ebook img

Properties of the short period CoRoT-planet population II: The impact of loss processes on planet masses from Neptunes to Jupiters PDF

0.17 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Properties of the short period CoRoT-planet population II: The impact of loss processes on planet masses from Neptunes to Jupiters

1 Introduction The upper atmospheres of short periodic ex- pressures and temperatures at the planet formation time, taken oplanets are affected strongly by the stellar X-ray and EUV from the predicted CoRoT-planet population (Wuchterletal. (XUV) radiation and plasma environment (Schneideretal. 2006),we arriveattexo−form ≈ 30− τneb.With atypicalglobal 1998). Therefore, these bodies should experience high ther- τ of ∼ 10 Myr representing a compromise between vari- neb mal (Lammeretal. 2003; LecavelierdesEtangsetal. 2004; ous empirical methods (τ ∼ 1 – 100 Myr) (see Hillenbrand neb Yelle 2004; VidalMadjaretal. 2003; Baraffeetal. 2004; et al. 2005 for a recent update focused on dust IR-emission), Tianetal. 2005;Erkaevetal. 2006;Penzetal. 2006)andnon- oneobtainsaverageexosphereformation-times,texo−form ≈ 50– thermal (Erkaevetal. 2005; Khodachenkoetal. 2006) mass 300 Myr. Thus exospheres may form at significant ages after loss. Khodachenko et al (2006) studied the minimum and the planets’ host star arrived at the Zero-Age-Main Sequence maximum possible atmospheric erosion of the “Hot Jupiter” (ZAMS). HD209458bduetoCoronalMassEjections(CMEs)andfound that this exoplanet, which orbits a solar-like star at 0.046 AU couldhavebeenerodedtoits core-massif itsatmospherewere 2. Thermalmassloss notprotectedbyastrongmagneticfield.Becausethemassloss 7 dependsonthestrengthofplanetarymagneticfields,whichare In order to study the evolution of the maximum possible ther- 0 estimated for slow rotating tidally locked “Hot Jupiters” to be mal hydrogen loss rates from close-in Exosolar Giant Planets 0 2 inarangeof0.005–0.1MJup(Grießmeieretal.2004),weakly in a mass rangeof 1029 g (EGPI) to 1030 g (EGPII) at differ- magnetizedshortperiodicgasgiantscanexperiencelargenon- entorbitaldistancesweestimatethethermalmasslossfromthe n thermal mass loss rates during their whole life time. The aim evolutionoftheXUVfluxwhicharrivesfromthehoststaratthe a of this paper is to determineat which distancesexoplanetscan planet’sorbit.Weuseinthepresentstudyascalinglawderived J maintaintheirinitialmass,andwherecloseorbitgasgiantscan fromXUVfluxobservationsofsolar-likeGstarswithdifferent 9 experiencehugemasslossratesthatmayinfluencetheshortpe- age Φ = 6.13t−1.19f (Ribasetal. 2005), where t is the 1 XUV XUV riodCoRoT-planetpopulation. age of the star in Gyr, while f = 8.5×10−4 W m−2 is the XUV 1 flux at 1 AU averagedoverthe planetarysphere.Itis scaled to v 1. Exosphere-formationandtheonsetofplanetary the differentorbitaldistancesby using an r−2 dependency.The 5 maximumpossiblethermalmasslossrateΓ canbecalculated massloss th 6 byassumingthatanatmospherecontainsnoefficientIR-cooling 5 The overall evolution of a planet can be split into (1), the for- moleculesandbyusingthe energy-limitedequationwhichwas 1 mation period during which the planet is formed and its mass originallyderivedforEarth-likeplanetsbyWatsonetal.(1981). 0 grows,and(2),thematureperiodwiththeplanetdetachedfrom Recently,Erkaevetal.(2006)modifiedtheenergy-limitedequa- 7 gas reservoirs and exposed to loss processes driven by its host tionfortheapplicationto“HotJupiters” 0 star.Duringtheformationperiodtheplanetisincontactwitha / h mass reservoirhavingcertain pressure:the protoplanetaryneb- 4πR r2 Φ p ula. During an isolated period planets are surrounded by vac- Γ = pl XUV XUV, (3) th - mM GK o uumwithnocontinuumpressureandanexosphereastheinter- pl r face.Theoverallmasshistoryofaplanetisthusdeterminedby st pressure gradientsas long as there is a nebula pressure and by where Rpl and Mpl are the planetary radius and mass, K is a a exospherepropertiesoncethereisnonebulapressure. factor which is related to the Roche-lobe effect (Erkaevetal. v: Theformationoftheexosphereseparatesthesetwoerasand 2006) and is ≈ 0.5 for the considered planet, rXUV is the dis- i theregimesofearlymass-gainfromthenebulaandtheeonlong tanceinthethermospherewheretheopticalthicknessτXUV →1 X period of particle loss processes. An exosphere exists if there andthemainpartoftheXUVradiationisabsorbed.Oneshould r is a layer in an atmosphere or generally in a gas sphere where note that rXUV is much closer to the planetary radius Rpl than a the mean freepath of the particlesis sufficientlylarge to allow thedistanceusedbyWatson(1981).ByusingEq.(3)withrXUV themtoescapefromaplanet.ProtoplanetsfilltheirRoche-lobe of ∼ 1.3Rpl (Yelle 2004) we can calculate the maximum ex- because that is where they are in contact with the nebula. For pectedthermalmasslossrateforHD209458b(Rpl = 1.43RJup, asmallplanet/starmass-ratiothesizeoftheRochelobecanbe Mpl = 0.69 MJup) at present time. It is ∼ 1.7 × 1011 g s−1 wellapproximatedbytheHill-radius,R =d(M /[3M ])1/3, and appears to be in good agreement with Vidal-Madjar et al. Hill pl star where d is the orbital distance. Equating this to the mean free (2003),Yelle (2004)and Tian et al. (2005).The mass loss rate path for hydrogen and assuming P = nkT we obtain an exo- for HD209458b at about 200 Myr after its host star arrived at sphereformationpressurePexo−form attheHill-sphereboundary the ZAMS is ∼ 6.0× 1012 g s−1. We note that Lammer et al. (2003)appliedWatson’sassumptionfor“HotJupiters”andover- 1 Pexo−form = dkσT 3MMstar!3 , (1) eOsntiemcaatendsteheefernoemrgTya-blilmei1tedthlaotssthreartmeablyeavnapoordraetrioonfmmaagynbiteudaen. H pl efficient loss process for close-in gas giants at d < 0.05 AU whereσH isthehydrogencollisioncrosssection.Assumingan with Mpl < 5 × 1029 g (< 0.25MJup and exosphere formation exponentialdecay of the nebula pressure, P0 with a time-scale times ≤ 200 Myr. If one proceeds to longer exosphere forma- τneb,wecalculatethetimeittakesforthelowestpressurearound tion times the integrated mass loss is gradually decreasing. At theplanettoreachPexo−formandanexospheretoformwithinthe largerorbitaldistances,thethermalmasslossis≤1%.Thermal Hill-sphere evaporationfromclose-inlowermassexoplanetsmaybestrong P enough to remove their hydrogen envelopes from their cores. texo−form =τnebln 0 . (2) Oneshouldalsonotethatexoplanetswithorbits<0.02AUwill Pexo−form experience an even higher thermal mass loss due to the higher We take σ = πa2, with the Bohr-radius, a as a lower limit XUVfluxandthemasslossenhancementduetotheRoche-lobe H 0 0 forcollisionsundertypicalnebula-conditions.Fortypicalnebula effect(Erkaevetal. 2006). 2 d[AU] P[d] EGPI :L [%] EGPII:L [%] d[AU] P[d] Obstacle×R Γ [gs−1] th th pl CME 0.02 1 ∼87 ∼8.7 0.02 1.0 1.5 2.8×1014 0.05 4 ∼14 ∼1.4 0.02 1.0 2.0 3.8×1013 0.013 16 ∼2 ∼0.2 0.05 4.0 1.3 1014 0.05 4.0 1.5 2.0×1013 Table1.Thermalmasslossin%oftheinitialplanetarymassof 0.05 4.0 2.0 2.7×1012 EGPIandEGPIIintegratedoverthehistoryofthestellarsystem 0.013 16.0 1.3 ×1013 fMoryra. representative exosphere formation time texo−form ≈ 200 00..001133 1166..00 12..50 13.5××11001112 Table2.MaximumCME-inducedH+pickupionmasslossrates per CME collision for “Hot Jupiters” with different substellar 3. CME-inducednonthermalmassloss planetary magnetopause obstacles as a function of orbital dis- tance. Taking into account that tidal-locking of short periodic exo- planets may result in weaker planetary magnetic moments, as compared to fast rotating Jupiter-class planets at larger orbital distances (Grießmeier et al. 2004), Khodachenko et al. (2006) The obtained density profiles are in agreement with the den- found that the encountering CME plasma may compress the sity profiles calculated by Yelle (2004) and Tian et al. (2005). magnetosphereand force the magnetosphericstandoff distance For studyingthe expectedmaximumpossible atmosphericero- downtoheightswhereionizationandionpick-upoftheplane- sion dueto CMEs we assume magnetosphereswhichbuild ob- tary neutralatmosphere by the CMEs plasma flow takes place. stacles against the CME plasma flow at substellar distances of Assuming for the G-type host star of HD209458b the aver- 1.3, 1.5 and 2.0 R . For the CME-induced H+ pick-up loss pl age CME occurrence rate as the one observed on the Sun, ratescausedbytheCME plasmaflowwe takeintoaccountthe Khodachenko et al. (2006) found that, depending on magnetic ionization processes produced by CMEs during the interaction protection“HotJupiters”at0.045AUcouldhavelostovertheir with the neutral atmosphere above the assumed planetary ob- lifetimeamassfrom2%uptomorethan MJup.Forestimating stacles. The H+ pick up loss calculations are performed with the orbital distance at which Jupiter-class exoplanets maintain a numerical test particle model which was successfully used themainpartoftheirinitialmass,wecalculatethe“maximum” forthesimulationofionpick-uplossratesfromvariousplane- possible CME-induced mass loss between orbital distances of taryatmospheres(Lichteneggeretal. 1995;Erkaevetal. 2005; 0.015–0.2AU. Khodachenkoetal. 2006).Thecalculationoftheparticlefluxes InthecaseofourSunthemaximumexpectedCMEplasma isperformedbydividingthespaceaboveandaroundtheplane- density n at orbital distances ≤ 0.2 AU is estimated from taryobstacleontoanumberofvolumeelements∆V.Production CME i theanalysisofCMEassociatedbrightnessenhancementsinthe rates of planetary H+ ions are obtained by calculation of the white-light coronagraphimages. By using an analogy between CME plasma flow absorption along streamlines due to charge theSunandsolar-typestarsthemaximumCMEdensitydepen- exchange,photo-ionization,andelectronimpactionizationwith denceontheorbitaldistanced fromthestarcanbeassumedas theextendedupperatmosphere.TheCMEplasmafluxΦ in CME a power-law (e.g., Khodachenko 2006, and references therein) a volumeelement∆V ata givenposition r with respectto the i i n (d) = n (d/d )−3.6,whichforn = 5×105...5×106cm−3 planetarycenterisdeterminedby CME 0 0 0 andd = 3R givesagoodapproximationforthevaluesesti- 0 Sun matedfromtheSOHO/LASCOcoronographimages.Theaver- si agemassofCMEs, MCME,is≈ 1015gandtheaverageduration ΦCME(ri)=Φ(C0M)E(ri)e−∞R PHnHσiHds, (5) of CMEs, τ , at distances (6...10)R is ≈ 8 h. The colli- CME Sun sionratebetweenCMEsand“HotJupiters”canbeestimatedby where the integration is performed from the upstream CME Khodachenkoetal. (2006) plasma flow to the correspondingpoint si at position ri on the streamline. Φ(0) is the unperturbed CME plasma flux, n is CME H ∆ +δ sin (∆ +δ )/2 theneutralhydrogendensityasafunctionofplanetarydistance, CME pl CME pl fcol = (cid:16) (cid:17)2πshinΘ ifCME, (4) σiH is the energy dependent cross section of hydrogen ioniza- tion processes, andds is the line elementalongthe streamline. where f is the CME occurrence rate, ∆ and δ are the Thetotalplanetaryionproductionratefromatmospherichydro- CME CME pl CME and planetaryangular sizes, Θ is the latitude distribution gen atoms in each volume element can be written as the sum of CME producingregions. Assuming an average stellar CME pi = pei +pce +pγ ,with pei theelectronimpactionization, occurrencerate fCME of∼ 3 CMEsperday(Khodachenoetal. pcHe+ thecHh+argeHe+xchaHn+gerate,aHn+d pγ thephoto-ionizationrate. 2006;andreferencestherein),andtakingthesize,durationand THh+etotalH+ ionmasslossratefinalHly+becomes latitudedistributionofCMEsclosetothesolarvalues(∆ = CME π/4 to π/3, tCME = 8 h, Θ = π/3), with the angular size δpl Γ = pi ∆Vm (6) relatedtotheorbitaldistancebetween0.015–0.2AUof0.045– CME H+ i H+ 0.0034rad,oneobtainsaCMEcollisionrate f of∼0.17–0.3 Xi col hitsperday.UsingthesevaluesanaveragetotalCMEexposure Table 2 shows the maximum expected CME-induced H+ pick timet ≈1.2×1016sduringaperiodof5Gyrisobtained. up massloss ratesdue to CME collisionsfromweaklymagne- CME To calculate atmospheric erosion rates we apply the same tized “Hot Jupiters” with substellar planetary obstacles at 1.3 time-dependentnumericalalgorithm,whichisabletosolvethe R , 1.5 R , and 2.0 R at various orbital distances. Fig. 1 pl pl pl system of hydrodynamicequations throughthe transonic point shows the residual mass after 5 Gyr of the maximum CME for calculation of the upper atmospheric hydrogen density as plasma exposure of weakly magnetized “Hot Jupiters” with used by Khodachenko et al. (2006) and Penz et al. (2006). planetaryobstaclesat1.3R , 1.5R ,and2.0R asa function pl pl pl 3 Gliese 876d and 55 Cnc e, while the three other known lower mass close-in exoplanets HD69830b, HD160691d and HD69830c belonged most likely since their origin to the Neptune-mass domain. The results of our study indicate that only a combination of the size detection with CoRoT and ground-basedfollow-upmassdeterminationstogetherwiththe- oretical mass loss studies over the exoplanets’ history can bring reliable information on the statistics of remaining cores, shrinkedgasgiantsand“unaffected”lowermassexoplanets,like Super Earths or Ocean planets. Furthermore, thermal evapora- tion from “Hot Jupiters” at orbits < 0.02 AU, together with CME-triggerednonthermalmassloss processesandtidalinter- actions(PatzoldandRauer 2002)canbeareasonthatsofarno “HotJupiter”isobservedattheseclosedistancestoitshoststar. Acknowledgements. H. Lammer and Yu. N. Kulikov thank the AAS “Verwaltungsstelle fu¨r Auslandsbeziehungen” and the RAS. T. Penz and G. Micela acknowledges support by the Marie Curie Fellowship Contract No. MTKD-CT-2004-002769 of the project “The influence of stellar high radia- tiononplanetary atmospheres”. Theauthors alsothanktheAustrian Ministry Fig.1. Residual mass after 5 Gyr exposure of dense CMEs in bm:bwkandASAforfundingtheCoRoTproject. units of M of weakly magnetized “Hot Jupiters” as a func- Jup tion of orbital distance compared with planetary obstacles at References 1.3 R (solid line), 1.5 R (dashed line), and 2.0 R (dotted pl pl pl line).Thehorizontaldashed-dottedlinesindicatethemassesof Baraffe,I.,Selsis,F.,Chabrier,G.,Barman,T.S.,Allard,F.,Hauschildt,P.H., Saturn,Uranus,Neptune,thehorizontaldottedlinescorresponds &Lammer,H.,2004,A&A,419,L13 Erkaev, N. V., Penz, T., Lammer, H., Lichtenegger, H. I. M., Biernat, H. K., to the mass of the Earth (lower line) and to the “Super-Earth” Wurz,P.,Grießmeier,J.-M.,&Weiss,W.W.,2005,ApJS,157,396 (M ≈ 10M ) mass domain (upper line), and the black cir- pl Earth Erkaev,N.V.,Lammer,H.,Kulikov,Yu.N.,Langmayr,D.,Selsis,F.,&Biernat, clesshowthesofarobservedlowermassclose-inexoplanets. H.K.,2006,A&A,submitted Grießmeier, J.-M.,Stadelmann,A.,Penz,T.,Lammer,H.,Selsis,F.,Ribas,I., Guinan,E.F.,Motschmann,U.,Biernat,H.K.,&Weiss,W.W.,2004,Astron. of orbital distance compared to 5 known low-mass exoplanets Astrophys.,425,753 Hillenbrand,L.A.,ArXivAstrophys.,eprintarXiv:astro-ph/0511083,2005 (Gliese 876d, 55 Cnc e, HD69830b, HD160691d, HD69830c) Khodachenko,M.L.,Lammer,H.,Lichtenegger,H.I.M.,Langmayr,D.,Erkaev, (http://exoplanet.eu/catalog.php).The resultsobtainedfromthe N.V.,Grießmeier,J.-M.,Leitner,M.,Penz,T.,Biernat,H.K.,Motschmann, numerical ion pick up test particle model simulations indicate U.,&Rucker,H.O.,2006,SpaceSci.,inpress that weakly magnetized gas giants at orbital distances ≤ 0.05 Lammer,H.,Selsis,F.,Ribas,I.,Guinan,E.F.,Bauer, S.J.&Weiss,W.W., AU or periods ≤ 4 days may lose a mass equivalent to that of 2003,ApJ,L121,598 LecavelierdesEtangs,A.,Vidal-Madjar,A.,McConnell,J.C.,&He´brard,G., Jupiterduringa5Gyrtimeperiod.Bycomparingtheresultsof 2004,A&A,418,L1 the integratedCME-inducedmasslosswith the thermalevapo- Lichtenegger, H. I. M., Schwingenschuh, K., Dubinin, E. M., & Lundin, R., ration loss shownin Table 1, one can see that formagnetically 1995,J.Geophys.Res.,100,21659 unprotected planets nonthermal loss processes are much more Pa¨tzold,M.,&Rauer,H.,2002,ApJ,568,L117 Penz,T.,Langmayr,D.,Erkaev,N.V.,Kulikov,Yu.N.,Lammer,H.,Biernat,H. efficientthanthermalevaporation. K.,Selsis,F.,Cecchi-Pestellini,C.,Micela,G.,Barge,P.,Deleuil,M.,Guis, Baraffe et al. (2004) compared the ratio of the mass loss V.,&Le´ger,A.,2006,Planet.SpaceSci.,submitted timescaletM˙ tothethermaltimescaletth,whichischaracterized Ribas,I.,Guinan,E.F.,Gu¨del,M.,&Audard,M.,ApJ,622,680 by the Kelvin-Helmotz timescale, found that, when t /t be- SchneiderJ.,RauerH.,LasotaJ.P.&BonnazolaS.,1998,in:Proceedings of M˙ th “BrownDwarfsandExtrasolarPlanets”(Reboloetal.eds),134,ASPConf. comes<1theevolutionofthe“HotJupiter”changesdrastically Series241 whichresultsinrapidexpansionoftheplanetaryradiusanden- Tian,F.,Toon,O.B.,Pavlov,A.A.,&Sterck,H.De.,2005,ApJ,621,1049 hancesthemassloss.Dependingonthestrengthoftheplanetary Vidal Madjar, A., Levavelier des Etangs, A., Desert, J.-M., Ballester, G. E., magneticfield,XUVfluxandexosphereformationtime,close- Ferlet,R.,He´brandG.&Mayor,M.,2003,Nature,422,143 ingasgiantsatorbitaldistances≤0.05AUmayexperiencethis Watson,A.J.,T.M.Donahue,J.C.G.Walker,1981,Icarus,48,150 Wuchterl,G.,2006,A&A,submitted. violentmasslosseffect. Yelle,R.V.,2004,Icarus,170,167 One can also see from Fig. 1 that it is very unlikely that the three low mass exoplanets HD69830b, HD160691d, and HD69830careremainingcoresoferodedgasgiants.Theycould havelosttheirhydrogen-envelopesbuttheirinitialmasswasnot muchlargerthanthatofNeptune.Thetwootherlowmassexo- planetsGliese876dand55Cncearelocatedatorbitaldistances where they could have been strongly affected by mass loss. Therefore, both exoplanets can be remaining cores of eroded weaklymagnetizedgasgiants. 4. Conclusions Our study indicates that mass loss of weakly magnetizedshort periodic “Hot Jupiters” can produce the observed masses of

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.