 094532.7 −242849.7 2.92 7.2×1033 Lyαline. MRC0316–257 031812.0 −253510.8 3.13 1.4×1034 All the narrow-bandimaging and most of the broad-band TNJ2009–3040 200948.1 −304007.4 3.16 2.8×1033 imaging obtained in the large program were performed with TNJ1338–1942 133826.1 −194230.8 4.11 9.6×1033 the FOcal Reducer/ low dispersion Spectrograph 2 (FORS2; TNJ0924–2201 092419.9 −220142.0 5.20 1.5×1034 Appenzeller&Rupprecht, 1992) in imaging mode. Before a Radio luminosity at a rest-frame frequency of 2.7 GHz in 2002 April, the detector in FORS2 was a SiTE CCD with ergs−1Hz−1sr−1 2048×2048 pixel2 and a pixel scale of 0′.′2pixel−1. In 2002 April, the SiTE CCD was replaced by two MIT CCDs each with2048×2048pixel2withascaleof0′.′125pixel−1.Thepix- elswerebinnedby2×2,whichdecreasesthereadouttimebya factorof2andgivesapixelsscaleof0′.′25pixel−1.Thefieldof view, which is restricted by the geometryof the Multi-Object In this article, we adopt a Λ-dominated cosmology with Spectroscopyunit,is6.′8×6.′8. H = 70kms−1Mpc−1,Ω = 0.3,andΩ = 0.7.Magnitudes 0 M Λ Additional (broad-band) imaging was obtained using the aregivenintheABsystem(Oke,1974). Low Resolution Imaging Spectrometer (LRIS, Okeetal., 1995) on the Keck I telescope. LRIS has two arms: a blue channel which is optimised for observations in the blue part of the optical spectrum (LRIS-B, see McCarthyetal., 1998; 2. Observations Steideletal., 2004, for more information)and a red channel for observing in the red (LRIS-R, Oke et al. 1995). The red 2.1.Sampleselection armisequippedwithaTektronixCCDwith2048×2048pixel2. The pixel scale is 0′.′21pixel−1, resulting in a field of view of Thetargetsforourprogramwereselectedfromalistofapprox- 7.′3×7.′3.Thebluechannelhastwo2048×4096MarconiCCDs imately150radiogalaxieswithknownredshiftsofz > 2.Our with a pixel scale of 0′.′135pixel−1. There is a small gap be- targetswerechosentohavelargeradioluminosities(L > 1033 ergs−1Hz−1sr−1). Because our goal was to sea2.r7cGhHzfor tweentheCCDsofroughly13′.′5.Thefieldofviewis∼8′×8′1. Observationsweresplitintoseparateexposuresoftypically companion Lyα emitting galaxies near the radio sources, the 1200–1800s in the narrow-bandand 240–800s in the broad- radiogalaxieshadtohaveredshiftsoptimumforimagingwith band.Individualexposureswereshifted10′′–15′′ withrespect thenarrow-bandfiltersthatwereavailableattheVLT.Also,the radiosourcesneedto lie in thesouthernhemisphere(δ . 0◦) toeachothertofacilitatetheidentificationofcosmicraysand theremovalofresidualflat-fielderrors.Thedatawerereduced to allow deep imaging of the source with the VLT. Applying these criteria to the list of∼ 150z > 2 radiosourcesreduced usingstandardroutineswithinthereductionsoftwarepackage IRAF2. These routines included bias subtraction using either thenumberofpossibletargetsforourprogramto16ofwhich nineareatz ∼2.1(thisincludesthetargetofourpilotproject, bias frames or the overscan region of the CCD, flat fielding MRC1138–262atz = 2.16),threeareatz ∼ 2.9andfourare withtwilightskyflatsandilluminationcorrectionusingtheun- atz ∼ 3.1.Giventherelativelysmallnumberofradiosources registeredscienceframes. AllscienceimageswereregisteredontheICRFastromet- atz> 2.9thatcouldbeobservedwiththeVLT,wedidnotap- ricframeofreference(Ma&Feissel,1998),usingtheUSNO- ply other criteria. To extend the redshift range, we purchased A2.0 catalogue (Monetetal., 1998; Monet, 1998). The rela- narrow-bandfiltersthatwerecentredonthewavelengthofthe tive positionsof objectsin the fields are accurate to 0′.′1–0′.′2. Lyα line at a redshift of z = 4.1 and z = 5.2. The following The absolute accuracy is dominated by the uncertainty in the nineradiosourceswerechosenastargetsforourprogram:BRL USNO-A2.0catalogueof0′.′25(Deutsch,1999). 1602–174(hereafter1602),MRC2048–272(2048)andMRC The photometric calibration was performed using several 1138–262(1138,allthreeatz = 2.1),MRC0052–241(0052) photometric and spectrophotometric standard stars from the andMRC 0943–242(0943,bothat z = 2.9),MRC 0316–257 catalogues of Stone & Baldwin (1983), Baldwin & Stone (0316)andTNJ2009–3040(2009,bothatz=3.1),TNJ1338– 1942 (1338, z = 4.1) and TN J0924–2201 (0924, z = 5.2). 1 Thespecificationsforthebluechanneldetectorsgivenhereapply Because these targetswere selected only on the basis of their fordatatakenafter2002June. radio luminosity and position on the sky, we regardour sam- 2 IRAF is distributed by the National Optical Astronomy ple as representativeof luminousradio sources. The position, Observatories,whichareoperatedbytheAssociationofUniversities redshift and radio power of the targets are given in Table 1. for Research in Astronomy, Inc., under cooperative agreement with IndividualradiogalaxiesarebrieflydescribedinSect.3. theNationalScienceFoundation. 4 B.P.Venemansetal.:Protoclustersassociatedwithz>2radiogalaxies Table2. Overviewoftheimagingobservationsoftheradiogalaxyfields. Date Telescope Instrument Field Filter λa(Å) ∆λb(Å) Seeing tc Depthd c exp 2001Mar24&25 VLTUT2 FORS2 1338-1e FILT 621 5 6199 59 0′.′6 33300 28.2 2001Mar24&25 VLTUT2 FORS2 1338-1e SpecialR 6550 1650 0′.′6 6300 28.9 2001Mar24–26 VLTUT2 FORS2 0943 HeII/6500 4781 68 0′.′7 22500 28.6 2001Mar25&26 VLTUT2 FORS2 0943 BesselB 4290 880 0′.′9 4500 28.7 2001Mar25&26 VLTUT2 FORS2 1602 OII 3717 73 0′.′8 15000 26.6 2001Mar26 VLTUT2 FORS2 1602 BesselB 4290 880 0′.′65 2700 27.6 2001May21–23 VLTUT2 FORS2 2048 OII 3717 73 0′.′95 25200 –f 2001May22&23 VLTUT2 FORS2 2048 BesselB 4290 880 1′.′05 3600 –f 2001Sep20–22 VLTUT4 FORS2 2048 OII 3717 73 0′.′95 25200 27.9 2001Sep20&21 VLTUT4 FORS2 2048 BesselB 4290 880 1′.′05 3000 28.8 2001Sep20&21 VLTUT4 FORS2 0316 OIII/3000 5045 59 0′.′7 23400 28.4 2001Sep20&21 VLTUT4 FORS2 0316 BesselV 5540 1115 0′.′7 4860 28.9 2001Sep22 VLTUT4 FORS2 0052 HeII 4684 66 0′.′75 5400 –f 2001Oct20 VLTUT4 FORS2 0052 HeII 4684 66 0′.′75 18000 28.3 2001Oct20 VLTUT4 FORS2 0052 BesselB 4290 880 0′.′8 4800 29.0 2002Mar8 VLTUT4 FORS2 0924 FILT 753 8 7528 89 0′.′8 14400 –f 2002Mar8 VLTUT4 FORS2 0924 BesselI 7680 1380 0′.′8 2700 –f 2002Apr17–19 VLTUT4 FORS2 0924 FILT 753 8 7528 89 0′.′8 28800 28.1 2002Apr17–19 VLTUT4 FORS2 0924 BesselI 7680 1380 0′.′8 8640 28.5 2002Apr17–19 VLTUT4 FORS2 1338-2e FILT 621 5 6199 59 0′.′75 25200 28.2 2002Apr17–19 VLTUT4 FORS2 1338-2e SpecialR 6550 1650 0′.′75 4500 28.9 2002Apr17–19 VLTUT4 FORS2 2009 OIII/3000 5045 59 0′.′9 21600 –f 2002Apr17–19 VLTUT4 FORS2 2009 BesselV 5540 1115 0′.′85 4800 –f 2002Apr19 VLTUT4 FORS2 0924 BesselV 5540 1115 1′.′05 3600 28.6 2002Sep6–8 VLTUT4 FORS2 0316 BesselI 7680 1380 0′.′7 4680 28.7 2002Sep8 VLTUT4 FORS2 2009 OIII/3000 5045 59 0′.′9 7200 28.0 2002Sep8 VLTUT4 FORS2 2009 BesselV 5540 1115 0′.′85 2400 28.6 2002Sep8 VLTUT4 FORS2 0052 BesselV 5540 1115 0′.′75 5400 29.2 2002Sep8 VLTUT4 FORS2 0052 BesselI 7680 1380 0′.′55 4800 28.5 2003Jan31 KeckI LRIS-B 0316 u′ 3550 600 1′.′25 4050 –f 2003Feb1&4 KeckI LRIS-B 0316 u′ 3550 600 1′.′25 9000 29.8 2003Feb4 KeckI LRIS-B 0943 u′ 3550 600 1′.′2 9600 –f 2003Feb4 KeckI LRIS-R 0943 V 5473 948 1′.′25 5600 29.4 2004Jan19 KeckI LRIS-B 0943 u′ 3550 600 1′.′2 7000 29.8 2004Jan19 KeckI LRIS-R 0943 I 8331 3131 0′.′90 6000 28.4 aCentralwavelengthofthefilterinÅ. bFullwidthathalfmaximum(FWHM)ofthefilterinÅ. cTotalexposuretimeinseconds. d1σdepthoftheresultingimageinmagper(cid:3)′′. eThefieldtowardsTNJ1338–1942wasobservedattwodifferentpointings,seeSect.3.8. f Forimagesobtainedduringtwodifferentobservingsessions,onlythetotaldepthislistedinthefinalentry. (1984),Oke (1990)andLandolt(1992).The magnitudezero- 2.3.Candidateselection points derived from these standard stars are consistent with Objects in the images were detected using the program each other within 2–3%. Zero-points in the Vega system are SExtractor(Bertin&Arnouts,1996).Thenarrow-bandimages converted to the AB system using the transformations of weretakentodetectobjects,andaperturephotometrywassub- Bessell (1979) and Smithetal. (2002). The zero-points were sequently performed on both the narrow-bandand the broad- correctedforgalacticextinctionasestimatedbySchlegeletal. bandimages. (1998). To assess the completeness of the source detection, artifi- cialandrealpointsourceswereaddedtothenarrow-bandim- ageandrecovered.Thecompletenesslimitwasdefinedasthe Table2summarizestheimagingobservationsofourLarge narrow-bandmagnitudeatwhich50%oftheaddedsourceswas Program targets and gives the properties of the narrow- and recovered(seeV05fordetails). broad-bandfiltersthatwereused.Also,theimagequality(see- Detectedobjectswererequiredtohaveasignal-to-noiseof ing)anddepth(in1σlimitingmagnitudespersquarearcsec- > 5 in thenarrow-bandimage.Thecolorsofthedetectedob- ond)aregiveninTable2. jectsweremeasuredincircularapertures,whilethe“total”flux B.P.Venemansetal.:Protoclustersassociatedwithz>2radiogalaxies 5 Table 3. Depth, sensitivity and size of the imaging observa- 2.4.Spectroscopicobservations tionsoftheradiogalaxiesfields,andthenumberofcandidates Toconfirmwhetherthecandidateemissionlineobjectsarelo- selectedineachfield. cated at the redshift of the radio galaxy, spectra were taken Field ma Fb Lc Nd Areae ofcandidateemitters.Prioritywasgiventothemostluminous lim 5σ 5σ ergs−1cm−2 ergs−1 arcmin2 candidates.InTable4asummaryisgivenofthespectroscopic 1602 24.4 9.7×10−17 3.4×1042 2 42.3 observationsofcandidateemittersintheradiogalaxyfields. 2048 25.4 3.3×10−17 1.2×1042 10 43.6 Mostofthespectroscopicobservationswereperformedus- 1138 25.2f 3.5×10−17f 1.4×1042f 37f 46.6f inguser-definedmasks(themulti-objectspectroscopy(MXU) 0052 26.1 1.1×10−17 8.4×1041 57 44.9 mode of FORS2 and multi-slit spectroscopy(MSS) modesof 0943 26.1 7.4×10−18 6.2×1041 65 46.5 LRIS in Table 4). This mode allowed us to observe between 0316 26.3 6.9×10−18 6.9×1041 77 45.8 20and40objectsperslitmask.Theslitstypicallyhadalength 2009 25.7 1.3×10−17 1.3×1042 21 46.7 of10′′–12′′andawidthof1′.′0–1′.′4.Thegrismsusedwerese- 1338-1 26.0 4.7×10−18 8.9×1041 31g 40.1 lectedtohavethehighestthroughputatthewavelengthofthe 1338-2 26.2 5.8×10−18 1.1×1042 33g 48.9 0924 25.5 7.0×10−18 2.3×1042 14 46.8 Lyαlineoftheradiogalaxyanda resolutionthatmatchesthe width of the Lyα lines (∼ 300 kms−1, V05) to maximize the a Magnitude at which 50% of artificial and real point sources that confirmationrate. wereaddedtothenarrow-bandimage,wererecovered. Individual exposures were typically 1800–2700 s, which bLinefluxofanemitterwithnocontinuumthatisdetectedatthe5σ ensuredthatthespectrawerelimitedbytheskynoise.Between levelinanaperturewithadiametertwicethatoftheseeingdisc. theexposuresthepointingofthetelescopewasshifted2′′–5′′ c Lineluminosityofanemitterwithnocontinuumthatisdetectedat alongtheslitstoenablemoreaccurateskysubtraction.Forthe the 5σ level in an aperture with a diameter twice that of the seeing fluxcalibrationlongslitexposuresof(atleast) oneofthefol- disc. lowing spectroscopic standard stars EG 274, Feige 67, Feige d NumberofcandidateLyαemittersthatfulfilstheselectioncriteria 110,GD 108,LTT 377,LTT 1020,LTT 1788,LTT 6248and EW >15ÅandEW /∆EW >3. 0 0 0 eImagingareausefulforselectionofLyαemitters. LTT 7987 (Stone&Baldwin, 1983; Baldwin&Stone, 1984; f ValuestakenfromKurketal.(2004b). Oke,1990)wereused.Thefluxcalibrationisaccuratetoabout g The 1338-1 and 1338-2 fields overlap and have an area of 9.3 ∼ 5%. This does not take into account the uncertainties due arcmin2incommon.Thetotalnumberofuniquecandidateemittersin toslitlosses.Becausewecalculatedthetotalfluxoftheemis- thetwofieldsis54inanareaof79.7arcmin2. sionlinesusingtheimagingphotometry,wedidnotattemptto correctthespectraforfluxfallingoutsidetheslit. The details of the reduction of the spectroscopic data is givenin V05.In the nextsection,we will describethe results wasmeasuredinanellipticalaperture.Acorrectionwasmade intheindividualfields. to the “total” fluxto accountforthe flux outsidethe elliptical aperture. More details on the object detection, completeness 3. Results assessment, aperturesizes forthe photometryand “total”flux correctioncanbefoundinV05. Inthissectionwedescribetheresultsoftheimaging,candidate FollowingVenemansetal.(2002)andV05,weselectedob- selections and follow-up spectroscopy of the Lyα emitters in jects with a rest-frame equivalent width EW > 15 Å and a eachofthenineradiogalaxyfields,followedbyadescription 0 significanceΣ≡EW /∆EW > 3asgoodcandidateLyαemit- ofthediffuseLyαhalosoftheradiogalaxies.Forthedetailsof 0 0 ters. In V05 a detailed description is presented on how EW theresultsinthe1138,0316and0924fieldswerefertoKurk 0 and ∆EW are computed from the available photometry. For et al. (2000),Pentericciet al. (2000),Venemansetal. (2004), 0 two fields that are imaged in at least two broad-band filters, Kurketal.(2004b),V05andCroftetal.(2005).Belowabrief the0316and0052fields,theUVcontinuumslopeβ(f ∝ λβ) summaryoftheresultsinthesefieldsisgiven. λ ofcandidateemitterswas also computed.For theotherfields, RedshiftandLyαline propertiesweremeasuredbyfitting a“flat”continuumslopeβ = −2wasusedtoselectthecandi- aGaussianfunctiontotheemissionline.Ifabsorptionfeatures dates,whichisclosetothemedianβofconfirmedLyαemitters werepresent,acombinationofaGaussianandaVoigtabsorp- in the 0316 field (β = −1.76, V05). In each field the candi- tion profile was fitted. The properties of the confirmed Lyα date emission line galaxies were visually inspected and spu- emitters in the various fields are summarized in Tables A.1– rious sources (like spikes of bright, saturated stars) were re- A.5. In the Tables, the objectsare orderedon increasingright moved from the catalogues. The resulting lists should have a ascension. very low fraction of contaminants, such as low redshift inter- lopers(∼5%asesimatedbyV05). 3.1.BRL1602–174,z = 2.04 In Table 3 the 50% completeness limit, number of candi- dateemittersandareaofeachobservedfieldislisted.Wealso TheradiosourceBRL1602–174wasopticallyidentifiedwith calculated the 5σ limiting line flux and line luminosity of an a galaxywith m = 21.4objectalongthe radio axis. A spec- R emitterwithanegligiblecontinuum.Thenumberofcandidates trum of this galaxy yielded a redshift of 2.043±0.002 based inthe1138fieldistakenfromKurketal.(2004b). onfouremissionlines(Bestetal., 1999).ThisplacestheLyα 6 B.P.Venemansetal.:Protoclustersassociatedwithz>2radiogalaxies Table4. Overviewofthespectroscopicobservationsoftheradiogalaxyfields. Date Telescope Instrument Field Modea Grismname Dispersionb Resolutionc td exp 2001May20&22 VLTUT2 FORS2 1338-1 MXU,maskA GRIS 600RI 1.32 260×1′.′0 31500 2001May21&22 VLTUT2 FORS2 1338-1 MXU,maskB GRIS 600RI 1.32 265×1′.′0 35100 2001Sep22 VLTUT4 FORS2 0316 MOS GRIS 1400V 0.50 130×1′.′5 12600 2001Oct18&19 VLTUT4 FORS2 2048 MXU GRIS 600B 2.40 410×1′.′0 16200 2001Oct18 VLTUT4 FORS2 0316 MXU,maskA GRIS 1400V 1.00 140×1′.′0 10800 2001Oct18–20 VLTUT4 FORS2 0316 MXU,maskB GRIS 1400V 1.00 140×1′.′0 29100 2001Nov15&16 VLTUT3 FORS1 0316 PMOS GRIS 300V 2.64 630×0′.′8 19800 2002Jan14 KeckI LRIS 0943 MSS,maskA 600/4000 1.01 310×0′.′85 10800 2002Jan15 KeckI LRIS 0943 MSS,maskB 600/4000 1.01 325×0′.′9 9000 2002Sep6&7 VLTUT4 FORS2 2009 MXU GRIS 1400V 0.62 110×0′.′75 19800 2002Sep6 VLTUT4 FORS2 0052 MXU,maskA GRIS 1400V 0.62 100×0′.′65 8400 2002Sep6&7 VLTUT4 FORS2 0052 MXU,maskB GRIS 1400V 0.62 100×0′.′65 17550 2002Sep7 VLTUT4 FORS2 0052 MXU,maskC GRIS 1400V 0.62 95×0′.′6 10800 2002Sep8 VLTUT4 FORS2 0052 MOS GRIS 1400V 0.62 95×0′.′6 9600 2003Jan31 KeckI LRIS 0943 MSS,maskC 600/4000 0.61 205×0′.′7 7200 2003Feb1 KeckI LRIS 0943 MSS,maskD 600/4000 0.61 215×0′.′75 7200 2003Feb1&4 KeckI LRIS 1338-2 MSS 400/8500 1.85 320×0′.′75 9000 2003Mar3&4 VLTUT4 FORS2 0924 MXU GRIS 600RI 1.66 225×0′.′85 20676 2003Mar4 VLTUT4 FORS2 1338-2 MXU GRIS 1200R 0.76 125×0′.′85 18600 aExplanationofthedifferentobservingmodes: MOS:Multi-objectspectroscopymodeofFORS2,performedwith19movableslitletswithlengthsof20′′–22′′. MXU:Multi-objectspectroscopymodeofFORS2withauser-preparedmask. PMOS:SpectropolarimetrymodeofFORS1using9movableslitletsof20′′. MSS:Multi-slitspectroscopymodeofLRIS,whichusesacustomlaser-cutmask. bDispersioninÅpixel−1. cTheresolutionisgivenforboththedispersionandspatialaxis.Theunitsare[kms−1]×[′′]. dTotalexposuretimeinseconds. lineoftheradiogalaxyinthelowestwavelengthnarrow-band imaged again in 2001 September. The combined 14 hours of filteravailableforFORS2,theOfilter.Thefieldwasimaged narrow-bandobservationsofthisfieldhaveadepthcomparable for250minutesin thenarrow-bandandfor45minutesin the to that of the field surrounding MRC 1138–262 (Kurketal., B-band.Duetothehighextinctiontowardsthisfield(A ≈ 1, 2000, Table3).Intotal10candidateLyαemitterswerefound B Schlegeletal.,1998)andthelowquantumefficiencyatwave- inthisfield.Thenumberofcontaminantsisexpectedtobelow lengths< 4000Å of the FORS2 detector,only two candidate inthisfield,becausetheonlystronglinethatfallsinthefilter Lyαemitterswerefound.Nospectraweretakeninthisfield. is[O]λ3727ataredshiftofz<0.007. Spectroscopicobservations 3.2.MRC2048–272,z = 2.06 MRC 2048–272 was listed in the 408 MHz Molonglo Due to geometrical constraints only three of the candidate Reference Catalogue (Largeetal., 1981) and identified with emitterscouldbeobservedatthesametime.Additionaltargets a z = 2.06 object by McCarthyetal. (1996). High resolution were included on the slitmask, including objects with a low imaging in the infrared with the HST revealed three separate equivalentwidthEW <15Å.Twoofthethreecandidatesand 0 components within 3′′ (Pentericcietal., 2001), of which the theradiogalaxyshowalineina4hrspectrum(seeTableA.1 central object was identified as the radio galaxy. The surface andFig.1).Thethirdemitterhasmostlikelyanemissionline brightness of the central object could be well fit by a de thatistoofaint(<3×10−17ergs−1cm−2)tobeconfirmedina4 Vaucouleursprofile,indicatingthatadynamicallyrelaxedstel- hrspectroscopicobservationwithFORS2atbluewavelengths larpopulationisinplaceinthisradiogalaxy(Pentericcietal., (λ ∼ 3750 Å). The two confirmed emitters have a redshift 2001). very close to that of the radio galaxy with relative velocities of 100 and 10 kms−1. A third Lyα emitter was found among Imagingobservations the candidate emitters with a lower equivalent width. This We observed the field in 2001 May under moderate seeing galaxy is a bright Lyα emitter located ∼ 4600 kms−1 away conditions(∼1′′)for7hoursintheOnarrow-bandfilterand fromtheradiogalaxy,withtheemissionlineattheedgeofthe for 1 hour in the B-band. Because of the low efficiency of narrow-bandfilter(Fig.1). the detector at λ < 4000 Å and the high extinction towards the field of A ≈ 0.4 (Schlegeletal., 1998), the field was Volumedensity B B.P.Venemansetal.:Protoclustersassociatedwithz>2radiogalaxies 7 Fig.1. Spectra of the radio galaxy MRC 2048–272(left) and the three confirmed Lyα emitters near the radio galaxy (right). Inserted in the left plot is a close-up of the Lyα line of the radio galaxy. The dotted curve represents the transmission of the narrow-bandfilterthatwasusedtoselectthecandidateLyαemitters.Theuncertaintyinthefluxdensityisindicatedbytheerror barintherightcornerofeachspectrum. Kurketal. (2004b) found that the 1138 field is overdense in Lyαemittersbyafactorof4±2comparedtothefield(volume) density of Lyα emitters as derived by Stiavellietal. (2001). Comparing the volume density of Lyα emitters near MRC 2048–272tothatofemittersnearMRC1138–262(Kurketal., 2004b),thedensityinthe2048fieldisafactor3.4+1.8smaller. −1.2 TheerrorsarebasedonPoissonstatisticsinthesmallnumbers regime(Gehrels,1986).Usingthisfactor,thevolumedensityof emittersnear2048is1.2+0.8timesthefielddensityofemitters. −0.7 AdirectcomparisonwithStiavellietal.(2001)givesasimilar density (n /n = 0.7+1.8). The small difference between 2048 field −0.6 the two density estimates (at the 0.3σ level) is due the small numbers of galaxies involved in the comparison. The density in the 2048field is consistentwith no overdensityof emitters neartheradiogalaxy. Fig.2. Spectra of low redshift emission line galaxies which could contaminate our sample. These spectra were observed 3.3.MRC1138–262,z = 2.16 through the 1400V grism that was used for the spectroscopy observationsofthe0052,0316and2009fields.Duetotheres- This radio galaxy was the targetof our pilot project(see also olutionofR = 2100,interlopinggalaxiesatlow redshiftscan Sect. 1). Narrow- and broad-band imaging with FORS1 on easilybedistinguishedfromLyαemittersatz∼3. the VLT resulted in the detection of 37 candidate Lyα emit- ters(Kurketal., 2000, 2004b). Subsequentspectroscopycon- firmed15Lyαemitterstobeneartheradiogalaxyatz = 2.16 atedwiththeradiogalaxy(Kurketal.,2004a,b),increasingthe (Pentericcietal., 2000a). The density of Lyα emitters in this numberofconfirmedprotoclustermembersto>25. field is roughly a factor 4 higher as compared to field stud- ies (Pentericcietal., 2000a; Kurketal., 2004b). This field is 3.4.MRC0052–241,z= 2.86 also overdense in X-ray sources (Pentericcietal., 2002) and extremelyredobjects(EROs,Kurketal.,2004b).Intotal,four The optical counterpart of the radio source 0052–241 from oftheX-raysourcesareconfirmedtobemembersoftheproto- the Molonglo Reference Catalogue (Largeetal., 1981) was cluster (Pentericcietal., 2002; Croftetal., 2005). Also, nine found by McCarthyetal. (1996) to be a m = 23.2 object. R Hα emitters were spectroscopically confirmed to be associ- A spectrum of this object showed strong Lyα emission at a 8 B.P.Venemansetal.:Protoclustersassociatedwithz>2radiogalaxies Fig.3. SpectraoftheconfirmedemittersneartheradiogalaxyMRC0052–241.Thespectrumoftheradiogalaxyisshowninthe top-rightpaneloftheFigure.Theerrorbarintherightcornerofeachspectrumindicatestheaverageerrorinthefluxdensityof eachpixel.AllspectraareboxcaraveragedoverthreepixelsandnormalizedtothepeakoftheLyαlineatarelativefluxdensity of0.7.Theoffsetbetweenthespectrais1.0.Thearrowindicatesthecenteroftheemissionlineofeachemitter.Theredshift,flux andwidthoftheemissionlinescanbefoundinTableA.2. B.P.Venemansetal.:Protoclustersassociatedwithz>2radiogalaxies 9 Fig.4. Left: Velocity distribution of the confirmed emitters near MRC 0052–241. The median redshift (z = 2.8600) of the emittersistakenaszero-point.Thebinsizeis150kms−1.Therelativevelocityoftheradiogalaxy(70kms−1,seeTableA.2)is indicatedbyanarrow.Thesolidlinerepresentstheselectionfunctionofthenarrow-bandfilter,normalizedtothetotalnumber ofconfirmedemitters. Right:Spatialdistributionofthe confirmed(circlesanddiamonds)andremainingcandidate(stars)Lyα emitters.Thedashedquadranglerepresentstheoutlineoftheimagingarea.Theradiogalaxyisdenotedbyafilledellipse,that depictstheapproximateshapeandpositionangleoftheradiogalaxyLyαhalo(seeTable5).Thecirclesrepresenttheemitters witharedshiftsmallerthanthemedianredshift(z < 2.8600)andthediamondsthosewithz > 2.8600.Thesizeofthesymbols are scaled accordingto the velocity offset fromthe median, with smaller symbolsstanding for emitters with a redshiftfarther fromthemedian. redshiftofz=2.86(McCarthyetal.,1996). candidates, four objects from a list with 20 candidate line emitterswith8Å<EW < 15Åwereobserved.Twoofthem 0 Imagingandspectroscopicobservations were confirmedto be Lyα emitters atz ∼ 2.86.One of these, Atz=2.86theLyαlineisshiftedintotheFORS2narrow-band emitter 0052.LAE36,has a Lyα line that falls at the red edge He filter. The field was imaged for 390 min in this narrow- ofthefilter.Usingthemeasuredredshift(z = 2.876insteadof band and for 80, 90 and 80 min in the B-band, V-band and z = 2.86)thecalculatedequivalentwidthisEW0 ∼ 24Å.The I-band respectively (Table 2). Analysis of these data resulted spectraofthe37confirmedLyαemittersandthatoftheradio in a list of 57 candidate Lyα emitters with EW > 15 Å and galaxyareshowninFig.3. 0 EW /∆EW >3(Sect.2.3). 0 0 Volumedensity Follow-up spectroscopy of candidate emitters was carried out in 2002 September at the VLT. 36 candidates were ob- The density of Lyα emitters can be compared directly to the served in four masks with individualexposuretimes between field density of emitters. Fynboetal. (2003) used the same 140 and 292.5 min under good seeing conditions (0′.′6–0′.′65, narrow-band filter at the VLT to observe a field which con- see Table 4). The resolution of the grism that we used (the tainsadampedLyαabsorber.Thedepththeyreachintheirim- 1400Vgrism)isR=2100,whichishighenoughtoresolvethe agesisapproximately0.7magdeepercomparedtoournarrow- [O] λλ3726,3729and C λλ1548,1551doublets (see Fig. bandimage,makingtheirobservationssuitableforcomparison. 2 for a few examples). Objects with these emission lines in Fynboetal. (2003) find 14 emitters(of which 13are spectro- theirspectrumarethemaincontaminantsinsearchesforz∼3 scopicallyconfirmed)withaLyαflux>8×10−18ergs−1cm−2 Lyαemitters(e.g.,Fynboetal., 2003).Thehighresolutionof and a rest-frame equivalent width > 15 Å. To the same limit the 1400V grism allows us to discriminate high redshift Lyα andinthesamefieldofview,wefind48(candidate)emitters. emittersfromlowredshiftinterlopers. Thisimpliesthattheoverdensityinthe0052fieldis3.4+1.5. −1.0 Duetocosmicvariance,theuncertaintyinthenumberden- Results sity of Lyα emitters in a small field of view like that of the Of the 36 objects observed 35 were confirmed to be Lyα VLT images is generally higher than the uncertainty derived emitters at a redshift z ∼ 2.86. The 36th candidate was most assuming Poisson statistics (e.g., Somervilleetal., 2004). To likelytoofainttobedetected.Thiscandidatehadthesmallest overcome this, a comparison can be made with the density linefluxoftheobjectsinthemask.Inadditiontothe36good of Lyα emitters at z ∼ 3.1 in a 0.13 deg2 field as found by 10 B.P.Venemansetal.:Protoclustersassociatedwithz>2radiogalaxies Fig.5. LimitsontheobservedfluxratiosforthesingleemissionlinesourcesnearMRC0943–242(squares).Alllimitsare2σ upperlimits.Lineratiosoflowredshift[O]emittersfromTerlevichetal.(1991)areplottedaspluses.Themeasuredlimitson thelineratiosareconsistentwiththeidentificationoftheemissionlineswithLyα(seetext). Ciardulloetal. (2002). This comparison gives a volume den- Instead,themajorityoftheemitters(31outofthe37)appearto sityofLyαemittersinthe0052fieldof2.5+1.8 timesthefield beclusteredintwogroupswithvelocitydispersionsof180and −1.1 density. The large (Poisson) errors are due to the small num- 230 kms−1. Interestingly, a similar redshift distribution was berstatistics.Morerecently,Hayashinoetal.(2004)measured foundneartheradiogalaxyMRC1138–262(Pentericcietal., the blankfield space densityof Lyαemittersat z ∼ 3.1 using 2000a).Thevelocityoftheradiogalaxylies∼70kms−1 from theSuprime-CamontheSubarutelescope.Ina0.17deg2field, themedianredshiftoftheemittersandfallsinsidethelargerof they find 55 candidateLyαemitters with an observedequiva- the two groups.The combinationof the observedoverdensity lentwidth>154Ådowntoanarrow-bandmagnitudeof25.3. ofLyαemitterswiththeclumpyredshiftdistributionprovides Applyingthesameequivalentwidthandmagnitudecriteriato evidencethattheLyαemittersnearMRC0052–241arepartof our field and taking into account the difference in luminosity aformingclusterofgalaxiesatz=2.86.Thepropertiesofthis distancegives11sources.Theresultingdensityofemittersnear structurewillbediscussedinSect.5. MRC0052–241isafactor3.1+1.4higherthanthefielddensity. Incontrastto the velocitydistribution,the emittersdo not −1.0 Theweightedaverageofthethreeestimatesoftheoverdensity haveapreferredlocationonthesky.Thestructureofemitters is3.0+0.9. appears not to be bounded by the image, indicating that the −0.6 It is interesting to compare the density of Lyα emitters overdensityseenin thisfield extendsbeyondtheedgesofour in the 0052 field with the density of emitters near the radio fieldofview. galaxy MRC 0316–257 at z = 3.13 (V05). The depth and sensitivityoftheimagingofthetwofieldsareverysimilar(see 3.5.MRC0943–242,z= 2.92 Tables 2 and 3). There are 52 candidate emitters in the 0052 fieldwithanarrow-bandmagnitudebrighterthan26.1,against This powerful radio source with a flux density of 1.1 Jy at 59in the 0316field. Takinginto accountthe differencein the 408MHz hasa redshiftof z = 2.923(Ro¨ttgeringetal., 1995; volume probed by the narrow-band images, the ratio of the Ro¨ttgeringetal., 1997). The radio galaxy is surrounded by numberdensityisn0052/n0316 =0.8+−00..22.Becausethe0316field a metal-enriched, low surface brightness gas halo extending is overdense in Lyα emitters by a factor 3.3+0.5 (V05), this for at least 8′′ (67 kpc, Villar-Mart´ınetal., 2003). The esti- −0.4 means that the 0052 field has an overdensityof Lyα emitting mated dynamical mass of the gas halo is 7 − 44 × 1011 M⊙ galaxies of 2.7+0.8, which is consistent within the errors with (Villar-Mart´ınetal., 2003; Jarvisetal., 2003). This could be −0.6 theotherestimates. anindicationthatwearewitnessingtheformationofamassive galaxy. Velocityandspatialdistributions Thevelocityhistogramandthespatialdistributionofthecan- Imagingandspectroscopicobservations didate and confirmed emitters are shown in Fig. 4. The red- The field surroundingthe radiogalaxywas observedwith the shifts of the confirmed emitters are not uniformly distributed VLTin2001March.Imagesweretakeninthenarrow-bandfor throughout the narrow-band filter (solid curve in Fig. 4). 375minand75minintheB-band(Table2).Apartofthefield

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.