ebook img

Proto-Neutron Star Winds with Magnetic Fields and Rotation PDF

0.48 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Proto-Neutron Star Winds with Magnetic Fields and Rotation

DRAFTVERSIONFEBRUARY4,2008 PreprinttypesetusingLATEXstyleemulateapjv.10/09/06 PROTO-NEUTRONSTARWINDSWITHMAGNETICFIELDSANDROTATION BRIAND.METZGER1,3,TODDA.THOMPSON2,4,ANDELIOTQUATAERT1 DraftversionFebruary4,2008 ABSTRACT We solve the one-dimensionalneutrino-heated non-relativistic magnetohydrodynamic(MHD) wind prob- 7 lem for conditions that range from slowly rotating (spin period P&10ms) protoneutron stars (PNSs) with 0 surface field strengths typical of radio pulsars (B.1013G), to "proto-magnetars"with B 1014- 1015G in ≈ 0 theirhypothesizedrapidlyrotatinginitialstates(P 1ms). We usetherelativisticaxisymmetricsimulations 2 of Bucciantini et al. (2006) to map our split-mono≈poleresults onto a more physical dipole geometry and to estimatethespindownofPNSswhentheirwindsarerelativistic. Wethenquantifytheeffectsofrotationand n a magneticfieldsonthemassloss,energyloss,andthermodynamicstructureofPNSwinds. Thelatterispartic- J ularlyimportantinassessingPNSwindsastheastrophysicalsiteforther-process. Wedescribetheevolution of PNS winds throughthe Kelvin-Helmholtzcoolingepoch, emphasizingthe transition between (1) thermal 4 neutrino-driven,(2)non-relativisticmagnetically-dominated,and(3)relativisticmagnetically-dominatedout- 2 flows. Inthelastofthesestages,thespindownisenhancedrelativetothecanonicalforce-freeratebecauseof v additionalopenmagneticfluxcausedbyneutrino-drivenmassloss. Wefindthatproto-magnetarswithP 1 2 ms and B&1015 G drive relativistic winds with luminosities, energies, and Lorentz factors (magnetizat≈ion 8 σ 0.1- 1000)consistentwiththoserequiredtoproducelongdurationgamma-rayburstsandhyper-energetic 6 su∼pernovae (SNe). A significant fraction of the rotational energy may be extracted in only a few seconds, 8 sufficientlyrapidlytoaltertheasymptoticenergyoftheSNremnant,itsmorphology,and,potentially,itsnu- 0 cleosynthetic yield. We find that winds from PNSs with somewhat more modest rotation periods ( 2- 10 6 ≈ ms) andwith magnetar-strengthfieldsproduceconditionssignificantlymorefavorableforthe r-processthan 0 windsfromslowlyrotating,non-magnetizedPNSs. Lastly,wearguethatenergyandmomentumdepositionby / h convectively-excitedwavesmaybeimportantinPNSwinds. Weshowthatthisfurtherincreasesthelikelihood p ofsuccessfulr-process,relativelyindependentofthePNSrotationrateandmagneticfieldstrength. - o Subjectheadings:stars: neutron—stars: winds,outflows—supernovae: general—gammarays: bursts— r stars: magneticfields—nuclearreactions,nucleosynthesis,abundances t s a v: 1. INTRODUCTION ingepochhasbegun,neutrino-drivenwindsfromnon-rotating i non-magnetic PNSs are unlikely to be energetically impor- X Ontimescales. 1sfollowingthecorecollapseofa mas- tant on the scale of the kinetic energy of the accompany- r sive star, neutrino emission from the resulting hot, delep- ing SN (ESN 1051ergs). However, in the presence of a a tonizing protoneutronstar (PNS) may play an essential role sufficiently str≈ong global magnetic field the dynamics of a in launching the supernova (SN) shock (Herant et al. 1994; PNS’sneutrino-heatedoutflowaresignificantlyaltered(e.g., Burrows, Hayes, & Fryxell 1995; Janka & Müller 1995) or Thompson2003a,b). This point is germanebecause 10% in generatinglarge-scale anisotropiesthroughhydrodynami- (Kouveliotou et al. 1994; van Paradijs et al. 1995; L∼yne et calinstabilities(Blondinetal.2003;Schecketal.2006;Bur- al.1998)ofyoungGalacticneutronstarspossesssignificantly rows et al. 2006a,b). Independent of how the explosion is strongersurfacemagneticfields( 1014- 1015 G)thanthose initiated at early times, a small fraction of the PNS’s cool- usually inferred from pulsar spin∼-down estimates (“magne- ing neutrino emission continues heating the surface layers tars”; for a recent review see Woods & Thompson 2004). of the PNS, driving a persistent thermal wind into the cav- While the precise origin of these large field strengths is un- ity evacuated by the rapidly-expanding SN shock (Duncan, certain,ithasbeenarguedthattheiramplificationoccursvia Shapiro,&Wasserman1986;Woosleyetal.1994);thispost- adynamoduringτ (Duncan&Thompson1992;Thompson KH explosionneutrino-drivenmass loss persists for the duration &Duncan1993).Theefficiencyofthedynamoisdetermined ofthePNS’s Kelvin-Helmholtzcoolingepoch,whichlastsa inpartbythecore’sinitialrotationrateΩ =2π/P,andana- time τKH 10- 100 s (Burrows & Lattimer 1986; Pons et lyticargumentssuggestthattheformation0ofglobal0magnetar- ∼ al.1999). strengthfieldsmightrequireP 1msrotationatbirth.Such 0 ∼ Once the SN shock has been launched and the PNS cool- rapidrotationwouldalsoalterthedynamicsofthePNSwind andprovideareservoirofrotationalenergysignificantonthe 1Astronomy Department and Theoretical Astrophysics Center, 601 scaleoftheaccompanyingSNexplosion: Campbell Hall, Berkeley, CA 94720; [email protected], E 2 1052M R2 P- 2ergs, (1) [email protected] rot≃ × 1.4 10 ms 2DepartmentofAstrophysicalSciences,PeytonHall-IvyLane,Princeton where M1.4 is the PNS mass in units of 1.4 M⊙, R10 is the University,Princeton,NJ08544;[email protected] radiusofthePNSinunitsof10km,andP istheinitialPNS ms 3Department of Physics, 366 LeConte Hall, University of California, rotationperiodinms. Berkeley,CA94720 4LymanSpitzerJr.Fellow Previous authors have suggested that if magnetars are in- 2 deed born rapidly rotating, their rotational energy could be is so high (&5 MeV) and the radius of the PNS is so large efficientlyextractedthroughamagnetizedwind(Usov1992; (R 20- 50km)that,evenforamagnetar-strengthfield,the ν ∼ Thompson1994;Wheeleretal.2000;Thompson,Chang,& post-explosionoutflowislikelytobepurelythermally-driven. Quataert 2004, henceforth TCQ). Indeed, a proto-magnetar (2) By t 1 s the SN shock has propagated to well out- wind’s energetics, timescale, and potential for highly rel- ∼ side the sonic point of the PNS wind. The PNS will con- ativistic outflow resemble those of the central engine re- tractandcooltoapointatwhich,ifthesurfacefieldissuffi- quired to power long-duration gamma-ray bursts (LGRBs). cientlystrong,theoutflowbecomesmagneticallydominated. TCQ argue that an accurate description of magnetized PNS The strong magnetic field enhances angular momentum and spin-down must include the effects of neutrino-driven mass rotational energy loss by forcing outgoing fluid elements to loss. The significant mass loss accompanying the Kelvin- effectively corotate with the PNS surface out to the Alfvén Helmholtz epoch may open the otherwise closed magneto- radius (R ) at several stellar radii, in analogy with classic sphere into a “split monopole”-like structure, enhancing the A workonnon-relativisticstellarwindsandthesolarwind(e.g., earlyspin-downrateof the PNS. Inaddition,the massload- Schatzman1962,Weber&Davis1967,andMestel1968).For ingofaPNSwind,andhenceitspotentialasymptoticLorentz finacgtothreΓ,Kieslvlairng-eHlyelcmohnotrlotzlleedpobcyh.theThniesu“trbinaroylounm-lionaodsiintyg”duisr-- s(τuJfficiΩen/tΩl˙y)rcaapnidblye rcootmatpinagraPblNeStso,τtKhHe,sipminp-ldyoinwgnthtiamtemscuaclhe ≡ oftherotationalenergyofthePNScanbeextractedinanon- sue is particularly important in the LGRB context, where Γ 10- 1000aretypicallyinferred. relativistic, but magnetically-dominatedwind. The neutrino ∼ luminosity at these relatively early times is still large (e.g., Becausemagnetarbirthsarerelativelyfrequent,mostcan- L 1052 ergs s- 1; see Pons et al. 1999, Fig. 14), and, for notproduceclassicalLGRBs,whichonlyoccurin 0.1- 1% suνffi∼cientlyrapidrotation,masslossissignificantlyenhanced ∼ ofmassivestellardeaths(e.g.,Paczynski2001,Podsiadlowski bycentrifugalflinging(TCQ).Theoutflowduringthisphase et al. 2004, Piran 2005); however, a more common obser- will be collimated about the PNS rotation axis by magnetic vational signature of magnetar birth may include less ener- stresses(e.g.,Bucciantinietal.2006;hereafterB06). geticormildlyrelativisticevents,whichcouldbeobservable as X-ray transients or unusual SNe. Under some circum- (3)AsthePNScontinuestocool,theluminosityandmass- stances,theasymmetricenergyinjectionfromproto-magnetar loadingdecreasetothepointatwhichcorotationissustained winds could produceglobalanisotropiesin the SN remnant, out to nearly the light cylinder (RL ≡2πc/P≃48Pm- 1s km). as has been detected through polarization measurements of Thespin-downratethenbecomesapproximatelyindependent ˙ someSNe(e.g.,Wangetal.2001,2003). Inaddition,ifsig- ofthemasslossrateMandtheflowbecomesrelativistic,ob- nificantrotationalenergycanbeextractedsufficientlyrapidly taininghighmagnetizationσ Φ2Ω2/M˙c3, whereΦ isthe ≡ B B following the launch of the SN shock, the nucleosynthetic totalopenmagneticfluxper4πsteradian(Michel1969). Al- yield of the SN could be altered (TCQ), which could ex- thoughanultra-relativistic,pulsar-likewindisinevitablesoon ˙ plain nickel-rich, hyper-energetic SNe such as SN 1998bw after τ because M abates as the neutrino luminosity van- KH (Galamaetal.1998)orSN2003dh(Hjorthetal.2003;Stanek ishes, relativistic outflow can begin prior to the end of the etal.2003).Lastly,LGRBsoccurringwithoutassociatedSNe Kelvin-Helmholtz phase. Because this outflow is accompa- (e.g.,GRBs060505,060614;Fynboetal.2006;Gal-Yamet niedby significantmassloss, it is generallyonlymildly rel- al. 2006; Della Valle et al. 2006) may be accommodated if ativistic. Althoughtheenergyextractedviarelativisticwinds aproto-magnetarresultsfromtheaccretion-inducedcollapse isprimarilyconcentratedatlowlatitudes(B06),theconfining (AIC)ofawhitedwarf(see§4.4). pressureof the overlying,exploding,stellar progenitor(e.g., Wheeler et. al 2000; Uzdensky & MacFadyen 2006) or the Quite apart from the possible impact of PNS winds on walls of the collimated cavity carved by the preceding non- the surrounding SN shock, PNS winds themselves have of- relativistic phase may channel the relativistic outflow into a ten been considered a promising site for the production of bipolar,jet-likestructure. r-process nuclides. However, the conditionsnecessary for a successfulthirdpeak(A 195)r-processhavenotbeenreal- Theprimaryfocusofthispaperistodelineatethemagnetic ≈ izedindetailedstudiesofnon-rotating,non-magnetizedPNS field strengths and rotation rates requiredto significantly al- winds (e.g., Qian & Woosley 1996; Cardall & Fuller 1997; ter the characteristics of early PNS evolution by solving the Otsuki et al. 2000; Thompson et al. 2001). Given the, as one-dimensional(1D)non-relativisticMHD,neutrino-heated yet,unidentifiedsiteofGalacticr-processenrichmentandthe wind problemfor conditionsthat range fromnormalpulsars relatively large birthrate of magnetars, it is essential to con- to proto-magnetars. In particular, we quantitatively explore sider what effects a strong magnetic field and rapid rotation the transition that occurs between stages (1) and (2) above; might have on nucleosynthesis in PNS winds. Conversely, with these results we analyze some of the immediate conse- if the nucleosynthetic yield from rotating, magnetized PNS quencesofneutronstarbirth.Wedeferadetailedstudyofthe windscouldbewell-determinedtheoretically,thebirthperiod transition between stages (2) and (3) to future work, but we andmagneticfielddistributionofneutronstarscouldperhaps doexplicitlyaddresstheparameterspaceoftheσ=1bound- be constrained from observations of heavy elemental abun- ary. Relativistic, mass-loaded MHD winds have been stud- dances. ied recently by B06 in two dimensions for both a monopo- larandaligned-dipolarfieldstructure,assuminganadiabatic 1.1. StagesofPNSEvolution equationofstate. WhiletheworkofB06iscriticaltounder- standing the multi-dimensionalcharacter of PNS winds (for A sufficiently-magnetizedPNSwind goesthroughat least instance, the degree of collimation and the fraction of open threedistinctstages ofevolutionfollowingthe launchof the magneticflux)itdoesnotaddressthe neutrinomicrophysics SNshock(t=0): necessary for a directapplication to PNS environments; this (1) Duringthe earliest phase the PNS surface temperature work and that of B06 are thus complementary in studying 3 PNS spin-downin the presenceof rapid rotationand a large thisprescriptionconservesthemagneticflux4πΦ 4πr2B . B r ≡ magneticfield. B06showthatthespin-downindipolesimulationscanbeex- pressed in terms of an equivalentmonopolefield, which de- pends on the fraction of open magnetic flux. As discussed 1.2. ThisPaper further in 4.1, we can therefore relate our monopole spin- § In 2 we enumeratethe equationsofMHD ( 2.1), discuss downcalculationstothe morerealistic dipolesimulationsof there§levantmicrophysics( 2.2),andelaborateo§nournumer- B06. § ical methods ( 2.3). Section 3 presents the results of our Insteadystate,manipulationofequations(4)and(5)gives § calculations and examines the regimes of magnetized PNS theconservedspecificangularmomentum and“theconse- wind evolution. Section 4 discusses the implications of this quenceofinduction” (e.g.,Lamers&CasLsinelli1999): work,examiningthetime-evolutionofacooling,magnetized I rB B PNS( 4.1),weighingtheimplicationsforLGRBsandhyper- = + =rv - r φ (7) energe§ticSNe ( 4.2), andconsideringthe viabilityfor third- L Lgas Lmag φ 4πρv r § peak r-process nucleosynthesisin magnetized, rotating PNS =r(v B - v B ) (8) winds( 4.3).In 4.3.1weconsidertheeffectsthatwaveheat- I φ r r φ inghave§onther§-processinPNSwindsandin 4.4webriefly The total rate of angular momentum loss from the PNS is § ˙ ˙ discuss other contexts in which our calculations may be ap- thereforeJ= M. plicable, including the accretion-induced collapse of white L Forconditionsofinterest,photonsaretrappedandadvected dwarfs, “collapsars,” and merging neutron star binaries. Fi- withthewind,providingnosignificantenergytransportonthe nally,section5summarizestheconclusionsofourwork. timescalesofinterest(Duncan,Shapiro,&Wasserman1986). Instead,thePNSevolutioniscontrolledbyitsneutrinolumi- 2. PNSWINDMODEL nosity L , which provides heating q˙+ (per unit mass) above ν ν thePNSsurface.Includingnetneutrinoheating(q˙ =q˙+- q˙- ; 2.1. MHDEquationsandConservedQuantities ν ν ν see 2.2)providesasourceterminthewindentropyequation: § Making the simplifications of Weber & Davis (1967), we dS restrictallphysicalquantitiestobesolelyfunctionsofradius T =q˙ν, (9) dt r andtimet, andconfineouranalysistotheequatorialplane sothatthemagneticfieldB= [Br,Bφ]andfluidvelocityv= whered/dt≡∂/∂t+vr(∂/∂r),Sisthewindentropyperunit [v ,v ]havenoθcomponents.WeemployNewtoniangravity mass, and T is the wind temperature. The asymptotic wind forraφPNSofmassM actingongasofdensityρ. Wealsoas- entropySa quantifiesthetotalnetheatingaparcelofgasex- sumethattheplasmaisaperfectconductorwithanisotropic periencesasitiscarriedoutbythePNSwind. Asdiscussed thermal pressure P. Under these restrictions the time evolu- further in 2.2, when applying equation (9) we assume that § tionequationsofnon-relativisticMHDare thewind’scomposition(electronfraction)remainsconstant. With net heating the Bernoulli integral is not constant ∂ρ 1 ∂ =- (r2ρv ) (2) withradius(insteadystate); insteaditreceBivesanintegrated ∂t r2∂r r contributionfromq˙ : ν ∂v v2 ∂v 1∂P GM 1 B2 ∂B r ∂tr = rφ - vr ∂rr - ρ ∂r - r2 - 4πρ" rφ +Bφ ∂rφ# (3) M˙∆B=M˙{B(r)- B(r0)}= ρq˙ν∆Ωr′2dr′, (10) Zr0 ∂v 1 B ∂ ∂ where φ = r (rB )- v (rv ) (4) 1 GM ∂t r 4πρ∂r φ r∂r φ (v2+v2)+h- + Ω, (11) (cid:20) (cid:21) B≡ 2 r φ r Lmag ∂Bφ = 1 ∂ (r[v B - v B ]) (5) h e+P/ρ is the specific enthalpy, e is the specific internal ∂t r∂r r φ φ r en≡ergy, Ω is the specific magnetic energy, and Ω is the mag L Wehaveneglectedneutrinoradiationpressureinequation(3) stellarrotationrate. becausetheneutrinoluminosityisalwaysbelowtheneutrino ToassesstheimpactofthePNSwindonitssurroundings, Eddingtonlimit. Insteadystate,equation(2)givesaradially- itisusefultodefineη,theratiooftherotationalpowerlostby conservedmassflux: thePNS,E˙ =ΩJ˙,totheasymptoticwindpowerE˙a= aM˙: rot M˙ =∆Ωr2ρvr, (6) ΩJ˙ Ω B where∆Ωistheopeningsolidangleofthewind. Whilethe η≡ E˙a = La , (12) evolutionequationsconsideredareformallyvalidonlyinthe B ˙ where a is the Bernoulli integral evaluated at large radii. equatorial plane, quoted values for M will be normalized to B Magnetized winds are typically assumed to have η 1, but ∆Ω=4π, as if the solutions were valid at all latitudes. As ≈ we find that in some cases η 1 becausemuch of the rota- discussed in 4.1, this normalization is an overestimate be- ≫ tional energy is used to unbind the wind from the PNS (see § causethe PNS’s closedmagneticfluxpreventsmassoutflow §3.2). ˙ fromneartheequatorandcentrifugalflingingconcentratesM atrelativelylowlatitudes(B06). 2.2. Microphysics We take the radial magnetic field structure to be that of a “split monopole”: B = B (R /r)2, where R is the radius ThelocalheatingandcoolingratesrelevanttotheKelvin- r ν ν ν of the PNS and B is the monopole surface field strength; Helmholtz coolingphase have been extensivelyevaluatedin ν 4 effortstoquantifyunmagnetized,slowly-rotatingPNSwinds heatingandmomentumdepositionin 4.3.1. § as an astrophysical site for r-process nucleosynthesis (e.g., In this work we include gravitational redshifts, radial Qian&Woosley1996,Thompsonetal.2001;hereafterT01). Doppler shifts, and modifications to the “effective solid an- For our calculations we adopt the heating and cooling rates gle” (and hence local neutrino flux) presented by the neu- used in the analytic work of Qian & Woosley (1996, here- trinosphere in the curved spacetime. The latter effect is de- after QW) for ν/ν¯ annihilation and for the charged-current scribed in Salmonson & Wilson (1999), while the Doppler processes ν +n p+e- and ν¯ +p n+e+. For heating e ↔ e ↔ and redshifts can be combined into the simple, approximate and cooling from inelastic neutrino-leptonscattering we use prescriptionrelevantforallneutrinospecies: theratesofT01. Thedominantcontributionstothenetheat- ingratearethecharged-currentprocesses,butscatteringand hǫνni=(φZφD)n+3hǫνni|r=Rν, (13) annihilation become more significant as the entropy of the where wind increases and the thermal pressure becomes radiation- φ α(R )/α(r), φ γ(1- v /c), (14) Z ν D r dominated. The scattering and charged-current rates effec- ≡ ≡ tivelyvanishonceT 0.5MeVbecausethee- /e+ pairsan- α(r) 1- (2GM/c2r), γ- 1 1- (v2+v2)/c2, and we nihilate and the nucl→eons combine into α particles. We ar- ≡ ≡ r φ tificially take this cutoff into account by setting q˙ = 0 for haveasspumedthatatradiiwherethqeequatorialflowbecomes ν mildly relativistic, typical neutrinos will primarily be mov- T <0.5MeV. ing radially. We emphasize that while we include neutrino Because the charged-currentinteractions modify the neu- gravitational redshifts in calculating heating rates we calcu- tronabundanceoftheoutflowtheelectronfractionY should late the wind dynamicsin Newtonian gravity. Includingthe e beevolvedinadditiontothetemperatureandpressure. How- effects of the deeper general-relativistic (GR) potential of a ˙ ever,thedynamicsofthewindarenotsensitivetotheprecise SchwarzschildmetriclowersM andincreasesSa,Ya,andthe e profileofYeandthus,forsimplicity,wetakeYetobefixedata asymptotic wind speed va (Fuller & Qian 1996; Cardall & reasonableasymptoticvalueatallradii:Ye=Yea=0.4.Thisis Fuller1997). agoodapproximationgivenhowrapidlyinradiusYa obtains e Ourmodel’sequationofstate(EOS)includescontributions in non-rotating,unmagnetizedcalculations(see T01, Fig. 7) fromphotonradiation,idealnucleons,andrelativistic,degen- andhowrelativelyweaklythetotalheatingandcoolingrates erate electronsandpositrons. Non-relativisticnucleonsgen- dependonY forY .0.5. e e erally dominate the EOS near the PNS surface, but within As in T01 we calculate local neutrino fluxes by consider- a density scale heightaboveR the flow becomesradiation- ν ing a single (for all neutrino species) sharp, thermal neutri- dominated. Aswiththeheating/coolingrates,highmagnetic nosphere at R . To the desired accuracy of our calculations fieldeffectsontheEOSareignored. ν thisapproximationis generallygood, evenwhenthe density scale height(and hence nucleon-absorptionoptical depth) is 2.3. NumericalMethod extendedbyrapidrotation. Forthispaperweindexstagesof the PNS thermalevolutionin termsof the anti-electronneu- Inthe steady-state Weber-Daviswind, three criticalpoints trino luminosity Lν¯e. We scale all other neutrino luminosi- occurintheradialmomentumequationatradiiwheretheout- ties (Lνe,Lνµ,Lν¯µ,Lντ, and Lν¯τ) as in TCQ: Lνe =Lν¯e/1.3= flow velocity matches the local phase speed of infi˙nitesimal 1n.e0u8trLiνnµo,swpheecrieesµ. dNenootetestheaatcthhoefttohtealotnheeurtfroinuornluemutirninoos/iatyntiis- flu(ideqds.is[t6u]r,ba[7n]c,esa.ndT[h1e1]s)teaardeyfi-sxteadtebeyigthenevraelquueisreMm,eLn,t tahnadt thenLν ≃4.6Lν¯e. FollowingT01,allfirstenergymomentsat Bthe solution pass smoothly through the slow-magnetosonic, the neutrinosphere( ǫ E2 / E , where E is the neu- Alfvénic, and fast-magnetosonic points. Physically, we trinoenergy)wereschaνleid≡whithνliumhinνoisityas ǫ ν L1/4,an- choosethese solutionsover sub-magnetosonic“breezes” be- ν ν h i∝ causeweassumetheSNshockorfallbackpressuresatlarge choring{hǫνei,hǫν¯ei,hǫνµi}at{11,14,23}MeVforLν¯e,51=8, radiiare insufficient to stifle the strong ram-pressuresof the owfh1er0e51Leν¯er,g51s iss- 1t.heHaingthi-eerleecnterrognynmeuotmrinenotslunmeicneosssiatryyinfournthites wind.However,fallbackatearlytimesisnotwell-understood becauseitdependssensitivelyonthemechanismforlaunch- heating calculations( ǫn , ǫn , etc.) are related to the first h νei h ν¯ei ingtheSNshock(Chevalier1989;Woosley&Weaver1995) through appropriate integrals over the assumed Fermi-Dirac and thus this issue deserves further attention. Although the surfacedistribution. Weshouldnotethattherelationshipbe- PNS radius, rotation rate, and neutrino luminosity evolve in tween the neutrinoluminosityand meanneutrinoenergywe time, for realistic wind conditionsthe timescale requiredfor haveassumed,whileareasonableapproximation,islikelyto any of the MHD wavemodesto traverse all critical pointsis be more complicated. For example, Pons et al. (1999) find alwaysmuchshorterthanthetimescaleoverwhichthewind thatthemeanenergyisroughlyconstantforthefirst 10sof cooling,despitethefactthattheneutrinoluminosityd∼ecreases characteristicsappreciablychange(e.g.,τKHorthespin-down timescaleτ ). Forthisreasonatime-seriesofsteady-stateso- monotonically(seetheirFig.18). J lutions is generally sufficient to accurately model the wind Theneutrinoheatingandcoolingratesdiscussedabovewill during all phases of the PNS evolution. However, precisely be modified by the presence of magnetar-strength fields in because all physical solutions must pass through each criti- theheatingregionduetoquantumeffectsrestrictingtheelec- calpoint,inthetime-independentformulationofthisproblem tron(positron)phase space (Lai & Qian 1998; Duan & Qian boundaryconditionsmust be placed on the wind solution at 2004).WeneglecttheeffectsthathighBhaveonq˙ anddefer theselocations.Toavoidthisnumericallycomplicatedsingu- ν study of these effectsto futurework. In addition, for strong larity structure, we have instead solved the more complete, surface magnetic field strengths, heating via the dissipation time-dependent version of the problem using the 6th order of convectively-excitedMHD waves may become important space/3rd order time, “inhomogeneous”2N-RK3 scheme of (Suzuki&Nagataki2005).Weassesstheimportanceofwave Brandenburg(2001). 5 Ourcodeevolvesthevariables(ρ,T,v ,v ,B ). Thevalue artificiallyplacedonthegridwerecomparedinseveralcases; r φ φ ofthePNSmassM,neutrinosphereradiusR ,magneticflux wefoundthatalthoughthevelocitystructurechangesatradii ν Φ =B R2, stellar rotation rate Ω, and neutrino luminosity far outside the Alfv´en radius, our imposed boundary condi- B ν ν L aretheparametersthatuniquelyidentifyawindsolution. tionhadlittleeffectontheeigenvaluesoftheproblemandthe ν We use M = 1.4 M and R =10 km in all of our calcula- correctasymptoticspeedwasobtained(albeitprematurelyin ⊙ ν tions. Becauseourcodeisintrinsicallynon-conservative,we radius).Sincetheeigenvaluesuniquelydeterminethesteady- ˙ use the constancy of M, , and and equation (10)’s con- state solution, this technique, when necessary, was a useful straint on as independeLntchecIks on the code’s numerical expedienttoobtainthedesiredtransmagnetosonicsolution. B accuracy.Fornumericalstability,anartificialviscosityofthe formν 2isincludedintheevolutionofeachvariable,where ∇ 3. RESULTS ν is an appropriately-scaledkinematic viscosity (e.g., Bran- denburg2001). Figure1summarizesthephysicalregimesofPNSwindsas We chose the location of the outer boundary, generally at afunctionofLν¯e androtationalperiodP forarepresentative r 1000km,asacompromisebetweentherun-timetoreach strongly magnetized PNS: Bν =2.5 1014 G, M =1.4 M⊙, st≈eady-state and the desire to minimize the effects of artifi- and Rν =10 km. A cooling PNS of×fixed surface field will ciallyforcingthefastpointonthecomputationalgrid(seedis- traverse a path from high to low Lν in this diagram, reach- cchuossoisoinnginth§e2.3n.u1m).beWreosfpgarciedtphoeirnatdsia(glegnreidrallolyga5r0it0hm- i2c0a0ll0y), itnimgeLscν¯ea,l5e1τ∼Ji0s.l1esastthta=nττKKHH,(tsheeePeNqS. [e2v8o]l)v.esItfothhieghsperinPdodwurn- to obtain the desired levelof conservationof M˙, , , and ingτKH,butotherwise,thePNSevolvesfromhighertolower whilesimultaneouslymaintaininglargeenoughaLrtifiIcialvisB- Lν at roughly constant P (see Tables 1 and 2 for represen- cosity to maintain code stability. With sufficient resolution tative τJ). The regions in Figure 1 correspond to the differ- andlowenoughviscositythecodeshowsradialconservation entwindphasesoutlinedin 1.1: (1)athermally-drivenwind § of all eigenvalues to .1% across the entire grid, although at high Lν and long P; (2) a non-relativistic, magnetically- wedidnotrequirethislevelofconservationforallsolutions driven wind at high Lν and short P; and (3) a relativistic, so that we could efficiently explore the parameter space of magnetically-drivenwindatlow Lν andshortP. Inaddition wind properties. The mass loss rate was the most difficult tothesedifferentregimes,Figure1illustratestherangeofro- ˙ eigenvaluetoconserveyetisaccurate(relativetoitsfullycon- tationperiodsforwhichMisenhancedbycentrifugalflinging vergedvalue)toatleast 10%forallsolutionspresentedin (roughlyP.2- 3ms;seealsoFig.6)andforwhichτdyn,the thispaper. ∼ dynamical time at T =0.5 MeV (eq. [35]), and the asymp- toticwindentropySaarealteredfromtheirnon-rotating,non- 2.3.1. BoundaryConditions magnetizedvalues(whichhasimportantconsequencesforr- processnucleosynthesis;see 4.3).Inthissection,wepresent § The azimuthal speed v at R is set to enforce v = anddiscussthepropertiesofsolutionsforarangeofparame- φ ν φ,ν RRνΩan+dvwr,νhBeφre,νΩ/Biνs,thwehsetreellaarsurobtsactrioipntrνatdeetnhoattedseefivnaelusatthioenana-t itlelrusst(rBaνte,dP,iLnν¯Fe)igthuarets1p.anSoemacehoofftthheepnroonp-erretliaetsivoifstwicinredgsiomlues- ν gularspeedoftherotatingframeinwhichthesurfaceelectric tionsat Lν¯e =8×1051 ergss- 1, whichcorrespondsto a rela- field vanishes (MacGregor & Pizzo 1983). In all cases we tively early stage in the PNS coolingevolution, are given in consider, v R Ω. The temperature at the PNS surface Table 1. Table 2 compares the properties of wind solutions φ,ν ν T(R ) (general≃ly 5 MeV) is set by requiring that the net withB =2.5 1015 Gattwodifferentneutrinoluminosities ν ν heating rate q˙ν va≈nish; this assumes the inner atmosphereis (Lν¯e =8×1051×and3.5×1051ergss- 1). in LTE (Burrows & Mazurek 1982). Given our assumption that matter at the inner grid pointmaintainsLTE, we fix the densityatR tobe 1012 gcm- 3sothattheneutrinooptical 3.1. Thermally-DrivenWinds ν ≃ depthτ at the PNS surface reaches 2/3, therebydefining ν ∼ Thethermally-drivenregioninFigure1correspondstocon- a neutrinosphere. Forslow rotationwe find thatthe solution ditions under which the PNS outflow is driven primarily by outsidetheinnerfewscaleheightsremainsrelativelyinsensi- neutrinoheating; the magneticfield andthe rotationrate are tivetoourchoicefortheinnerdensity,althoughwefindthat ˙ unimportantineitheracceleratingorsettingthemasslossrate Mdependssomewhatsensitivelyonρ(R )asthePNSrotation ν of the wind. Figure 2 shows the velocity structure of such rateincreasesapproachingbreak-up. an effectively non-rotating, non-magnetized (NRNM) solu- Ifallthreecriticalpointsarecapturedonthenumericalgrid, tionforLν¯e,51=8,Bν =1013G,andΩ=50s- 1(P≃126ms). the outer boundaryconditionsare notin causal contactwith Notice that the Alfvén radius is relatively close to the PNS the interior wind and will have no effect on its steady-state surface (R 20 km) and that the sonic point (correspond- A ≈ eigenvalues. However, as the temperature of the wind de- ing to the fast point in the NRNM limit) is at a much larger clines,thefastmagnetosonicpointmovestoverylargeradii; radius (R 750 km, approximately the “Parker radius”, s in fact, as the sound speed c 0 the fast point formally R GM/(≈va)2,ofanequivalentpolytropicwind,wherevais s p → ≃ approaches infinity (Michel 1969). For this reason, the fast theasymptoticwindspeed). Althoughthemagneticfieldand pointisdifficulttokeeponthecomputationalgrid. Solutions rotation rate are low enough that they have no effect on the withoutthefastpointcapturedonthegridaresensitivetothe windenergetics, the AlfvènradiusR is still abovethe PNS A outerboundarycondition,withdifferentchoicesaltering,for surface.Angularmomentumlossisthusenhancedbyafactor instance, the spin-down rate. Therefore, to artificially force of(R /R )2 4overanunmagnetizedwind. Inthisrespect, A ν ≈ thefastpointonthegridweincreasetheouterradialvelocity PNS winds such as that shown in Figure 2 are analogousto boundary-conditionuntilthefastpointiscaptured.Otherwise thesolarwind(whichisalso primarilythermally-driven,but equivalentsolutionswiththe fastpointnaturallylocatedand hasR &R ). A ⊙ 6 Thermally-Driven 10 v M = v a . c NRNM s M Enhanced ,n = Magnetically-Driven Sa Reduced R t Reduced nW .dyn Ea Enhanced 1 5 ,|e Ln 1 s = 1 Relativistic 0.1 1 10 100 P(ms) FIG. 1.— Theregimes ofPNSwindsinthespaceofLν¯e(=Lν¯e,51×1051 ergss- 1)androtation periodPforarepresentative strongly magnetized PNS: wBνith=L2ν.¯5e,×511∼01140Ga,tRaνt=im1e0tk0m∼,a1ndsMfol=low1.i4ngMt⊙he.AlaumnocnhoopfoltehefieSlNdgsehoomckettroyLisν¯ae,s5s1um∼e0d..1AbycotohleinegnPdNoSftwhiellKevelovlivne-HfreolmmhhoiglthzLpν¯heatsoel(oτwKHLν¯∼ei1n0t-hi1s0d0iasgaraftmer, explosion). Thesolidline(eq.[18])showstheboundarybetweenPNSwindsthatareprimarilythermally-drivenbyneutrinoheating(highLν;slowrotation) andwindsthatareprimarilymagneto-centrifugallydriven(lowLν;rapidrotation);forthelatter,thewindpowerE˙aisenhanced(seeeq.[20])andthedynamical timeτdynisreduced(seeFig.12).Thedottedline(σ=1;eq.[27])showstheboundarybetweennon-relativisticandrelativisticmagnetically-drivenwinds.For sufficientlyrapidrotation(P.2- 3ms;thedot-dashedline),themass-lossfromthePNS(M˙)isenhancedbecauseofcentrifugalflinging(eq.[24])andthe asymptoticwindentropySaisreduced(eq.[37])becausemattermovesmorerapidlythroughtheregionofsignificantneutrinoheating.Thedynamicaltimeand entropyareimportantfornucleosynthesisinthewind(§4.3). ForBν&2.5×1014 Gthethermally-drivenregionshrinks(tolongerPandhigherLν¯e;eq.[18]) andtherelativisticregionexpands(tohigherLν¯e;eq.[27]). ForRν&10km,aswilloccuratearlytimeswhenthePNSisstillcontracting,thewindislikely tobethermallydriven. ThisfigureillustratesthewiderangeofconditionsunderwhichPNSwindswillbemagnetically-driven,althoughitshouldbecautioned thatthesurfacedipolefieldBdνipassociatedwiththemonopolefieldBν scalesasBdνip∝BνP(seeeq.[30]),whichmeansthat,forlargeP,thetruedipolefield appropriatetothisdiagramismuchgreaterthanthemonopolevalueofBν=2.5×1014G. ManyoftherelevantresultsforNRNMPNSwinds(suchas indeed,fromFigure 2wefindanasymptoticspeedva NRNM≈ hFineignQ.cW2e),.aiQrfeWLaνpsphroowxǫimνthaa4t,teMda˙sa∝nwalLeyν5¯t/ehi3cahavǫleνl¯yeiaa1sn0s/du3mv(etehrdiefi,ireQdeWqnsu.mfi[5en8rdiac,tabhl]la)yt; p0in.r0oG6xRicmaaatttLehlν¯iyge,5ht1hL=eν8s..aAmTl0eth1wofuoagyuhnwdwittehhafitLnvν¯daNe,RthNoaMutr≃vaNasR0yN.1mMcpst(coLatν¯ilece,5s1si/pn8eea)0dp.3s- ∝ h i are lower than those obtained by T01 primarily because we the neutrino-drivenmass lossrate is approximatelygivenby Mb1˙u0Nt5R1wNeiMrtghs≃as-n31o.×rOm1ua0rl-icz4a(aLltciν¯ouen,l5a1lt/oio8wn)e2sr.5fitMnhda⊙nthstha- 1ta,Mt˙woNfhRQeNrMWe∝:Lν¯Le2ν=.5Laνs¯ew,51el×l, hIknainvNeetRiucNseeMndearwgmyin:od˙rE˙seNastRhhNeaMlalos≃wym,(1Np/te2ow)tMitc˙oNnwRiaiNnnMdg(vpraNaovRwiNteMart)i2ios;nheaenlntpicoreet,elynfrtgoiaamls. ourresultsforM andva wefind primarilybM˙eNcRaNuMse≃we1.h4a×ve1i0n-c4l(uLdν¯ee,d51n/e8u)2tr.5inMo⊙resd- s1h,iftsin(o1u5r) E˙NaRNMNR≃NM4×104N7R(LNνM¯e,51/8)3.2ergss- 1. (16) heating rates. Somewhat coincidentally, T01 found a result SincethetimespentatLν¯e,51∼8isonly∼1s(see§4.1),the totalenergyextractedduringthe Kelvin-Helmholtzepochin similartoequation(15)fromcalculationsincorporatingGR. aNRNMwindis 1047- 1048ergs. Because neutrino heating is so concentratednear the PNS ∼ surface, NRNM winds are barely unboundin comparisonto 3.2. Magnetically-DrivenWinds thePNSescapespeed(non-relativistically,v (R ) 0.64c); esc ν ≈ 7 by the Michel speed v (B2R4Ω2/M˙)1/3 =σ1/3c (Michel M ≡ ν ν 1969), exceeds the asymptotic speed obtained if the wind v were entirely thermally-drivenby neutrino heating (va ). 10-1 f Usingourresultforva ,thewindwillbeintheFMRNRlNimMit NRNM formagnetizations v y (c) 10-2 r σ&2×10- 4(Lν¯e,51/8)0.9˙≡σFMR. (17) ocit pUlsyinthgaetqthueatPioNnS(1w5i)ntdoirsemlataegLneν¯eticaanldlyM-d,roivuerncbaelclouwlattihoenscriimti-- el V v calrotationperiod 10-3 A v f PFMR≃15(Lν¯e,51/8)- 1.7B14ms, (18) whereB =B 10n G. The P=P boundaryin Figure1 ν n FMR 10-4 ismarkedbyas×olidline.Themagnetically-drivenregimeen- 10 100 1000 compasses a large range of PNS parameter space and hence r (km) generically describes most of a strongly magnetized PNS’s evolution.Incontrast,thewindfromarelativelyweaklymag- FIG. 2.— Velocity profile for a thermally-driven wind with Lν¯e,51 =8, netizedPNS will only be dominatedby magneto-centrifugal Bν=1013G,andΩ=50s- 1(P≈130ms).Thevariablesvr,vφ,vA,andvfare forces late in the cooling epoch. The conditions necessary theradial,azimuthal,Alfvén,andfastmagnetosonicspeeds,respectively;the for the magnetically-driven phase to dominate the total en- fast(Alfvén)speedisalsoapproximatelytheadiabaticsound(slow)speedfor 1th0e-r8m,Ea˙laly≃-dr4iv×en10w47inedrsg.sTs-h1is,asnodluτtiJo∼nh8a8s0Ms˙(≈see1T.4a×ble101-).4MTh⊙eMs-i1c,hσel≈sp3ee×d ebregdyisacnudssmedasfsurltohsesrdinur§i4n.g1.the Kelvin-Helmholtz phase will forthissolutionisvM =σ1/3c≃0.003c,whichislessthanthethermally- Figure 3 shows the velocity structure of a magnetically- dfireilvdenanadsyrmotpattoiotincrsapteeehdaavcetunaollysigonbitfiacinaendt e(≈ffe0ct.0o6nct)h;eheanccceel,etrhaetiomnagonfetthice driven wind from a PNS with Lν¯e,51 = 8, Bν = 1015 G and wind. Ω=5000 s- 1 (P 1.3 ms). As the profile of vφ in Figure ≃ 3 indicates, the wind corotates to 25 km, which is far in- ≈ side R 46 km because the magnetic field carries a sig- A ≈ nificant fraction of the angular momentum. In addition, be- 0.7 causethewindismagnetically-driven,thewindspeedatlarge v 0.6 radiiisalmostanorderofmagnitudelargerthaninaNRNM f wind: v =0.54 c v obtains at the outer grid point. The r M 0.5 sonic point of the≈wind (corresponding to the slow point in c) v r theFMRlimit) isnowinsideRA, lessthanonestellar radius city ( 0.4 vA otifofntsheshsouwrfathcea;t wthiitshisinecxrepaescitnegdΩbe,ctahueseloacnatailoynticofcothnesisdoenraic- elo 0.3 v radiusRs decreasesfromavalueofordertheParkerradiusto V f avalueindependentofthelocalthermodynamics(seeLamers 0.2 &Cassinelli1999)5: 0.1 v R GM/Ω2 1/3 17P2/3km. (19) s s,cf≡ ≃ ms 0.0 Forcomparisonwith(cid:0)oursolu(cid:1)tion,Figure3showstheveloc- 10 100 1000 ity structure of an adiabatic wind (γ = 1.15) with approxi- r (km) mately the same M˙, Ω, B , and surface temperature as our ν neutrino-heatedwind.Theadiabaticsolutionagreeswellwith FIG. 3.—Velocity profileforamagneto-centrifugally-driven windwith ˙ Lν¯e,51=8,Bν=1015G,andΩ=5000s- 1(P≃1.26ms);thevariablesvr,vφ, theneutrino-heate˙dsolutionbecause,althoughMisprimarily svpAe,evdfs,,arnedspvescatirveetlhy.erTahdiisals,oalzuitmiounthhaal,sAM˙lfv≃én3,.0fa×st,1a0n-d3Msl⊙owsm- 1a,gσne≃tos0o.1n6ic, smeatgbnyetLicνa,lloyn-dcerivMeniws isnpdecbieficeodmtehserveelaloticvietylysitnrudcetpuernedoefntthoef τJ ≃9 s, and E˙a ≃2.3×1051 ergs s- 1. Comparison plots of vr and vφ thedetailsoftheneutrinomicrophysics. Thisagreementim- (dashedlines)areforaγ=1.15polytropicwindwithsimilarM˙,Ω,Bν,and pliesthatwecanaccuratelymapour1Dneutrino-heatedcal- innertemperature.Noticethattheradiusoftheslowpoint(approximatelythe culationsontomulti-dimensionalpolytropiccalculationsthat sonicpoint;wherevr=vs)isveryclosetothevalueexpectedinthemagneto- centrifugallimit:Rs,cf≈19.6km(eq.[19]). employ similar boundary conditions and a similar effective adiabaticindex(see 4.1). § ForaPNSwithagivenneutrinoluminosity,largerrotation ForFMRwinds,theMichelspeedobtainsatlargeradiiand ratesandmagneticfieldstrengthsleadtoadditionalaccelera- the asymptotic wind power is therefore enhanced relative to tionintheouter,supersonicportionsofthewind. Iftherota- equation(16): tionrateandmagneticfield arehighenough,theywilldom- inate the wind acceleration at large radii. This is the “Fast E˙FaMR=M˙Ba≃(3/2)M˙v2M≃ MagneticRotator”(FMR)limit,usingthestellar-windtermi- 1050B4/3M˙1/3P- 4/3ergss- 1, (20) nologyof Belcher & MacGregor(1976);see also Lamers& 14 - 3 ms Cassinelli (1999). An approximate criteria for this limit is 5Thesubscript“cf”,hereandbelow,standsfor“centrifugal”andrelates thatthemagnetically-drivenasymptoticspeed,givenroughly tothelimitdescribedbyequation(25). 8 100 103 10 ..aJ/E s) 102 ( J = W t h 1 10 1 0.1 1 10 100 1 10 100 P(ms) P(ms) FIG. 4.—η=ΩJ˙/E˙a istheratioofspin-downpowerlostbythePNSto strhotreteanatigsoytnhmsppeBtroνitoic=dw1P0inf1o3drGpLoν¯w(ecer=ors(8se)×q,.11[01012541])G.erTg(sthriissa-n1figgaluen)rd,e2ms.h5oonw×osp1oη0l1ea4smGaagf(udnnieactmitcioofinnedol)df, BfoFνrIGL=ν¯.1e50=.1—38G×Sp1(ic0nr5-od1sosew)r,gns1t0sim-114easGncad(lte4riτamJnog≡nleoΩ)p,/o2Ωl˙e.5as×suraf1af0uc1en4cmtGiaogn(ndoeiaftimrcoofitanetdlido),nsatprneednrigo1td0h1sP5: and1015 G (asterisk). Forthehighly magnetized solutions (with RA well G(asterisk). ThedecreaseinτJforrapidrotationisduetotheexponential uorasfdfeidtiht(eoηsuu≃nrfba1ic)ne,d)btnuheteafrwolyrinlaodlwlaonBfdνthheaennedcxethraηigct&hedΩ1r.omtFaootsirotnsolafolwtehlneyerrrgooyttaatetiisoncngaa,plethseentreomrglaaylrlgyies- eansshoacnicaetemdenwtitihntMh˙efeofrfePct.ive2-m3omnosp(oelqe.fi[2e4ld]).BνThsecasluersfaacseBddνiippo∝leBfieνlPdB(sdνeiep drivenwinds(lowBνandΩ)η≪1becausetherotationalpowerlostbythe eq.[30]), whichimpliesthatthetruedipolefieldappropriate tothisfigure PNSisinsignificantincomparisontothethermalenergysuppliedbyneutrino canbemuchgreaterthanBν forlargeP. Notethatanapproximateanalytic heating. expression forτJ inthe magnetically-driven limit (P.PFMR; eq. [18])is giveninequation(23). where M˙ = M˙- 3×10- 3 M⊙s- 1 and Ba = E˙a/M˙ = (v3M/va)+ theneutrinoenergy,themagneticfieldbecomesmoreimpor- (va)2/2≃(3/2)v2MistheBernoulliintegralatlargeradiiinthe tant for unbinding the matter from the PNS. Consequently, FMRlimit,andiscomposedof2/3magneticand1/3kinetic only a fractionof the rotationalenergyextractedat the PNS energy. surfacereacheslargeradii. To calculate the angular momentum lost by the PNS, In the limit of thermally-driven solutions with very low we note that for any super-Alfvénic outflow, equation (7), B (even lower than in Fig. 2, such that the Alfvén ra- ν equation (8), and conservation of magnetic flux require dius is interior to the stellar surface), R is the lever arm ν that the conserved specific angular momentum obey = for angular momentum loss; thus = ΩR2 and hence η = oΩuRtfl2A,owwhsepreeedRAmiastcdheefisnethdebyradthiaelpAoslfivtiéonn swpheeerde: thver(RraALd)ia=l aΩn2dR[2ν1M6˙]N)R.NFMo/rEP˙NaRNM1m≈s2th4e(Lrmν¯e,a5l1l/y8-dL)-r0iv.6ePnm- w2sνi(nudssinhgaveeqηs. [151], BArl(fRvéAn)/p√o4inπtρi(nRAte)r≡msvAo.f ηW=eΩeJ˙s/tiEm˙aa=teΩth2Re2Al/oBcaatidoenfinoefdthine wlahrgicehPeixnplFaiignusrew≫h4y. Pηhdyesiccraelalsye,sthriaspiisdlbyecfoarusseolfuotriosnlosw≪wrioth- equation(12): tationratesthe rotationalpowerlost bythe PNSis insignifi- R2Ω2 (3/2)ηv2, (21) cantincomparisontothethermalenergysuppliedbyneutrino A ≃ M heating. sothat6 R 11η1/2B2/3M˙- 1/3P1/3km. (22) Therateatwhichangularmomentumisextractedfromthe A|FMR≃ 14 - 3 ms PNSisJ˙=IΩ˙ =ΩR2M˙,whereJ=IΩistheangularmomen- A sevFeigraulrseu4rfashceowmsagηnfeotricofiuerlwdsintrdensogltuhtsio(snesewalisthoTLaν¯be,l5e11=).8Rfoe-r teurmtia.ofHtehnecPeN,gSivaenndthIe≃A(l2f/v5é)nMraRd2νiuisstfhroemPNeqSumatoiomne(n2t2o),ftihne- callthat1/ηrepresentsthefractionoftheextractedrotational spin-downtimeofthePNS(τ Ω/Ω˙)inthenon-relativistic, J energyfromthePNSavailabletoenergizethesurroundingen- ≡ magnetically-drivenlimitisfoundtobe vironment. Inthelimitthatv &v ,wefindthatη 1and M esc almostalloftherotationalenergylostbythePNSem≈ergesas τ 440η- 1B- 4/3M˙- 1/3P- 2/3s. (23) asymptoticwindpower;thislimitisnormallyassumedwhen J|FMR≃ 14 - 3 ms considering magnetized stellar spin-down. However, as the This result shows explicitly that while increasing the mass- low Bν solutions in Figure 4 illustrate, winds with short ro- loadingplacesagreaterstrainonthefieldlines(RA∝M˙- 1/3) tation periods and va <v <v can be magnetically- andhencereducesthenetlossofangularmomentumpergram drivenandyethaveηNRNM1. TheMprimeasrcyreasonforthisisthat ( =ΩR2 M˙- 2/3), the additionalmass loss carries enough at high Ω the neutrin≫o heating rate per unit mass is signifi- toLtal angAul∝ar momentum to increase the overall spin-down cantlyreducedbelowitsNRNMvaluebecausecentrifugally- rate.ThehighmasslossaccompanyingtheKelvin-Helmholtz acceleratedmatterspendsless time inthe regionwhereneu- epochcanthereforeefficientlyextracttherotationalenergyof trinoheatingis important. Because the wind absorbsless of thePNS. Figure 5 shows τ calculated directly from our wind solu- circ6uTmCsQtantoceosktΩheRηA==v1ra(RssAu)m=pvtiMonanisdnaostsuapmpelidcaηb=le,1.evWeneifinntdhethFatMinRsloimmiet tionsasafunctionoJfPatLν¯e,51=8forseveralmagneticfield (seeFig.4). strengths(seealsoTable1). Ournumericalresultsagreewell 9 10-1 1012 10-2 1010 M/s) ........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ 10-3 3cm) 108 .( g/ M ( r 106 10-4 104 10-5 2000 4000 6000 10 100 W (s-1) r(km) FIG. 6.— Mass loss rate M˙ as a function of the rotation rate Ω at FIG. 7.—Thedensityprofilesintheinner∼100kmformagnetically- 2L.ν¯5e×=180×141G051(deiragmsosn-d1),foarndBν10=1510G13(aGste(crirsoks)s;),aBlsνo=sh1o0w1n4 Gis(Mt˙ri(aΩn)glfeo)r, sd-r1iv(ednowtteindd),s2o0l0u0tiosn- 1s(adtaLsνh¯ee,d51),=an8d,B50ν0=s-1101(5doGt-,dΩas=he7d0).00Trsi-a1ng(sleosl,idc)r,o5s0se0s0, cLrν¯eeas=es3.w5i×th1in0c5r1eaesrignsgsΩ- 1aannddBBννbe=c2au.5se×ce1n0t1r4ifuGga(dlosuttpepdo,rdtieaxmpoanndd)s.thM˙ehiny-- aAnldfédniaramdoiunsd,sremsparekctitvheelys.loFworpoalilnto,ftthheersaodliuutsiownsh,etrheeTsu=pe0r.s5onMiceVp,oratniodnthoef dhroowsetavteicr,aMt˙m(oΩs)phneorelo(snegeerFiign.c7re)a.sFeosrwsuitfhficiinecnrtelyaslianrggeBBννb(e&caBuscfe;ethqe.[w26in])d, tmheagdneentiscityacpcreolefirlaetiiosna.lteFroedrsforolumtiothnastwofithatΩhe&rm3a0ll0y0-dsri-v1enthesodluetniosintydusceatloe corotates pastthesonicpoint. Anapproximate fittothenumericalresults heightinthesubsonicportionofthewind(interiortothetriangle)issignifi- inthislimitisgivenbyequation(24). cantlylargerduetocentrifugalsupport. Thisenhancesthemasslossrateas showninFigure6. withtheanalyticestimatesinequation(23)forwindsthatare R Ω&c ,wherec isthesoundspeedatthePNSneutri- intheFMRlimit(i.e.,P.P ;eq.[18]). Thesharpdecline ν s,ν s,ν FMR in τ at shortP is dueto the factthatτ M˙- 1/3 andthat M˙ nosphere. We find that the inner sound speed depends only is enJhanced by centrifugalflinging forJra∝pid rotation. Note, weakly on the neutrino luminosity: cs,ν ≈0.12(Lν¯e,51/8)0.08 c,andthusthatmasslossisenhancedfor however, that only for B &1015 G is τ τ 10 s for ν J KH a millisecondrotator. For Bν =1013 G and∼large P∼the solu- Ω&3600(Lν¯e,51/8)0.08s- 1. (25) tionsareprimarilythermally-drivenandτ isindependentof J ˙ P; this occurs because both the Alfvén radius R and mass- Thisregionis denoted“M Enhanced”in Figure1. Equation ˙ A lossrateM(andhenceτ )areindependentofrotationratefor (25) is in good agreement with our numerically determined J thermally-drivenwinds. valueofΩcfdefinedinequation(24). ˙ TheAlfvénradiusandspin-downtimescalculatedinequa- TheenhancementofM impliedbyequations(24)and(25) ˙ tions(22)and(23)dependonthemassloss rateM fromthe does not explicitly depend on the magnetic field strength. PNS, which itself depends on the PNS’s rotation rate and However,centrifugalsupportofthePNSatmosphereonlyoc- magneticfieldstrength. Figure6showsourdeterminationof cursifthefieldcansustaincorotationouttothesonicradius M˙ asafunctionofΩforfieldstrengthsBν =1013,1014,2.5 Rs;otherwiserotationhasmuchlessofaneffectonthemass Lt1i0νo¯e1n,45,1fo=arnP3d.5.1.02T1-53heGmmsaaatsnsLdν¯laoe,ls5s1so=riant8ce,reinaancserdesaBwsνeitsh=rBa2pν.i5,dtl×hyo1wu0gi1th4hitGrosata×at--t l(qoeusqis.re[rm1a9tee]n)(,tswoefehcitcohhreoitnsaottliuuortnniooinmustptwloieitRshsBlcνoawn>bBBeνcfw,inrwithFteeingre.a6s)R.AT>heRrs,ec-f ubryacteosmfpoarrtihnegltahregBesνt=m2a.g5net1ic0fi14eGldasntrden1g0t1h5sG,assocluatniobnes.seFeonr Bcf≃2×1014η- 3/4M˙-13/2Pm1/s2G. (26) × suffic˙ientlylarge Bν, such that RA&Rs, we find empirically ForBν &Bcf,themasslossfromthePNSnolongerincreases thatMisgivenby with increasing B (see Fig. 6) because the wind already ν ˙ M˙ M˙ exp[(Ω/Ω )2] M˙ , (24) co-rotates out to the sonic radius where M is set. In deriv- ˙ ≃ NRNM cf ≡ cf ing Bcf in equation (26), we have used equation (22) for RA where M is the mass-loss rate for NRNM winds because,undermostconditions,a windthatiscentrifugally- NRNM (eq.[15])andΩcf≈2700(Lν¯e,51/8)0.08s- 1. supported will automatically be in the FMR limit, although the converseis notnecessarily true. We note that even rela- The enhanced mass loss shown in Figure 6 is due to the tivelyweakly-magnetizedPNS’sthatarerapidlyrotatingwill effectofstrongmagneticfieldsandrapidrotationonthesub- experiencesomedegreeofenhancedmassloss. Forinstance, sonic, hydrostatic structure of PNS winds. Figures 7 and 8 for Ω=7000 s- 1, even the lowest field strength solution in show the density and temperature profiles, respectively, for Figure6(B =1013G)hasamass-lossratealmostanorderof windswithBν=1015GandLν¯e,51=8atseveralrotationrates. magnitudelνargerthanitsNRNMvalue. For the most rapidly rotating solution (solid line), Figure 7 showsthatcentrifugalsupportissufficienttoexpandthescale Thenon-relativisticcalculationswehavepresentedhereare heightofthe hydrostaticatmosphereatsmallradii, resulting onlyapplicableformagnetizationsσ<1;thisisequivalentto inthemuchhighermasslossratesseeninFigure6. Analyti- requiringR <R c/Ω,theradiusofthelightcylinder.For A L ≡ cally,weexpectthecentrifugalsupporttobeimportantwhen σ >1 the PNS wind becomes relativistic and its spin-down 10 fields and rapid rotation. Rather, we assume that the PNS 10 has cooled to its final radius and completely established its globalfieldbyatimet 1sfollowingcore-collapse;wecan 0 ∼ thenusethecalculationspresentedinthispapertoinvestigate thesubsequentevolutionofthePNS.Followingt weassume 0 a simplified PNS cooling evolution (similar to that used in TCQ,motivatedbyFigure14ofPonsetal.1999): V) 1 Me t - δ T( Lν¯e,51(t)=L0 τ :t0<t<τKH (cid:18) KH(cid:19) Lν¯e,51(t)=L0exp[- (t- τKH)/τKH]:t>τKH, (28) where, for definitiveness in what follows, we take L =0.2, 0 0.1 t =1 s, τ =40 s, and δ=1. Thiscoolingevolutionis ap- 0 KH proximatebecausemagnetar-strengthfieldsandrapidrotation couldalterτ ortheformofthecoolingprofile(e.g.,δ)by KH 10 100 affectingtheneutrinoopacityorthedynamicsofthecontrac- r(km) tionitself (e.g., Villain et al. 2004; Dessartet al. 2006). For FIG.8.—Thetemperatureprofilesintheinner∼100kmformagnetically- instance, in 1D collapse calculations with rotation, Thomp- sd-r1iv(ednowtteindd),s2o0l0u0tiosn- 1s(adtaLsνh¯ee,d51),=an8d,B50ν0=s-1101(5doGt-,dΩash=e7d0).00Trsi-a1ng(sleosl,idc)r,o5s0se0s0, stootna,lQnueuattarienrot,l&umBiunrorsoiwtysa(t20t05)0f.o6usndafttheartbfoournPc∼e i1s ms5,0th%e anddiamondsmarktheslowpoint,theradiuswhereT =0.5MeV,andthe smallerthaninanon-rotating≃PNS. ∼ Alfénradius,respectively.Noticethatinallbutthemostrapidly-rotatingcase theT=0.5MeVradiusislocatedbetweentheslowpointandtheAlfvénra- Thedominantuncertaintyinapplyingourresultstomagne- dius,whichimpliesthatthereissignificantmagneticaccelerationofthewind tizedPNSevolutionisthatwehaveassumedamonopolefield attheT =0.5MeVradius.AsshowninFigure12,thissignificantlyreduces thedynamicaltimeatT=0.5MeV,makingmagnetically-drivenPNSwinds geometry. To relate our results to more realistic dipole sim- more favorable for r-process nucleosynthesis than thermally-driven winds ulations, we use the recent axisymmetric, relativistic MHD (see§4.3). simulationsofB06,whosimulateneutronstarspin-downfor propertieswillchange(see 4.1foradiscussion).Usingequa- σ 0.3- 20. B06showthattheenergyandangularmomen- ˙ § tum≈lossratesfromaligneddipolespin-downcanbedescribed tion(24)forM(i.e.,assumingB >B ),themagnetizationis ν cf accuratelybymonopoleformulaeprovidedthey are normal- givenby ized to just the open magneticflux; for instance, we can ac- σ≃0.05B214Pm- 2s(Lν¯e,51/8)- 2.5exp[- 5.4Pm- 2s(Lν¯e,51/8)- 0.16(]2.7) creunraotremlyalaizpaptliyonooufrBres.ults for τJ (eq. [23]) with a suitable ν The σ = 1 boundary is denoted by a dotted line in Figure To apply the results of B06 we need to estimate the open 1. PNSs with σ >1 and Lν¯e,51 &0.1 will experience a rel- magneticfluxin PNS winds. Inforce-freespin-downcalcu- ativistic phase accompanied by significant mass loss; this lations motivated by pulsars it is generally assumed that the masslosskeepsthewindmildlyrelativistic,incontrasttothe radius of the last closed magnetic field line (the “Y point” muchhigherσ spin-downthatwillcommencefollowingτ KH R ) is coincident with the light cylinder (Contopoulos et (Lν¯e,51≪0.1). alY. 1999; Gruzinov2005) so that the ratio between the frac- tionofopenmagneticfluxinthedipoleandmonopolecasesis 4. APPLICATIONSANDDISCUSSION R /R =R /R . Thisassumptionissupportedbyforce-free ν Y ν L simulations(Spitkovsky2006;McKinney2006),whichshow 4.1. MagnetizedPNSEvolution that when mass-loading is completely negligible (σ ), →∞ R R . However, B06 show that rapidly rotating, mildly Withournumericalresultsinhandthatsampleawiderange Y ≃ L mass-loaded MHD winds have a larger percentage of open of PNS wind conditions, we can begin to address the time magneticfluxthanvacuumorforce-freespin-downwouldim- evolution of a cooling, magnetized PNS. In the early stages ply(i.e., R <R ). FromTable4 ofB06we fittheapproxi- following the launch of SN shock the PNS is likely hot and Y L matepowerlaw inflated,witharadiusexceedingthevalueofR =10kmthat ν R /R 0.31σ0.15 (29) we have assumed in all of the calculations presented in this Y L≃ paper. This early phase is likely to be thermally-driven for for the range σ [0.298,17.5] and for a fixed rotation pe- allbutthemosthighly-magnetizedproto-magnetars,and,ifa riodoforderone∈millisecond. Althoughthereareuncertain- dynamoisatwork,thelarge-scalefielditselfmaystillbeam- tiesinquantitativelyextrapolatingB06’sresults,reachingthe plifyingduringthisphase(Thompson&Duncan1993). Us- pureforce-freelimitwithR R appearstorequireσ 1. Y L ingthecollapsecalculationsofBruenn,DeNisco,&Mezza- Wethereforeconcludethatm≃agnetized,rapidlyrotating≫PNS cappa(2001)(froma15M⊙progenitorofWoosley&Weaver winds(withσ 10- 3,103 fort <τKH undermostcircum- 1995)T01fitanapproximatefunctionalformtothePNSra- stances)willty∈pic{allyposse}ssexcessopenmagneticflux. dial contraction: R t- 1/3 such that R (1 s) 15 km and R (2 s) 12 km. νT∝he recent SN simuνlations≃of Buras et BecausetheresultsofB06forRY/RLcoveronlyarelatively ν ≃ narrowportionofPNSparameter-spacewemustproceedwith al.(2003,2006)withBoltzmannneutrinotransportfindasim- cautioningeneralizingtheirresultstoourcalculations;onthe ilarneutrinosphereradiusatt 1safterbounce. ∼ otherhand,theirbasicconclusionshowsaweakdependence Wedonotattempttoaddresstheuncertaintiesinearly-time onσandΩ,andhasasolidtheoreticalexplanation(Mestel& PNScoolingcalculations,especiallyinthepresenceoflarge Spruit1987).Hence,wehaveattemptedtoapplytheresultsof

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.