PPrrooggrreessss iinn MMoolleeccuullaarr aanndd SSuubbcceelllluullaarr BBiioollooggyy SSeerriieess EEddiittoorrss:: WW..EE..GG.. MMUülllleerr ((MMaannaaggiinngg EEddiittoorr)),, PPhh.. JJeeaanntteeuurr,, 2299 II.. KKoossttoovviicc,, YY.. KKuucchhiinnoo,, AA.. MMaacciieeiirraa--CCooeellhhoo,, RR.. EE.. RRhhooaaddss Springer-Verlag Berlin Heidelberg GmbH Michele Reboud-Ravaux (Ed.) Protein Degradation in Health and Disease With 12 Figures Springer Professor Dr. MICHELE REBOUD-RAVAUX Laboratoire d'Enzymologie Moleculaire et Fonctionnelle Departement de Biologie Cellulaire Institut Jacques Monod Universites Paris VI & VII 2, Place Jussieu 75251 Paris Cedex 05 France ISSN 0079-6484 ISBN 978-3-642-62714-9 ISBN 978-3-642-56373-7 (eBook) DOI 10.1007/978-3-642-56373-7 Library of Congress Cataloging-in-Publication Data Protein degradation in health and disease 1 Michele Reboud-Ravaux (ed.). p. cm. - (Progress in molecular and subcellular biology, ISSN 0079-6484; 29) Includes bibliographical references and index. ISBN 3540425942 (hbk.) 1. Proteins - Metabolism. 2. Proteins - Metabolism - Disorders. 3. Proteins - Pathophysiology. 4. Brain - Aging - Molecular aspects. 1. Reboud - Ravaux, Michele, 1945- II. Ser ies. QP551 .P6958176 2002 612.3'98 - dc21 Additional material to this book can be download from http://extras.springer.com. This work is subject to copyright. AII rights reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for pro secution under the German Copyright Law. http.llwww.springer.de © Springer-Verlag Berlin Heide1berg 2002 Originally published by Springer-Verlag Berlin Heidelberg New York in 2002 Softcover reprinl of tbe hardcover 1s I edition 2002 The use of general descriptive names, registered names, trademarks, etc. in this publicat ion does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: Meta Design, Berlin Typesetting: Best-set Typesetter Ud., Hong Kong SPIN 10772617 39/3130 - 5 4 3 2 1 0-Printed on acid-free paper Preface Proteolytic processes occur in all cell compartments. These processes involve breaking one or more peptide bonds to unmask or suppress a physiological function, or to promote intracellular traffic. Proteolytic degradation can also lead to total protein hydrolysis and the release of amino acids. Proteases, which selectively catalyze the hydrolysis of peptide bonds, are implicated in protein turnover (synthesis and degradation) and protein function. Therefore, they playa major role in the dynamic processes that maintain cellular homeosta sis, as well as in fundamental biological processes such as cell migration, tissue differentiation, and development. Research into protein degradation, and into the structure-function and regulation of proteases, has a long history. The world of proteolysis and protein turnover research is expanding very rapidly, and it would be quite impossible to cover all the new aspects of this field. This book concentrates on giving an idea of the current thinking about protein degradation via intracellular proteolysis, focusing on the effects of aging and the links with diseases. The multitude of biological processes regulated by proteolytic enzymes, includes (I) the rapid elimination of key regulatory proteins (such as cyclins) and rate-limiting enzymes that are required for regulating the cell cycle, gene transcription and metabolic pathways; and (2) the rapid degradation of cell proteins with abnormal conformations, whose accumulation could be damag ing. Eukaryotic cells contain several proteolytic systems, including lysosomal proteases, calpains, and proteasome. The crucial role of the proteasome will be discussed in particular. Its importance in cellular responses is demonstrated using selective inhibitors. Protein degradation by proteasomes is also crucial in the propagation of diseases such as neurological and metabolic disorders, cancers, and viral escape from immune surveillance. The buildup of damaged proteins with age indicates the importance of the impairment of proteasome housekeeping in the aging process. The enormous progress in the methodol ogy of proteomics, by mapping the relationships between whole proteins and their changes in aging and diseases, will considerably facilitate the investigation of the mechanisms implicated in the age-related decline of protein degradation, and how it is altered in various diseases such as Alzheimer's disease. Paris, February 200 I MICHELE REBOUD-RAVAUX Contents Roles of SCF and VHL Ubiquitin Ligases in Regulation of Cell Growth Takumi Kamura, Joan W. Conaway, and Ronald C. Conaway 1 Introduction ...................................... . 1 2 Architectures of the SCF and VHL E3 Ubiquitin Ligases .... . 2 2.1 The Cullin Proteins ................................. . 3 2.2 The RING Finger Protein Rbxl ....................... . 4 3 Targets of the SCF Ubiquitin Ligase .................... . 4 3.1 The S. cerev;s;ae SCFld<4 Complex ..................... . 4 3.2 The S. cerev;s;ae SCF(;rrl Complex ..................... . 5 3.3 The S. cerev;s;ae SCF~lft\O Complex ..................... . 6 3.4 The Mammalian SCFSkp2 Complex ..................... . 6 3.5 The Mammah•a n SCF 1l·IRC.P Complex .................... . 7 4 The von Hippel-Lindau Ubiquitin Ligase ............... . 7 4.1 The VHL Tumor Suppressor Protein ................... . 7 4.2 Hypoxia-Inducible Transcription Factors Are Targets of the VHL Ubiquitin Ligase .......................... . 8 5 Regulation of SCF and VHL Ubiquitin Ligase Activities .... . 9 5.1 Stimulation of SCF and VHL Ubiquitin Ligase Activities by NEDD8 Modification of Cullin Proteins .............. . 9 5.2 Autocatalytic Ubiquitylation and Degradation of F-box Proteins ................................... . 9 References ......................................... 10 Aging of Proteins and the Proteasome Bertrand Friguet 1 Introduction ...................................... . 17 2 Proteins: Cellular Targets for Oxidative Damage .......... . 18 3 Proteins: Cellular Targets for Other Damaging Processes ......................................... . 21 4 Oxidized Proteins Degradation by the Proteasome ........ . 22 5 Proteasome and Oxidative Stress ...................... . 24 6 Proteasome and Aging .............................. . 25 References ........................................ . 28 VIII Contents Protein Degradation in the Aging Organism Walter F. Ward Introduction .................... .................. . 35 2 Pathways of Protein Degradation and How They Are Affected by Age ................................ . 36 2.1 The Heterophagic Pathway of Protein Degradation ........ . 36 2.2 Pathways of Autophagic Protein Degradation .......... .. . 37 2.2.1 Macroautophagy ................................... . 37 2.2.2 Microautophagy ................................... . 38 2.2.3 Chaperone-Mediated Autophagy ...................... . 38 2.2.4 Crinophagy ....................................... . 39 3 Cytosolic Pathways of Protein Degradation .............. . 39 3.1 The Proteasome .................................... . 39 3.2 The Cal pains ....... ............... ................ . 40 4 Summary ... ...................................... . 41 References ........................................ . 41 Protein Degradation in Alzheimer's Disease and Aging of the Brain Teruyuki Tsuji and Shun Shimohama 1 Introduction .................................. .... . 43 2 Amyloid and Presenilin ............................. . 44 3 PS Mutant Activity ................................. . 44 3.1 Proteolytic Maturation of PS ......................... . 45 3.2 The Role of PS in AP Metabolism ..................... . 46 4 Tau Phosphorylation and Filamentous Aggregation ....... . 47 4.1 Tau Protein in AD .................................. . 48 5 Alpha-Synuclin in Lewy Body Disease .................. . 49 6 Ubiquitin ......................................... . 50 6.1 Ubiquitin and AD .................................. . 52 6.2 Ubiquitin and PD .................................. . 53 7 Calpain and AD .................................... . 54 8 Other Protein Degradation Mechanisms and Future Directions ............................... . 55 References ......................................... 56 Protein Degradation in Human Disease Richard K. Plemper and Anthea L. Hammond 1 Introduction ...................................... . 61 2 The Ubiquitin-Proteasome Degradation System .......... . 61 2.1 Diseases Associated with the Ubiquitin- Proteasome Pathway ................................ . 67 2.l.l Neurological Disorders .............................. . 67 2.1.2 Malignancies ...................................... . 72 Contents IX 2.1.3 Metabolic Disorders ................................ . 73 2.1.4 Viral Escape from Immune Surveillance ................ . 76 3 Lysosomal Degradation ............................. . 78 References ........................................ . 79 The 26S Proteasome Olivier Coux Introduction ...................................... . 85 2 The Vb-Proteasome Pathway ......................... . 87 3 The 26S Proteasome, a Multi-enzymatic Degradation Machine ............................... . 89 3.1 Enzymatic Activities of the 26S Proteasome ............. . 89 3.1.1 Proteolytic Activities ................................ . 89 3.1.2 Roles of the ATPases of the 19S Complex ............... . 92 3.1.2.1 Channel Opening ................................ . 93 3.1.2.2 Substrate Unfolding .............................. . 94 3.1.2.3 Substrate Translocation into the 20S Proteasome ......... . 95 3.1.3 Release from the Poly-Vb Chain and Vb Recycling ........ . 96 3.2 Assembly of the 26S Proteasome ...................... . 97 3.3 Substrate Recognition ............................... . 99 4 Perspectives ....................................... . 101 References ........................................ . 101 Proteasome Inhibitors Michele Reboud-Ravaux 1 Introduction ....................................... 109 2 Molecular and Mechanistic Bases for Design. . . . . . . . . . . . . . 109 2.1 Crystallographic Structures of Inhibitor- Proteasome Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 2.2 Mechanism of Peptide Hydrolysis ...................... 11 0 2.3 High Molecular Weight Inhibitors ...................... II 1 3 Low Molecular Weight Inhibitors of the Proteasome . . . . . . . . 112 3.1 Stable Acyl-Enzymes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 3.1.1 DCI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 3.1.2 Lactacystin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 3.2 Transition State Analogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 3.2.1 Peptide Aldehydes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 3.2.2 Peptide Boronic Acids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 3.3 Suicide Substrates ................................... 115 3.4 Non-covalent Inhibitors .............................. 117 3.5 Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 7 4 Towards Therapeutic Applications. . . . . . . . . . . . . . . . . . . . . . 118 4.1 Inflammation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 4.2 Various Cancers .................................... 11 8 x Contents 4.2.1 Immune Diseases ................................... 119 4.2.2 Muscle Wasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 4.2.3 Miscellaneous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5 Conclusion ........................................ 120 References ......................................... 120 Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Roles of SCF and VHL Ubiquitin Ligases in Regulation of Cell Growth w. Takumi Kamura\ Joan Conawar,3,\ and Ronald C. Conawar 1 I ntrod uction Over the past few years, a growing body of evidence has brought to light critical roles for ubiquitin-dependent protein degradation in controlling the cellular levels of a large variety of proteins such as cyclins, cyclin-dependent kinase inhibitors, oncogenes, and tumor suppressors, which play integral roles in regulation of cell growth. Ubiquitin-dependent protein degradation is a complex, multistep process that proceeds with the tagging of target proteins with a poly-ubiquitin chain and culminates with the processive, ubiquitin dependent degradation of tagged proteins by the 26S proteasome (Hershko et al. 1983; Hochstrasser 1995,1996; Hershko and Ciechanover 1998). In the first step, the C-terminus of ubiquitin is covalently linked through a thioester bond to the active site cysteine residue of an El ubiquitin-activating enzyme. Ubiq uitin is then transferred from the El via a thioester linkage to an active site cysteine residue in one of a number of E2 ubiquitin-conjugating enzymes. Ubiquitin is then either (l) conjugated directly via an isopeptide bond to the f-amino group of a lysine in the target protein, (2) conjugated via an isopep tide bond to another ubiquitin moiety on the target protein as part of synthe sis of the poly-ubiquitin tag, or (3) transferred from the E2 via a thioester bond to an active site cysteine residue in one of a growing family of E3 ubiquitin ligases, which then conjugate ubiquitin to specific target proteins. The E3 components of the ubiquitin cascade are responsible for recognizing, binding specifically to, and recruiting target proteins for poly ubiquitylation. E3s fall into two functional classes (Hershko and Ciechanover 1998; Joazeiro and Weissman 2000). One class includes the HECT {homologous I Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan 2 Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, Oklahoma 73104, USA 3 Howard Hughes Medical Institute, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, Oklahoma 73104, USA 4 Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190, USA Progress in Molecular and Subcellular Biology, Vol. 29 Michele Reboud-Ravaux (Ed.) © Springer-Verlag Berlin Heidelberg 2002