ebook img

Protective Effect of the Plant Extracts of Erythroxylum sp. against Toxic Effects Induced by the PDF

14 Pages·2016·1.69 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Protective Effect of the Plant Extracts of Erythroxylum sp. against Toxic Effects Induced by the

molecules Article Protective Effect of the Plant Extracts of Erythroxylum sp. against Toxic Effects Induced by the Venom of Lachesis muta Snake EduardoCoriolanodeOliveira1,RodrigoAlvesSoaresCruz2,NayannadeMelloAmorim1, MarceloGuerraSantos3,LuizCarlosSimasPereiraJunior1,EladioOswaldoFloresSanchez4, CaioPinhoFernandes5,RafaelGarrett6,LeandroMachadoRocha7andAndréLopesFuly1,* 1 DepartmentofMolecularandCellularBiology,InstituteofBiology,FederalFluminenseUniversity, Niterói24020-141,RJ,Brazil;[email protected](E.C.d.O.); [email protected](N.d.M.A.);[email protected](L.C.S.P.J.) 2 DepartmentofBiologicalandHealthSciences,FacultyofPharmacy,FederalUniversityofAmapá, Macapá68903-419,AP,Brazil;[email protected] 3 FaculdadedeFormaçãodeProfessores,UniversityoftheStateofRiodeJaneiro, RiodeJaneiro24435-005,RJ,Brazil;[email protected] 4 LaboratoryofBiochemistryofProteinsfromAnimalVenoms,ResearchandDevelopmentCenter, EzequielDiasFoundation,BeloHorizonte30510-010,MG,Brazil;[email protected] 5 LaboratoryofPhytopharmaceuticalNanobiotechnology,DepartmentofBiologicalandHealthSciences, FederalUniversityofAmapá,Macapá68903-419,AP,Brazil;[email protected] 6 MassSpectrometryLaboratory,InstituteofChemistry,FederalUniversityofRiodeJaneiro, RiodeJaneiro21941-598,RJ,Brazil;[email protected] 7 DepartmentofPharmaceuticalTechnology,FacultyofPharmacy,FluminenseFederalUniversity, Niterói24210-346,RJ,Brazil;[email protected] * Correspondence:[email protected];Tel.:+55-21-2629-2294;Fax:+55-21-2629-2374 AcademicEditor:DerekJ.McPhee Received:12May2016;Accepted:4October2016;Published:11October2016 Abstract: Snake venoms are composed of a complex mixture of active proteins that induce toxic effects, such as edema, hemorrhage, and death. Lachesis muta has the highest lethality indices in Brazil. In most cases, antivenom fails to neutralize local effects, leading to disabilities in victims. Thus,alternativetreatmentsareunderinvestigation,andplantextractsarepromisingcandidates. The objective of this work was to investigate the ability of crude extracts, fractions, or isolated productsofErythroxylumovalifoliumandErythroxylumsubsessiletoneutralizesometoxiceffectsof L.mutavenom. AllsamplesweremixedwithL.mutavenom,theninvivo(hemorrhageandedema) andinvitro(proteolysis,coagulation,andhemolysis)assayswereperformed. Overall,crudeextracts or fractions of Erythroxylum spp. inhibited (20%–100%) toxic effects of the venom, but products achievedaninhibitionof4%–30%. However,whenvenomwasinjectedintomicebeforetheplant extracts,hemorrhageandedemawerenotinhibitedbythesamples. Ontheotherhand,aninhibition of5%–40%wasobtainedwhenextractsorproductsweregivenbeforevenominjection. Theseresults indicatethattheextractsorproductsofErythroxylumspp. couldbeapromisingsourceofmolecules abletotreatlocaltoxiceffectsofenvenomationbyL.mutavenom,aidinginthedevelopmentofnew strategiesforantivenomtreatment. Keywords: Lachesis muta; snake venom; Plants; Erythroxylum ovalifolium; Erythroxylum subsessile; Antivenom Molecules2016,21,1350;doi:10.3390/molecules21101350 www.mdpi.com/journal/molecules Molecules2016,21,1350 2of14 1. Introduction According to the World Health Organization, snake bites are considered neglected diseases and affect 5.5 million people annually, resulting in approximately 400,000 amputations and 120,000 deaths [1,2]. Lachesis muta (Bushmaster) is the longest venomous snake in the Americas, andthesecondbiggestintheworld. ThissnakeispresentintheequatorialforestseastoftheAndes, rangingfromeasternEcuador,Colombia,Peru,northernBoliviaandeasternandnorthernVenezuela, toGuyana,FrenchGuyana,Surinam,andnorthernBrazil. InBrazil,thenumberofaccidentswith L.mutaislower(3%)thanBothrops(90%)orCrotalus(7%),buttheirmortalityratesarethehighest. IntheAmazonrainforest,however,L.mutaaccidentsaccountfor17%ofenvenomation[3,4]. L.muta venomconsistsofamixtureoftoxins,includingmetalloproteases,serineproteases,phospholipasesA , 2 L-aminoacidoxidases,disintegrins,amongothersthatcauselocal(pain,inflammation,tissuenecrosis, edema,vomiting,diarrhea,andbleeding)andsystemiceffects(sweating,renalandcardiacfailure, hypotension,dysphagia,hemorrhage,andshock)[3–5]. Theofficialtreatmentforsnakebitesworldwideistheadministrationofappropriateantivenom, whichhasbeenavailableformorethan100years,anduptonow,isessentiallyperformedusingthe sameprotocol. Antivenomproductioniscarefullycontrolledbygovernments,anditisundoubtedly effectiveagainstthetoxicsystemiceffects,butitdoesnotneutralizethelocalsymptoms,resultingin morbidityordisabilitytovictims[3,6]. Moreover,antivenomtherapyhasotherlimitations,andmay inducesideeffects(mildfeverand/oranaphylaxis),requireslow-temperaturestorage(thisiscriticalfor isolatedregionswithoutelectricpower),andamedicalapparatusforadministrationoftheantivenomis needed. Asaresult,researchersarelookingforalternativetreatmentsabletoblockpathophysiological effectsofsnakebites,andplantextractsarebeingthoroughlyinvestigatedwithpromisingpositive results [6–8]. Thus, screening plants to neutralize the deleterious effects of snake bites deserves attention. However,validationoftheireffectivenessinthescientificliteratureispoor. The utilization of medicinal plants has been in practice over generations by indigenous and non-indigenouscommunities,andpeoplewholiveinpoorordistantareasusenaturalresourcesasa firsttreatmentforsnakebitesaswellasforthetreatmentofseveralpathologiesandillnesses. Thus,the investigationofplantextractsasanantidoteagainsttoxicanddevastatingeffectsofsnakevenom is relevant [9–11]. Molander et al. [12] reported a protective effect of 94 different species of plants regularlyusedinthetraditionalmedicineofAfricaagainstsomesnakevenomtoxins. Erythroxylaceae is a family of flowering trees with tropical and subtropical distribution, and four genera comprise such families: Aneulophus Benth, Erythroxylum P. Br, Nectaropetalum Engl., andPinacopodium. Erythroxylumisconsideredthelargestgenus,with230species[13–18]. InBrazil, thesespeciesoccurintwobiomes: “restinga”(typicalvegetationonquartzite,sandy,nutrient-poor parent materials over the Brazilian coast) and “cerrado” (savannas of central Brazil). A few studiesonpharmacologicaland/orbiologicalfunctionsofErythroxylumspp. havebeenperformed. Picotetal.[19]showedthatthecrudeextractofE.laurifoliumhadaninvivohypoglycemiaaction. Inaddition,numeroustraditionalmedicineapplicationshavebeenreportedforErythroxylumspecies, such as an aphrodisiac, for the treatment of venereal diseases, rheumatism, arthrosis, respiratory infections,andamenorrhea[13,14,17]. Tropanealkaloids,tannins,flavonoids,andterpenesareorganic compounds present in large amounts in this genus, and most of the medicinal effects have been assignedtotheseconstituents[16,18].However,toourknowledge,thereisnodataabouttheantivenom effectofErythroxylumspecies. 2. ResultsandDiscussion Inthiswork,theabilityofstemextractsofE.ovalifoliumandE.subsessile(extractspreparedin solvents of increasing polarities: hexane, dichloromethane, ethyl acetate, ethanol, and butanol) or productstoinhibittheharmfuleffects(proteolysis,coagulant,hemolysis,hemorrhage,andedema) of L. muta venom was investigated. Overall, both plant extracts efficiently inhibited all the tested activities,butwithdifferentefficacy. However,inhibitionofsuchactivitiesdroppedsignificantlyfor isolatedproducts. Molecules2016,21,1350 3of14 Molecules 2016, 21, 1350 3 of 14 2.1. ChemicalCompositionofPlantExtracts 2.1T. Chehepmlaicnatls Coofmthpoesgiteionnu osfE Prlyatnhtr oExxytrluacmtsc ontainalkaloids,flavonoids,terpenes,andothermetabolites with several biological and pharmacological activities [14,16,18]. The flavonoids quercetin and The plants of the genus Erythroxylum contain alkaloids, flavonoids, terpenes, and other metabolites kaemperolareconsideredaschemotaxonomicmarkersoftheErythroxylumgenus, aswellastheir with several biological and pharmacological activities [14,16,18]. The flavonoids quercetin and 3-gklayecmospiedreold aerrei vcaotnivsiedse[r2e0d] .aPs hchyetomcohteamxoincaolmainc amlyasrekseorsf othf etheex tErrayctthsroaxnydlupma rgteitniuons,s aws ewreellc aarsr tiehdeiro ut by3t-hgilnyc-loasyideer cdherroivmataivtoegs r[a2p0]h. yPh(TytLoCch),enmuiccalel aarnmalyasgense otfi cthree seoxntraancctse a(NndM pRar)t,igtiaosnsc hwroerme acatorrgireadp ohuyt- bmya ss sptehcitnro-lmayeetrr ych(GroCm-aMtoSg)r,aapnhdyl i(qTuLiCd),c hnruocmleaart omgraagpnheyti-cm reassosnsapneccet r(oNmMeRtr)y, (gLaCs -cMhrSo)minatoorgdraeprhtoy-imdeansst ify thespmeactirnocmlaestsreys (GofCb-iMoaSc)t, iavnedn laitquuriadl cphrroodmuacttos.gTraLpChya-nmalayssse sspoefctdriocmhleotrroym (LeCth-aMnSe) ainn dorhdeexra tnoe idpeanrttiitfiyo ns shothwe emdatinh eclpasrseesse onfc ebiooafctteivrep ennaotuidrasl apnrodduflcatvs.o TnLoCid asn,awlyhsielse otfa dnincihnlosrwomereethfaonuen adndin heexthanyel apcaerttiatitoenasn d busthaonwoledp atrhteit piornesse(ndcae toaf nteortpsehnoowidns )a.ndA lfklaavlooindosidws,e wrehinleo ttadnentiencst ewderine faonuyndo fint heetheyxl taracecttasteb yanTdL C anbaulytsainso.lT epraprteintiooinds- (adnadtafl navoot nsohiodw-cno).n tAailknainlogidpsa rwtietiroen nsowt edreetescetleedct eind faonryf uorft hthere ferxatcrtaioctnsa tbiyo nTbLaCs ed onatnhaeliyrswis.e Tllekrpneonwoind-a abnildit yflatvooinnohiidb-ictotnhteaitnoixnigc paacrttiivtiiotiness wofersen asekleecvteedn ofomr sfu[r2t1h,e2r2 f]r.aTcthioendaitciohnlo braosmede tohna ne patrhtietiiro wnselol fknEo.wovna laibfoilliituym toa nindhiEb.it stuhbes etsosxiilce awcteirveitifersa cotfi osnnaakteed veunsoinmgs s[i2l1ic,2a2]g. eTlhceo lduicmhlnosroamnedthealnuet ed partitions of E. ovalifolium and E. subsessile were fractionated using silica gel columns and eluted in in hexane: ethyl acetate gradients (10:0 to 0:10). Based on the chromatography profiles, samples hexane: ethyl acetate gradients (10:0 to 0:10). Based on the chromatography profiles, samples were wereselectedforafinalpurificationwithsuccessivewasheswithheptane; yielding1. β-sitosterol selected for a final purification with successive washes with heptane; yielding 1. β-sitosterol (E. subsessile (E. subsessile and E. ovalifolium), 2. friedelin (E. subsessile), and 3. lupeol (E. ovalifolium) (Figure 1). and E. ovalifolium), 2. friedelin (E. subsessile), and 3. lupeol (E. ovalifolium) (Figure 1). The ethyl acetate TheethylacetateandbutanolpartitionswereindividuallyfractionatedthroughaSephadexLH-20 and butanol partitions were individually fractionated through a Sephadex LH-20 column, using column, using ethanol as the mobile phase, and fractions were analyzed by TLC and subjected ethanol as the mobile phase, and fractions were analyzed by TLC and subjected to nuclear magnetic to nuclear magnetic resonance (NMR) spectroscopy, yielding: 4. quercetin (ethyl acetate of resonance (NMR) spectroscopy, yielding: 4. quercetin (ethyl acetate of E. ovalifolium), 5. rutin (butanol E. ovalifolium), 5. rutin (butanol of E. ovalifolium), 6. quercitrin (both partitions of E. subsessile), of E. ovalifolium), 6. quercitrin (both partitions of E. subsessile), and 7. kaempferol-3-O-rhamnoside and7. kaempferol-3-O-rhamnoside(bothpartitionsofE.subsessile)(Figure1). Compounds1–3were (both partitions of E. subsessile) (Figure 1). Compounds 1–3 were obtained as crystal, and compounds obtainedascrystal,andcompounds4–7wereamorphousyellowsolids. Theisolatedcompoundswere 4–7 were amorphous yellow solids. The isolated compounds were identified by comparison of identifiedbycomparisonofspectroscopicdatawithreportedvalues[23–25]. spectroscopic data with reported values [23–25]. FigFuigruer1e. 1C. Chheemmicicaall ssttrruuccttuurreess ooff mmeettaabbooliltietes sofo fE.E s.usbusbessseisles ialenadn/odr/ Eo.r ovEa.liofvolailuimfo.l i(u1m) β.-(s1it)oβst-esriotol,s (t2e)r ol, (2)frfrieieddeelilnin, (,3()3 l)ulpuepoelo, l(,4()4 q)uqeurceertcient,i n(5,)( r5u)triun,t i(n6,) (q6u)eqrucietrrcinit,r (i7n), k(7a)emkapefmerpolf-e3r-oOl--3rh-Oam-rnhoasmidneo. side. 1H-NMR experiments were carried out in order to verify the main structural characteristics of 1H-NMRexperimentswerecarriedoutinordertoverifythemainstructuralcharacteristicsof major constituents of each sample. Since 1H-NMR peak area is proportional to the abundance of each majorconstituentsofeachsample. Since1H-NMRpeakareaisproportionaltotheabundanceofeach atom, we focused the analysis on the major peaks of each spectrum. As seen in Figure 2, 1H-NMR atom,wefocusedtheanalysisonthemajorpeaksofeachspectrum. AsseeninFigure2,1H-NMR spectra of ethyl acetate, hexane, n-butanol, and aqueous partitions of E. subsessile presented similar sppecrotrfaileosf. Tethhey slpaeccetrtuamte ,ohf ethxea nhee,xann-be uptaarntiotilo,na npdredaqomueinoaunstlpya srhtoitwioends poefaEks. souf bssaetsusrialetepdr ehsyednrotecdarsbiomnsi lar pro(δfi l0e.s5.–T3.h0e psppmec,t rFuigmuroef t2hBe).h Tehxea nmeopsatr dtietisohniepldreeddo pmeiankasn rtelyprsehsoewnte hdypderaokgseno ffsraotmur hatyeddrohxyydlraotecdar obro ns (δu0n.5s–a3tu.0raptepdm g,rFouigpusr (eδ 23B.5)–.5T.5h eppmmo)s. tTdhiess phrieolfdilee dwpase ainktserrperperteesde anst ah ytrditreorpgeennef-rroicmh shaymdprloex. yOlna ttehde or other hand, the major peaks obtained in the ethyl acetate spectrum are consistent with flavonoids’ Molecules2016,21,1350 4of14 unsaturatedgroups(δ3.5–5.5ppm). Thisprofilewasinterpretedasatriterpene-richsample. Onthe otherhand,themajorpeaksobtainedintheethylacetatespectrumareconsistentwithflavonoids’ aromMatoilcecsulresi n20g1s6, (2δ1, 613.050– 8.0ppm)andpolyhydroxylatedgroups(δ3.5–4.5ppm,Figure2A).T4 hofe 1s4e peaks wereprobablyduetothepresenceofglycosylatedflavonoidsthatarechemicalmarkersofthegenus aromatics rings (δ 6.0–8.0 ppm) and polyhydroxylated groups (δ 3.5–4.5 ppm, Figure 2A). These Erythroxylum and are in accordance with the compounds isolated and identified in the extracts. peaks were probably due to the presence of glycosylated flavonoids that are chemical markers of the Thespectraofn-butanolandaqueousfractions(Figure2C,D,respectively)presentedinnumerous genus Erythroxylum and are in accordance with the compounds isolated and identified in the superepxotrsaicttiso.n Tpheea kspsebcetrtaw oefe nn-δbu6t.a2naonl danδd8 .a5qpupeomu,s pforascstiibolnys d(uFiegutorea 2hCig,Dh, croenspceecnttivraetlyio) nporefspenotleydp henols of higinhneurmpeorolaursi stiuepse,rpsuoscihtioans pteaankns ibnestw. eOenu δr 6N.2M anRd fiδ n8d.5i nppgms,a preosisniblayg drueee mtoe an htigwhi tchonpcernetvriaotiuosn works perfoorfm peodlyfpohrendoiflsfe oref nhtigshpeerc pieoslaoriftiEesr,y tshurcohx yaslu tman.nBinasr. rOeiuror sNeMtRal .fi[n2d0i]ngdse maroe ninst raagtreedemthenet pwrietshe nceof fattyparceivdioaunsd wtorirtkesr ppeernfoersmaesdw foerl ldaisffelurepnet oslpaecnieds βo-f sEitroytshtreorxoylluinm.t hBearhreeixroasn eet paal. r[t2i0ti]o dnemofoEns.tnrautmedm ularia, the presence of fatty acid and triterpenes as well as lupeol and β-sitosterol in the hexane partition of andquercetinwasfoundintheextractsofthechloroformandethylacetatefractions. Moreover,lupeol E. nummularia, and quercetin was found in the extracts of the chloroform and ethyl acetate fractions. andβ-sitosterolweredetectedinthehexaneextractofE.passerinum,aswellasothercompounds,such Moreover, lupeol and β-sitosterol were detected in the hexane extract of E. passerinum, as well as asβ-amyrinanderythrodiol[26]. LupeolwasidentifiedinthemethanolicleafextractofE.leal-costae, other compounds, such as β-amyrin and erythrodiol [26]. Lupeol was identified in the methanolic inaddleiatfi oenxtrtaocto othf eEr. lseualb-csotsatanec, eins a[2d7d]i.tion to other substances [27]. A B C D Figure 2. 1H-NMR spectra of the (A) ethyl acetate; (B) hexane; (C) n-butanol; or (D) aqueous Figure2.1H-NMRspectraofthe(A)ethylacetate;(B)hexane;(C)n-butanol;or(D)aqueouspartitions partitions of E. subsessile. ofE.subsessile. The ethyl acetate partitions of E. ovalifolium and E. subsessile were subjected to liquid Tchhreomeatthogyrlapahcye-tmaatess sppaercttirtoimonetsry oafnaEly.siso v(UalPiLfoCli-uOmrbitaranpd MES)., asnudb seeigsshitl epowlypehreenosluicb cjoemctpeoduntdos liquid were identified based on their high-resolution and accurate m/z values and MS/MS spectra provided chromatography-massspectrometryanalysis(UPLC-OrbitrapMS),andeightpolyphenoliccompounds by the Orbitrap analyzer (Table S1, Figures S1 and S2; Supplementary Materials). Compounds wereidentifiedbasedontheirhigh-resolutionandaccuratem/zvaluesandMS/MSspectraprovided quercetin, quercitrin and kaempferol were found in both species, while (epi)catechin, (epi)catechin by the Orbitrap analyzer (Table S1, Figures S1 and S2; Supplementary Materials). Compounds dimer (procyanidin dimer), rutin, eriodictyol-rhamnoside, and ombuin-rutinoside were found only in quercetin,quercitrinandkaempferolwerefoundinbothspecies,while(epi)catechin,(epi)catechin the ethyl acetate partition of E. ovalifolium. Quercitrin, ombuin-rutinoside, and eriodictyol-rhamnoside dimerha(vper oaclyreaandiyd ibneednim deesrc),rirbuetdin i,ne srpioedciiecst yoof l-thrhe aEmryntohrsoixdyel,uamn dgeonmusb [u2i8n–-3r0u].t iQnouseirdceetiwn,e rruetfino,u anndd onlyin theetqhuyelrcaictreitna tweeprea ratlistoio isnoolafteEd. forvoamli feotlhiuyml a.cQetuateer acnitdri bnu,toamnobl upianr-trituiotinnso. side,anderiodictyol-rhamnoside have alreHadexyanbee eanndd deiscchrliobreodmeitnhasnpee pciaerstitoiofntsh feroEmr ybtohtrho xpylalunmts wgeerneu asn[a2ly8z–e3d0 ]b.y QGuCe-MrcSe t(iFnig,urruetsi n, and quercSi4tr–iSn7 wSuepreplaelmsoenitsaorlya tMedatferroiamls)e. tFhryidlealicne, tafrtieedaenladnbolu, taanndo βl-psaitrotsitteioronl sw. ere found in hexane and dichloromethane partitions from E. subsessile. β-sitosterol was found in hexane and dichloromethane HexaneanddichloromethanepartitionsfrombothplantswereanalyzedbyGC-MS(FiguresS4–S7 partitions from E. ovalifolium. Supplementary Materials). Fridelin, friedelanol, and β-sitosterol were found in hexane and dichloromethanepartitionsfromE.subsessile. β-sitosterolwasfoundinhexaneanddichloromethane partitionsfromE.ovalifolium. Molecules2016,21,1350 5of14 Morsetal.[7]analyzedtheprotectiveeffectofseveralplantsandproductsagainstthetoxiceffects ofBothropsjararacavenom. Moreover, theyinvestigatedthemechanismoftheinhibitoryactionof themetabolites[7]. Theyspeculatedthatthesemetabolitesmayinteractwithactivesitesofenzymes throughMtohleceuilres n20e1t6, c2h1, a13r5g0e orpolarity,andasaconsequence,causetheirinactivation[7,31].5 Ionf 1a4 ddition, theinhibitoryactionofmetabolitesmayoccurbychelatingmetalionsthatarenecessaryforsome Mors et al. [7] analyzed the protective effect of several plants and products against the toxic effects enzymeosf iBnotvheronpos mjarsartaocae xvepnroemss. tMhoerieroavcetri,v tihteieys i,nsvuecsthigaastePd LthAe2 m(Cecah2a+n)isamn dofm theet ainllhoibpirtoortye aascetison(Z onf 2+)[31]. Thesetwtheo mgerotaubpolsiteosf [e7n]. zTyhmeye sspeacruelarteesdp tohnats tihbelseef moretaabwoliidtees mspaeyc itnrtuermacto wftitohx aicctievfef esicttess tohf aentzfyomlloesw snake bites,inthcrluoudgihn gthehier mneot rchrharaggee o,rc pooalagruitlya, tainodn a,sn ae ccoronsseiqsu,eendceem, caau,saen thdeierf ifneaccttsivoatniopn l[a7t,3e1le]. tIna gadgdreitgioant,i onand the inhibitory action of metabolites may occur by chelating metal ions that are necessary for some hemolysis[32]. enzymes in venoms to express their activities, such as PLA2 (Ca2+) and metalloproteases (Zn2+) [31]. These two groups of enzymes are responsible for a wide spectrum of toxic effects that follow snake 2.2. AntiproteolyticandAntihemolyticEffectsofPlantExtractsorProducts bites, including hemorrhage, coagulation, necrosis, edema, and effects on platelet aggregation and L.hmemutoalysvise [n3o2]m. induced proteolysis or hemolysis in a concentration-dependent manner. A dose–response curve was constructed to find the effective concentration (EC) and minimum 2.2. Antiproteolytic and Antihemolytic Effects of Plant Extracts or Products indirect hemolytic concentration (MIHD). Subsequently, these venom concentrations (10 µg/mL) wereincubaLt. emduwta itvheneoxmtr aincdtsu,ceadn dprpotreootleyosilsy toirc hoermhoelymsios lyint ica acoctnicveinttireastiwone-dreepiennvdeesntti gmaatnedne.r.A As seenin dose–response curve was constructed to find the effective concentration (EC) and minimum indirect Figure3, theextractsofE.ovalifoliumandE.subsessileinhibitedbothproteolysis(Figure3A,black hemolytic concentration (MIHD). Subsequently, these venom concentrations (10 μg/mL) were columns)andhemolysis(Figure3A,whitecolumns)inducedbyL.mutavenom,butwithdifferent incubated with extracts, and proteolytic or hemolytic activities were investigated. As seen in Figure 3, potencitehse. eTxhtreacetsx torfa Ec.t oovfalEifo.loiuvma laifnodli uEm. supbrseespsialer eindhiibnitdedic bholtohr opmroteetohlyasnise ,(Faignudret h3eA,e bthlaacnk oclo,lubmuntas)n ol,and aqueousanedx threamctoslyosfisE (.Fsiguubrsee s3sAil,e winhhitieb citoeludmmnos)r eintdhuacned8 b0y% Lo. fmpurtao tveeonloymti,c bauct twiviitthy d(iFffiegruenrte p3oAte)n.cIinesa. ddition, theethaTnhoe le,xettrhacyt loaf cEe.t aovtael,ifaolniudm apqruepeaorueds einx tdriachctlosroomfEet.hoavnae,l iafonldiu tmhe, oetrhathnoel,d biuchtalnoorlo, manedt haqauneeouesx tractof extracts of E. subsessile inhibited more than 80% of proteolytic activity (Figure 3A). In addition, the E.subsessileinhibitedproteolysisby40%to75%. Incontrast,thehexaneandethylacetateextractsof ethanol, ethyl acetate, and aqueous extracts of E. ovalifolium, or the dichloromethane extract of E.subsessileinhibitedproteolysisbylessthan10%. ThehemolysisofL.mutavenomwasinhibited E. subsessile inhibited proteolysis by 40% to 75%. In contrast, the hexane and ethyl acetate extracts of bymorethan80%bytheethanolorethylacetateextractsofE.ovalifolium,andbytheethanol,ethyl E. subsessile inhibited proteolysis by less than 10%. The hemolysis of L. muta venom was inhibited acetate,bbyu mtaonreo lt,haann d80a%q ubye othues eethxatrnaocl tosr oefthEy.l saucebtsaetses eilxet.raInctsc oofn Etr. aosvta,litfohlieumaq, uanedo ubys ethxet reathcatnoofl,E e.thoyvla lifolium didnotaicnehtaitbei, tbtuhtaenhoel,m anodl yatqiuceaocutsi veixttyraoctfs Lo.f mE.u stuabsvesesniloe.m In (cFoingturarset, 3thAe) a.qMueoorueso evxetrr,acist oolfa Et.e odvaplirfooldiuumc tswere alsotestdeidd noont pinrhoibteito tlhyet ihce(mFoiglyutirce a3ctBiv,ibtyla ocfk L.c moluutam vnens)omor (hFiegmuroe l3yAti)c. M(Foirgeuorveer3, Bis,owlathedit eprcoodluucmtsn wse)raec tivities. also tested on proteolytic (Figure 3B, black columns) or hemolytic (Figure 3B, white columns) β-sitosterol and lupeol inhibited both activities by around 5%, while quercitrin and rutin did not activities. β-sitosterol and lupeol inhibited both activities by around 5%, while quercitrin and rutin did inhibitthem.Incontrast,quercetininhibitedproteolyticactivity(25%),butitfailedtoinhibithemolysis not inhibit them. In contrast, quercetin inhibited proteolytic activity (25%), but it failed to inhibit (Figure3B).Neithersalinenorsolventsinterferedwiththehemolyticorproteolyticactivities. hemolysis (Figure 3B). Neither saline nor solvents interfered with the hemolytic or proteolytic activities. 100 A B 30 80 25 n (%) 60 on (%) 20 hibitio 40 nhibiti 15 n I I 10 20 5 0 0 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 Groups Groups Figure 3. L. muta venom (10 μg/mL) was incubated with either: (A) 90 μg/mL extracts of E. ovalifolium Figure3.L.mutavenom(10µg/mL)wasincubatedwitheither:(A)90µg/mLextractsofE.ovalifolium in ethanol (1), ethyl acetate (2), dichloromethane (3), butanol (4), or water (5), or with E. subsessile in inethanol(1),ethylacetate(2),dichloromethane(3),butanol(4),orwater(5),orwithE.subsessilein ethanol (6), hexane (7), ethyl acetate (8), dichloromethane (9), butanol (10), or water (11); or (B) with ethanol9(06 μ),gh/meLx aonf eβ-(s7it)o,setetrhoyl l(1a),c leutpaetoel ((82)),, fdriiecdhellionr (o3m), qeutheracniterin( 9(4),),b quutearcneotiln( (150),) ,oro rruwtina t(6e)r f(o1r 13)0; morin( B)with 90µg/matL 2o5 f°βC-. sAitfotsetrewraorld(s1, )p,rluotpeoeloylti(c2 )(,bflaricekd ceolilunm(3n)s,) qoure hrceimtroilnyt(i4c ),(wquhieterc ecotilnum(5n)s,) oarcrtiuvtitiines( 6w)efroer 30min at25◦Ca.sAsefstseerdw, aasr ddse,scprriboetdeo ilny tthice (Mblaatcerkiaclos launmd nMse)tohrodhse msecotlioynti.c D(awtah aitree ceoxlpuremssnesd) aasc tmiveiatnies s±w S.eEr.e oaf ssessed, as desctrhibreeed inidnivtihdueaMl exapteerriimalesntasn (nd =M 3)e. thods section. Data are expressed as means ± S.E. of three individualexperiments(n=3). Molecules2016,21,1350 6of14 Molecules 2016, 21, 1350 6 of 14 2.3. AnticoagulationEffectofPlantsorProducts 2.3. Anticoagulation Effect of Plants or Products DisturbancesinbloodcoagulationareacommonfeatureinaccidentscausedbyL.mutavenom, Disturbances in blood coagulation are a common feature in accidents caused by L. muta venom, and bleeding may continue for a few days, even after antivenom administration. L. muta venom and bleeding may continue for a few days, even after antivenom administration. L. muta venom (25µg/mL)mixedwithsaline(C1)orDMSO(C2)clottedplasmain77s(Figure4). Then,asimilar (25 μg/mL) mixed with saline (C1) or DMSO (C2) clotted plasma in 77 s (Figure 4). Then, a similar venomconcentrationwasincubatedwiththeextractsofE.ovalifoliumorE.subsessile(250µg/mL)for venom concentration was incubated with the extracts of E. ovalifolium or E. subsessile (250 μg/mL) for 30min,andthemixturewasaddedtoplasmaandcoagulationwasmonitored. AsseeninFigure4, 30 min, and the mixture was added to plasma and coagulation was monitored. As seen in Figure 4, theextractsofE.ovalifoliumindichloromethane,butanol,orwater,aswellastheextractsofE.subsessile the extracts of E. ovalifolium in dichloromethane, butanol, or water, as well as the extracts of inhexane,ethylacetate,ordichloromethanedidnotinhibitthecoagulationactivityofL.mutavenom. E. subsessile in hexane, ethyl acetate, or dichloromethane did not inhibit the coagulation activity of In contrast, the extracts of E. ovalifolium in ethanol or ethyl acetate and the extracts of E. subsessile L. muta venom. In contrast, the extracts of E. ovalifolium in ethanol or ethyl acetate and the extracts in ethanol, butanol, or water significantly delayed plasma coagulation induced by L. muta venom of E. subsessile in ethanol, butanol, or water significantly delayed plasma coagulation induced by (Figure 4). Neither of the isolated products (250 µg/mL) inhibited coagulation of L. muta venom. L. muta venom (Figure 4). Neither of the isolated products (250 μg/mL) inhibited coagulation of Additionally,noneoftheextractsorsolventsaloneinducedcoagulationofplasma. L. muta venom. Additionally, none of the extracts or solvents alone induced coagulation of plasma. 500 * 400 * s) * e ( 300 * m Ti n o ati ul 200 g a * o C 100 0 C1C2 1 2 3 4 5 6 7 8 9 1011 Columns FigFuigruer4e. 4L. .Lm. mutuatav venenoomm( (2255 µμgg//mmLL)) wwaas sinincucubabtaetde dfofro 3r03 m0imn iant 2a5t °2C5 w◦Cithw siathlinsea l(iCn1e),( CD1M),SDOM (CS2O), (oCr 2), with 250 μg/mL extracts of E. ovalifolium in ethanol (1), ethyl acetate (2), dichloromethane (3), butanol or with 250 µg/mL extracts of E. ovalifolium in ethanol (1), ethyl acetate (2), dichloromethane (3), (4), or water (5), and with E. subsessile in ethanol (6), hexane (7), ethyl acetate (8), dichloromethane (9), butanol (4), or water (5), and with E. subsessile in ethanol (6), hexane (7), ethyl acetate (8), butanol (10), or water (11). Afterwards, mixtures were added to plasma and coagulation was dichloromethane(9),butanol(10),orwater(11). Afterwards,mixtureswereaddedtoplasmaand performed, as described in the Materials and Methods section. Data are expressed as means ± S.E. of coagulationwasperformed,asdescribedintheMaterialsandMethodssection.Dataareexpressedas three individual experiments (n = 3). * p < 0.05 when compared with C1 or C2. means±S.E.ofthreeindividualexperiments(n=3).*p<0.05whencomparedwithC1orC2. 2.4. Antihemorrhagic and Antiedematogenic Effects of Plants or Products 2.4. AntihemorrhagicandAntiedematogenicEffectsofPlantsorProducts When incubated with L. muta venom (9 μg/mouse), all extracts of E. ovalifolium or E. subsessile WhenincubatedwithL.mutavenom(9µg/mouse),allextractsofE.ovalifoliumorE.subsessile (90 μg/mL) inhibited hemorrhagic or edematogenic activity (Figure 5). The extracts of E. ovalifolium (90inµ ge/thmylL a)cienthatieb,i tdeidchhloermomorerthhaagniec, obruetadneoml, aotor gweantiecr,a catnivdi ttyhe( Feixgturarects5 )o.fT Eh.e seuxbtsreasscitlse oinf Ee.thoavnaloilf ooliru m inbeuthtaynloal cfeutlalyte p,rdotiecchtleodr ommiceet hfraonme ,thbeu htaenmoolr,rohragwica etfefre,catsn odf Lth. emuextat rvaecntosmo f(FEi.gusureb s5e,s bsillaeckin coeltuhmannos)l. or buMtanoroelofvuellry, pplraontet cetxedtramctisc eaflsroo minthhiebihteedm eodrrehmaagtiocgeefnfeicc tsacotfivLi.tym uoft aLv. emnoumta (vFeingoumre, 5w,bitlha cpkocteonlucmiesn s). Movraeroyivnegr ,frpomlan 2t0%ex ttor a9c0t%s (aFlisgourien 5h,i wbihteitde ceodluemmnast)o. gTehnei ecxatrcatcitvsi otyf Eo. fsuLb.semssuiltea prveepnaoremd, inw eitthhylp aocteetantcei es varoyr inbugtafrnooml a2c0h%ievteod 9t0h%e h(Figigheusrte in5,hiwbihtoitrey cpoelrucmenntasg).e T(9h0e%e)x otrfa ecdtsemofa,E a.nsudb stheses ielxetprarcetps airne dheixnaneeth, yl acedtiactheloorrombuettahnanoel,a ochr iwevaetder thhaedh itghhe elsotwinehsti bpietorcreynptaegrec e(natraoguend(9 02%0%))o f(Feidguemre a5,Aa)n. dTthhee perxotdrauccttss in hexβa-snieto,sdtiecrhollo (r1o),m luetpheaonl e(2,)o, rqwueartceirtrhina d(4t)h, eorl oqwueerscteptienr c(e5n) tdaigde n(oatr opurnotdec2t0 m%i)c(eF firgoumre h5eAm)o.rTrhheagper,o bduutc ts β-sfritioelsdtienr o(l3)( 1o)r, lruuptieno (l6()2 i)n,hqibuietrecdi tbriyn 2(04 )a,nodr 2q8u%e,r creetsipnec(t5i)vedliyd, tnhoet hpermootercrhtamgiicc eacftriovmityh oefm voernrohmag e, (Figure 5B, black columns). butfrieldin(3)orrutin(6)inhibitedby20and28%,respectively,thehemorrhagicactivityofvenom (Figure5B,blackcolumns). Molecules2016,21,1350 7of14 Molecules 2016, 21, 1350 7 of 14 A B 35 100 30 80 25 %) %) n ( 60 n ( 20 o o biti biti 15 nhi 40 nhi I I 10 20 5 0 0 1 2 3 4 5 6 7 8 9 1011 1 2 3 4 5 6 Extracts Products FFiigguurree 55.. ((AA)) LL.. mmuuttaa vveennoomm ((99 µμgg//mmoouussee)) wwaass iinnccuubbaatteedd ffoorr 3300 mmiinn aatt 2255 ◦°CC wwiitthh 9900 µμgg//mmLL eexxttrraaccttss ooff EE.. oovvaalliiffoolliiuumm iinn eetthhaannooll ((11)),, eetthhyyll aacceettaattee ((22)),, ddiicchhlloorroommeetthhaannee ((33)),, bbuuttaannooll ((44)),, oorr wwaatteerr ((55)),, oorr wwiitthh EE. .ssuubbsessessisliel eini netehtahnaonlo (l6)(,6 h),exhaenxea n(7e),( 7et)h,yelt hayceltaactee t(a8t)e, d(8ic)h,ldoircohmloertohmaneet h(9a)n, ebu(9ta),nboul (t1a0n)o, lor(1 w0)a,teorr (w11a)t.e rT(h1e1n)., Tthhee nm,tihxetumrei xwtuarse winajescitnejde citnedtoi nmtoicme iacneda nhdehmeomrrohrarhgaicg i(cb(lbalcakc kcocloulummnns)s )oorr eeddeemmaattooggeenniicc ((wwhhiittee ccoolluummnnss)) aaccttiivviittiieess wweerree aasssseesssseedd.. ((BB)) TThhee pprroodduuccttss ((9900 μµgg//mmLL)) ββ--ssitiotossteterrool l((11)), ,lluuppeeool l((22)),, ffrriieeddeelliinn ((33)),, qquueercrictirtirnin(4 ()4,)q,u qeurceertcient(in5) ,(o5r),r uotri nru(6ti)nw (e6r)e winecrueb aintecduwbaittehdL .wmiuthta Lv.e nmoumta( bvleanckomco l(ubmlancks) coorlpurmodnsu)c tosrw perroediunjcetcst ewdeir.pe .iannjedcttehde ni.Lp.. mauntda vtheenno mL.w maustian jveectneodm.T wheans, ihnejmecoterdrh. aTgheewna, shdemeteorrmrhiangede wasasd edsectreirbmedineind tahse dMesactreibrieadls inan tdheM Meathteordiaslss eacntdio nM.eDthaotdasa sreecteixopnr. eDssaetda aarse mexeparnesss±edS a.Es. mofeathnrse ±e Sin.Ed.i vofid thuraelee xinpdeirvimideunatls e(xnp=er3i)m.ents (n = 3). Instead of mixing L. muta venom with extracts or products, two other protocols were performed InsteadofmixingL.mutavenomwithextractsorproducts,twootherprotocolswereperformedto to mimic a real situation of envenomation. Namely: (1) treatment, in which L. muta venom (2 μg/mouse) mimicarealsituationofenvenomation. Namely: (1)treatment,inwhichL.mutavenom(2µg/mouse) was injected intradermally (i.d.) into mice, and 15 min later, the extracts of E. ovalifolium or E. subsessile wasinjectedintradermally(i.d.) intomice,and15minlater,theextractsofE.ovalifoliumorE.subsessile (90 μg/mL) were injected at the same site of venom injection; and (2) prevention, the extracts of plants (90 µg/mL) were injected at the same site of venom injection; and (2) prevention, the extracts of were given intraperitoneally (i.p.) or orally to animals, and 60 min later, L. muta venom (2 μg/mouse) plants were given intraperitoneally (i.p.) or orally to animals, and 60 min later, L. muta venom was injected i.d. After both protocols (treatment or prevention), hemorrhagic and edematogenic (2 µg/mouse) was injected i.d. After both protocols (treatment or prevention), hemorrhagic and activities were evaluated. With the treatment protocol, none of the plants inhibited hemorrhage of edematogenicactivitieswereevaluated. Withthetreatmentprotocol, noneoftheplantsinhibited L. muta venom (data not shown). However, with the prevention protocol, both extracts inhibited hemorrhageofL.mutavenom(datanotshown). However,withthepreventionprotocol,bothextracts hemorrhagic activity (Table 1). According to Table 1, higher inhibitory percentages of L. muta inhibitedhemorrhagicactivity(Table1). AccordingtoTable1,higherinhibitorypercentagesofL.muta venom-induced hemorrhage were achieved when plants were injected i.p. (5%–40%), than by the oral venom-inducedhemorrhagewereachievedwhenplantswereinjectedi.p. (5%–40%),thanbytheoral route (3%–7%). In fact, most plant extracts did not inhibit hemorrhage if given orally. The ethanol route(3%–7%). Infact,mostplantextractsdidnotinhibithemorrhageifgivenorally. Theethanol extract of E. subsessile had the highest inhibitory percentage (40%) of hemorrhage. In contrast, when extractofE.subsessilehadthehighestinhibitorypercentage(40%)ofhemorrhage. Incontrast,when given orally, plants more efficiently protected against L. muta venom-induced edematogenic activity. givenorally,plantsmoreefficientlyprotectedagainstL.mutavenom-inducededematogenicactivity. As also seen in Table 1, the ethyl acetate or aqueous extracts of E. subsessile achieved the highest As also seen in Table 1, the ethyl acetate or aqueous extracts of E. subsessile achieved the highest inhibitory percentages of edema (around 30%) if given orally to mice. However, they failed to inhibit inhibitorypercentagesofedema(around30%)ifgivenorallytomice. However,theyfailedtoinhibit such activity if given i.p. Moreover, the extract of E. ovalifolium in dichloromethane did not inhibit suchactivityifgiveni.p. Moreover,theextractofE.ovalifoliumindichloromethanedidnotinhibit edema, regardless of the route of administration. With the prevention protocol, if products were edema, regardless of the route of administration. With the prevention protocol, if products were injected i.p., β-sitosterol or quercetin did not inhibit hemorrhage; but an inhibition of 28% was injected i.p., β-sitosterol or quercetin did not inhibit hemorrhage; but an inhibition of 28% was achieved for lupeol, frieldin (14%), quercitrin (7%), or rutin (14%) (Figure 5B, white columns). On the achievedforlupeol,frieldin(14%),quercitrin(7%),orrutin(14%)(Figure5B,whitecolumns). Onthe other hand, products did not inhibit edema caused by L. muta venom using the prevention protocol, otherhand,productsdidnotinhibitedemacausedbyL.mutavenomusingthepreventionprotocol, as some extracts did. assomeextractsdid. Molecules2016,21,1350 8of14 Table1.EffectofE.ovalifoliumorE.subsessileonhemorrhageandedemainducedbyL.mutavenom. %Inhibition Sample Hemorrhage Edema i.p. oral i.p. oral 1 8±9 0 0 22±7 2 5±7 0 18±9 19±9 3 10±8 3±15 0 0 4 40±4 4±12 12±6 17±4 5 7±9 0 0 29±8 6 18±5 0 12±4 5±2 7 14±9 7±1 0 30±9 Theextracts(90µg/mL)ofE.ovalifoliuminethanol(1),ethylacetate(2),ordichloromethane(3),andtheextracts ofE.subsessileinethanol(4),ethylacetate(5),butanol(6),orwater(7)wereadministeredintraperitoneallyor orallyintomice.Then,60minlater,L.mutavenom(9µg/mouse)wasinjectedintomiceandhemorrhageand edemawereevaluated,asdescribedintheMaterialsandMethodssection.Dataareexpressedasmeans±S.E. ofthreeindividualexperiments(n=3). Flavonoids are a natural group of bioactive molecules capable of inhibiting a wide range of enzymes,suchaslipoxygenase,aldosereductase,humanrecombinantaldosereductase,advanced glycationendproducts,proteintyrosinephosphatase1B,acetylcholinesterase,butyrylcholinesterase, β-site amyloid precursor cleaving enzyme 1, inducible nitric oxide synthase, cyclooxygenase-2, andphospholipasesA [33,34]. TheinhibitionofPLA maybethemainmechanismoftheantivenom 2 2 activityofflavonoids. Theflavonolsrutin,quercetin,andquercitrinofE.subsessileandE.ovalifolium maybepartiallyresponsiblefortheprotectiveeffectofsuchplants. Moreover,flavonolsisolatedfrom HypericumbrasilienseorBrownearosademontehavebeenassociatedwithinhibitionoftheactivityof acetylcholinesterase[35]aswellashavinganantivenomeffect[36]. Furthermore, the antivenom effect of friedelin, lupeol, and β-sitosterol may be due to an anti-inflammatory mechanism [37], and their pentacyclic triterpene rings are responsible for such antivenomaction[7]. ThepresentstudyshowedthatthestemextractsofE.ovalifoliumandE.subsessile inhibitedsometoxiceffects(proteolysis,hemolysis,coagulation,hemorrhage,oredema)ofL.muta venom that undoubtedly contribute to the death and morbidities of victims. In addition, the part ofplant(leaf,root,stem,flour,fruit,orflowers)involvedintheinhibitoryeffectagainstthetoxicity of venoms as well as the solvents used to prepare extracts should be taken into consideration in studiesofscreening,ethnobotany,andethnopharmacology. Apreviousreportreinforcesourresults, since different inhibitory profiles were observed for the stem and leaves of Manilkara subsericea prepared in ethyl acetate or hexane against proteolytic, hemolytic, coagulant, hemorrhagic, and edematogenicactivitiesofL.mutavenom[38]. However,itisquitedifficulttopostulatewhichpartof M.subsericeaisthemostactiveininhibitingsuchactivities[38]. Ingeneral,thestemsofplantsinhibit activitiesofvenomsmoreefficientlythantheflowersorleaves. Moreover,theliteratureshowsthat extractsoftheDipteryxalataneutralizedthevenomsofB.jararacussuandCrotalusdurissusterrificus, andsomemetabolites,suchasisoflavones,triterpenes,tannins,amongothers,havebeenidentifiedas antivenommolecules[39–42]. Asidefromplants,themarinealgaCanistrocarpuscervicornis[43]and somesponges[44]alsoinhibitedthetoxicactivitiesofvenomsfromB.jararacaandL.muta. ResultsfromthepresentworkshowedthatasinglepartofE.ovalifoliumorE.subsessileandthe productsofsuchplantswereunabletoblockallinvivoandinvitrotoxiceffectsofL.mutavenom. Thus,acocktailofdifferentpartsofplantsorproductsshouldbeusedinordertoincreasetheinhibitory actionagainstthetoxiceffectsofthevenom. Molecules2016,21,1350 9of14 3. MaterialsandMethods 3.1. Venom,Animals,andReagents L.mutavenomwaskindlysuppliedfromEzequielDiasFoundation(FUNED),BeloHorizonte, MinasGerais,Brazil. L.mutavenomwasdilutedinsaline(1mg/mL)andstoredat−20◦Cuntiluse. MaleSwissmice(18–20g)wereobtainedfromtheCenterofLaboratoryAnimals(NAL)oftheFederal FluminenseUniversity(UFF).Allsolventsandreagentswereofthepurestgradeavailable. 3.2. EthicsStatement Experiments were approved by the UFF Institutional Committee for Ethics in Animal Experimentation(protocolNo. 212),inaccordancewiththeguidelinesoftheBrazilianCommitteefor AnimalExperimentation(COBEA).PlasmawasobtainedfromhumandonorsfollowingtheGuidelines oftheEthicsCommitteeoftheUFFHospital,undernumberCEP643.926. 3.3. PlantMaterial TheplantsE.ovalifolium(S2214.722’,WO4134.916’)andE.subsessile(S2216.111’,WO4138.990’) werecollectedinJanuary2009fromtheRestingaofJurubatibaNationalPark,stateofRiodeJaneiro, Brazil. The identification of the plants was carried out by Marcelo Guerra Santos (FFP/UERJ), and voucher samples were deposited in the Herbarium of the Rio de Janeiro State University, SãoGonçalo,undertheidentificationlabelsRFFP2147andRFFP2126,respectively. 3.4. PreparationofPlantExtractsandPartitions Stems of E ovalifolium (4.2 kg) and E. subsessile (2.7 kg) were dried at 35 ◦C for 24 h with air circulationandpulverizedinagrindingmill(ThomasScientific,Swedesboro,NJ,USA).Thepowdered stemsofE.ovalifoliumweremaceratedwith96%ethanol(10%w/v)for10daysatroomtemperatureand filtered.Theresiduewasmaceratedagaintoensuretheexhaustionofthedrug.Subsequently,theliquid phases were pooled and filtered, the solvent fully evaporated under reduced pressure at 35 ◦C, andsuspendedin1Lof90%ethanolbeforepartitioningwithhexane(3×200mL).Theethanol-soluble fraction was concentrated under reduced pressure, suspended in distilled water, and partitioned successivelywithdichloromethane(3×200mL),ethylacetate(3×200mL),andbutanol(3×200mL). Solventsfromeachliquidorganicphaseweretotallyevaporatedunderreducedpressureat35◦C, yielding solid hexane (32.4 g), dichloromethane (41.0 g), ethyl acetate (37.7 g), and butanol (8.6 g) partitions. TheprocedurewasrepeatedforE.subsessile,yieldinghexane(11.0g),dichloromethane (15.5 g), ethyl acetate (16.2 g), and butanol (11.3 g) partitions. All extracts, partitions, or isolated productsweredissolvedin100%dimethylsulfoxide(DMSO). 3.5. PhytochemicalAnalysis Phytochemicalinvestigationswereperformedonpartitionsofbothplantsinseveralsteps. Firstly, sampleswereanalyzedbyTLCfordetectionofthemainclassesofnaturalproducts(i.e.,flavonoids, terpenoids, tannins, and alkaloids). Secondly, partitions were fractionated by Sephadex LH-20 (GE Healthcare, Piscataway, NJ, USA) or silica gel column chromatography to separate the main constituents. One-andtwo-dimensionalNMRspectrawererecordedonaVarianVNMRS400MHz (VarianInc.,SantaClara,CA,USA),usingtetramethylsilaneasexternalshiftreference. Thestructures ofisolatedcompoundswereelucidatedonthebasisof1H-and13C-NMRspectroscopy. Thepartitions werealsoanalyzedbyLC-MS/MSandGC-MS.FortheLC-MS/MSanalysis,anUPLC-QExactive PlusOrbitrapmassspectrometrysystem(ThermoFisherScientific,Bremen,Germany)wasemployed, equippedwithanelectrosprayionizationsourceoperatinginnegativeionmodeatavoltageof2.9kV. The column used was a Thermo Syncronis C18 (50 mm × 2.1 mm × 1.7 µm) maintained at 40 ◦C. Themobilephaseconsistedof(A)5mMammoniumformateand(B)methanolingradientelution Molecules2016,21,1350 10of14 mode(0−2min,20%B;2−4min,60%B;4−10min,95%B;10–12min,95%B,and12.1−15min,20%B) ataflowrateof400µLmin−1. GC-MSanalyseswerecarriedoutusingaGCMS-QP5000(SHIMADZU) gaschromatographequippedwithamassspectrometerusingelectronionization. Conditionswere as follows: injector temperature, 270 ◦C; detector temperature, 270 ◦C; carrier gas (Helium), flow rate1mL/min,andsplitinjectionwithsplitratio1:40. Oventemperaturewasinitiallyat60◦Cand then raised to 290 ◦C at a rate of 3 ◦C/min. One microliter of each sample, dissolved in CH Cl 2 2 (1:100mg/µL),wasinjectedatDB-5column(i.d. =0.25mm,length30m,filmthickness=0.25µm). Themassspectrometry(MS)conditionswere:voltage,70eV;andscanrate,1scan/s. Theidentification ofcompoundswasperformedbycomparingtheirMSfragmentationpatternwiththosedescribedon NISTmassspectralibrary. 3.6. ProteolyticActivity Proteolytic activity of L. muta venom was determined according to Garcia et al. [45], using azocaseinasasubstrate(0.2%,w/v,in20mMTris-HCl,8mMCaCl ,pH8.8). L.mutavenominduced 2 proteolysisinaconcentration-dependentmanner,andtheamountofL.mutavenom(µg/mL)able to achieve 70%–80% of maximum rate (a variation of 0.2 at absorbance 420 nm) was denoted the effectiveconcentration(EC),andwasconsideredas100%ofproteolyticactivity. OneECofL.muta venom (10 µg/mL) was incubated with the plant extracts or products (90 µg/mL) for 30 min at 25 ◦C. After this, the mixture was incubated with 0.4 mL azocasein at 37 ◦C for 90 min in a total volumeof1.2mL.Theenzymaticreactionwasstoppedbyaddingtrichloraceticacid(5%,v/v,final concentration),andtubeswerecentrifugedat15,000×gfor3min. Thesupernatantwasthenremoved, mixedwith2NNaOH,andthetubeswerereadatA420nm. Asapositivecontrol,L.mutavenom wasincubatedwithsolvents(salineorDMSO)plusazocasein,whilefornegativecontrol,extracts, products,orsolventswereincubatedwithazocaseinintheabsenceofL.mutavenom. 3.7. CoagulatingActivity ApoolofcitratednormalhumanplasmawasobtainedfromalocalbloodbankofAntônioPedro Hospital of UFF and diluted with an equal volume in saline. L. muta venom (50 µL) at different concentrations(2–70µg/mL)wasaddedtoplasma,andcoagulationwasmonitoredonanAmelung digitalcoagulometer,modelKC4A(Labcon,Germany). Theamountofvenom(µg/mL)abletoclot plasmainaround60swascalledtheminimumcoagulationdose(MCD).Then,oneMCDofvenom (25µg/mL)wasincubatedwithsolvents(salineorDMSO),extracts,orproductsofEovalifoliumor E.subsessile(250µg/mL)for30minat25◦C,andthemixture(50µL)wasaddedtoplasma(200µL), andcoagulationwasmonitored. Negativecontrolexperimentswereperformedinparallelbymixing plantextracts,products,orsolventswithplasmaintheabsenceofvenom. 3.8. HemolyticActivity L. muta venom-induced hemolysis was determined through the indirect hemolytic test using humanerythrocytesandhen’seggyolkemulsionasasubstrate[46].Afterperformingadose–response curve(2–30µg/mL),theamountofL.mutavenom(µg/mL)abletoproduce100%hemolysiswascalled theminimumindirecthemolyticdose(MIHD).TheinhibitoryeffectoftheErythroxylumextractsor productswasperformedbyincubatingoneMIDHofvenom(10µg/mL)withplantextractsorproducts (90µg/mL)for30minat25◦C,andthenahemolyticassaywasperformed. Controlexperimentswere performedbyincubatingL.mutavenomwithsolventsintheabsenceofplantextracts/productsorby addingplantextracts,products,orsolventstothereactionmediumintheabsenceofvenom. 3.9. HemorrhagicActivity HemorrhagiclesionsproducedbyL.mutavenomwerequantifiedusingaproceduredescribed byKondoetal.[47],withmodifications. Briefly,L.mutavenom(100µL)wasinjectedintradermally (i.d.) into the abdominal skin of mice. Two hours later, animals were euthanized by decapitation,

Description:
such as an aphrodisiac, for the treatment of venereal diseases, rheumatism, arthrosis, respiratory infections, and Van Kiem, P.; Van Minh, C.; Huong, H.T.; Nam, N.H.; Lee, J.J.; Kim, Y.H. Pentacyclic triterpenoids from. Mallotus
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.