P R I N C I P L E S A N D P R A C T I C E Philippe Déjardin (Ed.) Proteins at Solid–Liquid Interfaces With165Figuresand32Tables 123 Dr.PhilippeDéjardin DirecteurdeRechercheCNRS IEM–UniversitéMontpellier2 CC047 2PlaceEugèneBataillon 34095MontpellierCedex5 France e-mail:[email protected] LibraryofCongressControlNumber:2006927284 ISBN-103-540-32657-XSpringerBerlinHeidelbergNewYork ISBN-13978-3-540-32657-1SpringerBerlinHeidelbergNewYork This work is subject to copyright. All rights reserved, whether the whole or part of the materialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations, recitation,broadcasting,reproductiononmicrofilmorinanyotherway,andstorageindata banks.Duplicationofthispublicationorpartsthereofispermittedonlyundertheprovisions oftheGermanCopyrightLawofSeptember9,1965,initscurrentversion,andpermission forusemustalwaysbeobtainedfromSpringer.Violationsareliableforprosecutionunder theGermanCopyrightLaw. SpringerisapartofSpringerScience+BusinessMedia springer.com ©Springer-VerlagBerlinHeidelberg2006 Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Editor:Dr.SabineSchreck,Heidelberg,Germany DeskEditor:Dr.JuttaLindenborn,Heidelberg,Germany Coverdesign:design&production,Heidelberg,Germany Typesettingandproduction:LE-TEXJelonek,Schmidt&VöcklerGbR,Leipzig,Germany 31/3100-YL-543210-Printedonacid-freepaper Preface The adsorption of proteins at interfaces plays a role in many fields, such ashealth,food,environmentandanalysis.Fundamentalaspectsareuseful when considering applications. We focus here especially on solid–liquid interfacesandpresentafewfundamentalstudiesregardingadsorptionki- neticsandconformationalchanges,andexamplesofapplicationstosensors andmembranes. Thefirstpartisdedicatedtofundamentalstudiesperformedusingop- ticalwaveguidelightmodespectroscopy,asanexampleofatechniquethat hastheadvantageofnotrequiringlabelledproteins,butislimitedtospe- cific supports. Conversely, the radiolabelling of proteins, which has the disadvantageofanylabellingprocess,allowsapplicationtoanykindofsur- faces. As proteins bearbothpositive andnegative charges, we canexpect the influence of an electric field normal to the interface on the packag- ing order at interfaces. The refining of data treatment may also lead to the determination of useful structural parameters. The balance between protein–surfaceandprotein–proteininteractionsisakeypointforthede- scription of the structure at high coverage of the surface. Electrokinetic methods,like measurement of thestreaming potential, maybehelpful in theelectricalcharacterisationoftheinterfaciallayerfacingthesolution. The second part includes different bench techniques that were devel- oped to improve the sensitivity of the characterisation of the orientation andstructureoftheproteinsatinterfaces:dualpolarisationinterferometry and total internal reflection ellipsometry are such recent examples. Con- cerningthedeterminationofthesecondarystructureatinterfaces,Fourier transform infrared (FTIR) spectroscopy and circular dichroism are very welladapted.Applicationtoflatmodelsurfacescanbeperformedbyusing the attenuated total reflectance-FTIR technique. The accessibility to the internalpartofglobularproteinsismeasuredbythehydrogen–deuterium exchange rate. The evaluation of proteins on biodevices by time of flight – secondary ion mass spectroscopy is certainly a challenge given the size ofthemolecules.Datatreatmentaccordingtomutualinformationtheory, however,mightbeveryhelpful. The third part considers studies more closely linked to applications. Determination of the conformation and orientation of the proteins at in- VI Preface terfacesisofparticularimportancefortheunderstandingofthebehaviour ofcellsatinterfaces.Amodelstudyispresentedwithfibronectinatpoly- mer surfaces with graded characteristics such as hydrophilicity, charge densityandswelling.Inadditiontosensors,materialswithalargeareaof contactwithsolutionscontainingproteinscanbeusedinlarge-scaleappli- cations.Microporousmembranesandtextilesaretypicallyrepresentative of this category. They can act as concentrators of enzymes for the high- yield transformation of substrates. The biocompatibility of these materi- als,however,withthespecificsignificanceofanti-foulingpropertiesand/or retainingenzymeactivity,isakeyparameterforsatisfactoryfunctioning. Different approaches for obtaining protein-resistant surfaces from poly- acrylonitrilemembranesarepresented.Themodulationoftheadsorption andactivityofbiomoleculescanalsobeperformedbysurfacemodification ofpolypropylenemembranes.Oneimportant“bio-inspired”routetosur- facemodificationistheintroductionofphosphorylcholinemoieties,since thezwitterionicgroupofthephospatidylcholineandsphingomyelinpolar headcoversalargefractionoftheexternalsurfaceoftheerythrocyteand plateletmembranes. Iwouldliketothanktheauthorsfortheircontributionsandtheeditorial staff of Springer for their assistance. I hope that this book may stimu- lateinitiativesofworkintheconstantlyrenewingandfascinatingfieldof interfacialphenomena. Montpellier,February2006 PhilippeDéjardin Contents Part I Analysis of the Adsorption Kinetics 1 ProteinAdsorptionKinetics: InfluenceofSubstrateElectricPotential 1 PaulR.VanTassel 1.1 Introduction.................................................................. 1 1.2 TheoreticalPrediction..................................................... 2 1.3 ExperimentalMeasure..................................................... 6 1.3.1 OWLSPrinciples.................................................. 6 1.3.2 OWLSExperiments.............................................. 8 1.4 Results.......................................................................... 9 1.5 Discussion..................................................................... 17 1.5.1 Surface-BoundCounterions................................... 19 1.5.2 LocalpHEffects................................................... 20 1.5.3 SolventInterfacialStructure .................................. 20 1.5.4 ProteinChargeHeterogeneity................................ 20 1.6 Conclusions................................................................... 21 References............................................................................. 21 2 FromKineticstoStructure:HighResolutionMolecularMicroscopy 23 JeremyJ.Ramsden 2.1 Introduction.................................................................. 23 2.2 OpticalWaveguideLightmodeSpectroscopy....................... 25 2.2.1 PrinciplesofOpticalBiosensing............................. 27 2.2.2 ModeEquationsforOWLS .................................... 28 2.2.3 TheUniformThinFilmApproximation(UTFA)....... 30 2.2.4 OpticalInvariants................................................. 31 2.3 ThePracticalDeterminationofWaveguideParameters ........ 34 2.3.1 DeviceFabrication ............................................... 35 2.3.2 FluidHandlingArrangements................................ 36 2.4 StaticStructure............................................................... 37 2.5 KineticAnalysisandDynamicStructuralInference............. 37 2.5.1 ParticleTransport ................................................ 37 VIII Contents 2.5.2 TheChemicalAdsorptionCoefficient...................... 40 2.5.3 TheAnalysisofTheAvailableAreaFunction............ 41 2.6 BehaviourofRealProteins............................................... 43 2.6.1 EvaluationofLateralDiffusivity and2DCrystalUnitCellSize ................................. 44 2.6.2 Desorption.......................................................... 45 2.6.3 Multilayers.......................................................... 46 2.7 Conclusions................................................................... 47 References............................................................................. 48 3 InitialAdsorptionKineticsinaRectangularThinChannel, andCoverage-DependentStructuralTransitionObserved byStreamingPotential 51 PhilippeDéjardin,ElenaN.Vasina 3.1 Introduction.................................................................. 51 3.2 TheInitialAdsorptionConstantanditsLimitExpressions.... 56 3.2.1 TheLocalInitialAdsorptionConstantk(x), itsLimitExpressionsandApproximation................. 56 3.2.2 TheMeanAdsorptionConstant, itsLimitExpressionsandApproximation................. 59 3.2.3 ExperimentalResultsandDiscussion...................... 61 3.3 TheStructuralTransitionwithIncreasing InterfacialConcentration................................................. 63 3.3.1 ObservationbyStreamingPotential........................ 64 3.3.2 DifferentModels.................................................. 66 3.4 Conclusion .................................................................... 67 Appendix............................................................................... 68 References............................................................................. 69 Part II Analysis of the Structure at the Interface 4 DualPolarisationInterferometry:AnOpticalTechnique toMeasuretheOrientationandStructureofProteins attheSolid–LiquidInterfaceinRealTime 75 NevilleFreeman 4.1 Introduction.................................................................. 75 4.2 ExperimentalApproachesAdopted ................................... 79 4.2.1 TypicalApproachAdopted .................................... 79 4.2.2 ExperimentalProtocols......................................... 79 4.2.3 Advantages.......................................................... 79 4.2.4 VerifyingDPIasanExperimentalApproach ............ 80 Contents IX 4.3 DPI:Applications............................................................ 80 4.3.1 Introduction........................................................ 80 4.3.2 ProteinOrientation .............................................. 81 4.3.3 BovineSerumAlbuminStructures atpH3andpH7.................................................. 82 4.3.4 ProteinOrientationandSubsequentActivity............ 83 4.3.5 ProteinStructureandSmallMoleculeInteractions.... 87 4.3.6 ProteinStructureandMetalIonInteractions............ 90 4.4 FutureDevelopments ...................................................... 91 4.5 Conclusions................................................................... 93 Appendix1DPI:Background................................................... 93 A.1.1 NeutronReflection............................................... 93 A.1.2 SurfacePlasmonResonance................................... 94 Appendix2DPI:Theory.......................................................... 95 Appendix3DPI:Implementation.............................................. 99 A.3.1 Hardware............................................................ 99 A.3.2 DataAnalysis....................................................... 101 References............................................................................. 102 5 TotalInternalReflectionEllipsometry: MonitoringofProteinsonThinMetalFilms 105 MichalPoksinski,HansArwin 5.1 Introduction.................................................................. 105 5.2 TotalInternalReflectionEllipsometry................................ 106 5.3 ExperimentalSetup......................................................... 110 5.4 ApplicationExamples...................................................... 113 5.5 FurtherPossibilities........................................................ 117 References............................................................................. 118 6 ConformationsofProteinsAdsorbedatLiquid–SolidInterfaces 119 SylvieNoinville,MadeleineRevault 6.1 Introduction.................................................................. 119 6.2 ExperimentalTechniques................................................. 125 6.2.1 High-ResolutionStructureofProteins..................... 125 6.2.2 SecondaryStructureofProteins............................. 126 6.2.3 Orientation,LocalisedStructuralInformation.......... 127 6.2.4 SpatialDistributionofProteins intheAdsorbedLayer........................................... 128 6.2.5 SolvationInformation........................................... 129 6.3 SurfaceEffectsonBothProteinStructure andSolvationbytheATR-FTIRTechnique.......................... 130 6.3.1 FTIRSpectralAnalysis.......................................... 130 X Contents 6.3.2 ProteinsinSolution.............................................. 132 6.3.3 Surface-InducedConformationalChanges ofaSoftProtein:BSA............................................ 134 6.3.4 Surface-InducedConformationalChanges ofaHardProtein:Lysozyme.................................. 138 6.3.5 Foldingorunfoldingofproteins onhydrophobicsupports....................................... 141 6.4 Conclusion .................................................................... 142 References............................................................................. 142 7 EvaluationofProteinsonBio-Devices 151 SatokaAoyagi,MasahiroKudo 7.1 Introduction.................................................................. 151 7.2 Time-of-FlightSecondaryIonMassSpectrometry (TOF-SIMS)................................................................... 153 7.2.1 PrinciplesofTOF-SIMS......................................... 153 7.2.2 TOF-SIMSSpectraandSecondary-IonImages.......... 156 7.2.3 DataAnalysis....................................................... 157 7.3 AnalysisofProteinsonBio-Devices................................... 161 7.3.1 CharacterizationofProteinsonSubstrates............... 161 7.3.2 InvestigationofConformationandOrientation ofProteinsonSubstrates....................................... 164 7.3.3 ImagingofProteinDistribution............................. 165 7.3.4 OtherPointsandFutureDirections......................... 168 7.4 Summary....................................................................... 169 References............................................................................. 169 Part III Some Applications 8 FibronectinatPolymerSurfaceswithGraduatedCharacteristics 175 TiloPompe,LarsRenner,CarstenWerner 8.1 Introduction.................................................................. 175 8.2 GradatedSubstratePhysicochemistry................................ 177 8.3 FibronectinExchangeataConstantSurfaceConcentration... 181 8.4 FibronectinExchangeatVariableSurfaceConcentrations..... 188 8.5 RelevanceoftheInterfacialConstraints ofFibronectinforCell-MatrixAdhesion............................. 195 References............................................................................. 197 Contents XI 9 DevelopmentofChemicalMicroreactors byEnzymeImmobilizationontoTextiles 199 ChristopheInnocent,PatrickSeta 9.1 Introduction.................................................................. 199 9.2 NonconductingCellulosicTextiles..................................... 201 9.2.1 PepsinandTrypsinImmobilizationonCotton.......... 201 9.2.2 ImmobilizationofUricaseandXanthineOxidase onIon-ExchangingTextiles.................................... 211 9.2.3 UreaseElectrodialysisCoupling ............................. 223 9.3 Electron-ConductingTextile............................................. 227 9.3.1 EnzymeImmobilizationonCarbonFelt .................. 227 9.3.2 ElectrocatalysisCouplingwithEnzyme-Conducting TextileCatalyticReactivity .................................... 238 References............................................................................. 242 10 ApproachestoProteinResistanceonthePolyacrylonitrile-based MembraneSurface:anOverview 245 Ling-ShuWan,Zhi-KangXu,Xiao-JunHuang 10.1 Introduction.................................................................. 245 10.2 CopolymerizationProcedures........................................... 246 10.3 Poly(ethyleneglycol)Tethering......................................... 252 10.4 PhysicalAdsorption........................................................ 257 10.5 BiomacromoleculeImmobilization.................................... 259 10.6 BiomimeticModification................................................. 263 10.7 Conclusion .................................................................... 266 References............................................................................. 268 11 ModulationoftheAdsorptionandActivityofProtein/Enzyme onthePolypropyleneMicroporousMembraneSurface bySurfaceModification 271 QianYang,Zhi-KangXu,Zheng-WeiDai 11.1 SurfaceModificationsforReducingNonspecific ProteinAdsorption......................................................... 271 11.1.1 Plasmatreatment................................................. 273 11.1.2 Ultraviolet(UV)modification................................ 276 γ 11.1.3 -Ray-inducedmodification.................................. 282 11.1.4 OzoneMethod..................................................... 285 11.2 Surface-ModifiedPPMMsforEnzymeImmobilization......... 286 11.2.1 PhysicalAdsorption/Entrapment............................ 287 11.2.2 CovalentBinding.................................................. 289 11.2.3 Site-SpecificImmobilization.................................. 294 11.3 Conclusions................................................................... 295 References............................................................................. 295