ebook img

Properties of the electroweak vacuum versus the QCD-vacuum in strong magnetic fields PDF

1.8 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Properties of the electroweak vacuum versus the QCD-vacuum in strong magnetic fields

Properties of the electroweak vacuum versus the QCD-vacuum in strong magnetic fields 2 1 0 2 n a Jos Van Doorsselaere J GhentUniversity,Belgium 4 E-mail: [email protected] ] h p In strongly magnetized backgrounds, electrically charged vector bosons can condense. When - p consideringtheρ–mesonsectorofQCD,thisresultsintheexistenceofasuperconductingstate e h withAbrikosovvortices.Asanextordereffect,alsotheneutralmesonscondenseandoneexpects [ theresultinglatticetobeamixofneutralandchargedcondensates, openingapossibilitytothe 1 existenceofasuperfluidproperty. Wewillshowhowthedetailedstructureofthevacuumcanbe v calculatedandwhichimplicationsithasonthenatureoftheexoticsuperconductingstate. 9 0 9 0 . 1 0 2 1 : v i X r a InternationalWorkshoponQCDGreen’sFunctions,ConfinementandPhenomenology 5-9September2011 Trento,Italy (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ ElectroweakversusQCD-vacuuminstrongmagneticfields 1. Introduction Itwasproposedlastyear[1]thatinastrongmagneticfieldthevacuummaybecomeanelectro- magneticsuperconductor. Forverystrongmagneticfields,thelightestofthechargedvectormesons are likely to condense in a similar way as the electroweak vector bosons [2]. The ρ–mesons have apolarizationwiththerightquantumnumberstoseeitsenergyreducedbyanincreasingmagnetic field, a property that is not shared with the lighter π–mesons. Hence the validity of the restric- tiontotheρ-mesonsectorandthestabilityofthecondensates,asπ–mesonsarenolongerfavored energetically. While it is a hope to observe the effects of such condensates experimentally, the required static magnetic field is way beyond experimental capabilities. However, a beam collision with very small impact parameter could create a magnetic field with the required strength [3], about 1016T. Thissettingispromising,butdoessharetheabsenceofelectricalfieldswiththetheoretical approximation. It is unclear whether the new vacuum could still appear in this setup and if it could create a detectable signal. If not, the relevance may be in Big Bang scenarios, as the early universemayhavebeenstronglymagnetized[4]andhavesufferedsomeeffectsoftheexoticstate this implies, as we will show. From a theoretical point of view there’s also a strong incentive to study this effect, as the results seem to have a broader application base than the ρ–mesons only. For example,W-condensation in the electroweak model [2] can be better understood by the very same –or at least similar– calculations and in particular one finds that the condensates imply superconductivity [5]. The obtained solution to the equations of motion joins other well known, non-trivial such solutions like monopoles, cosmic strings and sphalerons, all interesting in their ownright[6]. Aside from obtaining a better picture of the vacuum configuration and its superconducting nature,thecalculationspresentedgivesomeinsightinthepotentialsuperfluidstructureofthevac- uum. Whilenoproofofsuperfluiditywasfound,andinparticularthesuperfluidLondonequations are not satisfied, we find a substructure in the Abrikosov lattice consisting of ’superfluid’ vortices [7]. Thesevorticesgiveanon-trivialwindingofthephaseofneutralfields,justlikeinsuperfluids, butitremainsunclearwhetherourexoticmediumisasuperconducting/superfluidhybridorjusta very peculiar superconductor. The superconductivity, at least, was confirmed in numerical lattice calculations[8]andalsohintedfromholographicapproaches[9]. As a last interesting fact, we found the superconductivity to be strongly influenced by the neutral condensate such that, in the core of the Abrikosov-vortices the London-equation is still satisfied, unlike the ordinary case where it vanishes at the core. This means in some sense the superconductivityisstrongerthanintheordinarycase. In these proceedings we will go into detail on how the Abrikosov lattice can be obtained starting from nothing but the Lagrangian of the theory. It corresponds roughly to the paper [7], workdoneincollaborationwithMaximChernodubandHenriVerschelde. 2. Effectivepotentials To find an effective potential that can give a description of the Abrikosov lattice we will ba- sically need three steps: we describe the model in the transversal (to the external magnetic field) 2 ElectroweakversusQCD-vacuuminstrongmagneticfields plane,thenmakeasmallfieldapproximationandeventuallysolvethesimplifiedequationsofmo- tions and write the energy density as a function of one scalar field only. We will repeat the steps for three interesting cases: the ordinary Ginzburg-Landau model for comparison, the electroweak theorystudiedbyAmbjornandOlesenandtheρ–mesonsectoroftheQCD-vacuum,describedby theDSGSmodel[10]. Manyofthecalculationscanbefoundalreadyin[1]andmorerecent[7]. 2.1 Ginzburg-Landaumodel TheLagrangianwestartfromisgivenby 1 L=|D φ|2−V(|φ|2)− F2 ; (2.1) µ 4 µν 1 V(x)= λ(x−φ2)2; D φ =∂ φ−ieA φ. (2.2) 4 0 µ µ µ Withtheidentification O =O +iO ; O¯ =O −iO ; (2.3) 1 2 1 2 foranyoperator,wecanrewritethisasanenergydensity,puttingalllongitudinal((0,3)–directional) dependencetozeroandloweringall(spacial)indices. 1 E =|D¯φ|2+eF |φ|2+V(|φ|2)+ F2. (2.4) 12 2 12 Heresurfacetermsareneglectedandweused[D,D¯]φ =−2eF φ. 12 Now we are ready to make an approximation near the critical point for a sufficiently high externalfieldeB=e(cid:104)F (cid:105)= λφ2,wherealltermsintheaboveexpressionbecomepositive. 12 2 0 λ eF > φ2⇒φ =0 (2.5) 12 2 0 λ eF (cid:46) φ2⇒D¯φ =O(φ2)∼0 (2.6) 12 2 0 Neglectingthecontributionofthecovariantderivativeinawell-chosengaugeaswellasaperiod- icity requirement for the lattice, gives an Abrikosov ansatz [11] for test-space of solutions for φ, thatwillbeusedforavariationalmethod: D¯φn=∂¯φn− eBz¯φn=0 ⇒ φn=e−4eB|z|2e−2πnLz¯B−4eBz¯2−πn2, (2.7) 2 (cid:113) with L = 2π. It is easily seen that with this form translations in real and imaginary directions B eB give(n,N ∈N): φn(z+iLB,z¯−iLB)=eiz+2z¯φn(z,z¯) (2.8) iπiz−iz¯ φn(z+NLB,z¯+NLB)=e 2LB φ(n+N)(z,z¯) (2.9) Neglectingthenindependentgaugetransformation,wefindaperiodicsolution φ(z,z¯)=∑C φ (z,z¯) (2.10) n n n 3 ElectroweakversusQCD-vacuuminstrongmagneticfields ifC =C forsomeNandforalln. FixingN,wenowhaveanN–parameteransatztobeplugged n+N n intotheenergyfunctional. Lastlywedeterminetheappropriateenergyfrom(2.4). Thefirsttermcanalreadybedropped, as our test function makes it negligible. The equation of motion for the gauge field gives further- more: ∂(F +e|φ|2)=0 (2.11) 12 whichimpliestheargumentisconstantandequaltoitsaveragevalue,thus: F =B+e(cid:104)|φ2|(cid:105)−e|φ|2. (2.12) 12 Thelaststepisstraightforward: λ e2 λ e2 (cid:104)E(cid:105)=(eB− φ2)(cid:104)|φ|2(cid:105)+ (cid:104)|φ|2(cid:105)2+( − )(cid:104)|φ|4(cid:105)+φ4 (2.13) 2 0 2 4 2 0 Pluggingin(2.10)allowsanumericalminimizationintheN–dimensionalparameterspace. Interestingly, the third term in the above expression can be rewritten in the vacuum solution as: λ e2 β ( − )(cid:104)|φ|2(cid:105)2 (2.14) A 4 2 withβ theAbrikosov-parameterdeterminingthelatticepacking,unlike(cid:104)|φ|2(cid:105)thatisindependent A of it. When β =0 this ordering becomes degenerate, indicating a phase transition. Indeed, this A corresponds to the Bogomolnyi limit at which type II superconductivity goes to type I and vice versa. Alastpointwecanlookatisanexplicitproofthatwehavesuperconductivity. Thereforewe needthecovariantformoftheLondon-relation ∂Ji n e2 = s Ei (2.15) ∂t m with E the electrical field and σ the conductivity, essentially depending on the density of cooper- pairs. We can determinge equations of motion assuming a very small electrical field in the longi- tudinaldirection(paralleltotheexternalmagneticfield, butallothercomponentsstilltransversal. WegetforthecurrentJ =∂νF : µ νµ ∂ J3−∂3J =2e2|φ|2E3 (2.16) 0 0 2.2 Electroweakvacuum Nowthatwehavegonethroughthesimplestcaseinmuchdetail,wecanapplythistoamore complicatedmodel. TheLagrangianoftheelectroweakmodelintheunitarygaugereads: 1 1 g L=− (Wa )2− X2 +|D φ|2−V(|φ|2), D φ =∂ φ−i Z φ, (2.17) 4 µν 4 µν µ µ µ 2cosθ µ with the photon field A = cosθX +sinθW3, Z = −sinθX +cosθW3 and W− = (W1+ √ µ µ µ µ µ µ µ µ iW2)/ 2. µ 4 ElectroweakversusQCD-vacuuminstrongmagneticfields TakingtheconventionW =W−+iW−,neglectingthecomponentW¯ andgaugingtotheunitary 1 2 gauge,theexpressionfortheenergydensityfortransversalcomponentsonlyis: 1 1 1 g2φ2 g2 E = F2 + |D¯W|2+ ( −eF −gcosθZ )|W|2+ |W|4 2 12 2 2 2 12 12 8 1 g2φ2 + Z2 + |Z|2+|∂φ|2+V(|φ|2) (2.18) 2 12 4cos2θ withD¯W =∂¯W+ieA¯W+igcosθZ¯W. Knowingthatintheordinaryvacuumφ givesamasstothe W, we observe the same compensating effect of the magnetic field in the mass term as we did in theordinarysuperconductor. Veryimportantishoweverthatnowthesignofthistermisreversed, adirectconsequenceofthespin-1natureoftheW-field. ItiseasytocalculatethatforpositiveF 12 thiseffectisabsentfortheW¯ componentandthatitwillnotcontributeavacuumexpectationvalue. Leavingitoutwasthusjustified. Nowwehave g2 eF < φ2⇒W =0 (2.19) 12 2 0 g2 eF (cid:38) φ2⇒D¯W =O(W2)∼0 (2.20) 12 2 0 WecaninfactassumealltermstobethesamesmallorderO(W4),astheyareinanapproximation uptoO(W2)allstillvanishing. WithZ∼φ−φ ∼O(W2),wecansolvetheirrespectiveequations 0 ofmotionandtheoneforthephotonfieldandfind: g 1 g2φ 1 e e Z=i cosθ∂ |W|2; φ−φ = 0 |W|2; F =B+ |W|2− (cid:104)|W|2(cid:105); 2 ∂¯∂−M2 0 4 ∂¯∂−M2 12 2 2 Z H (2.21) withM2= g2φ02 andM2 =λφ2. ThisisverysimilartotheAbeliancase,butwithadifferentsign Z 2cos2θ H 0 for|W|2,indicatingthemagneticfieldandthesuperconductingcondensateareinfactproportional toeach-other,insteadoftheusualinversecorrelation. Thispropertyiscalledanti-ferromagnetism and it indicates that the superconducting state, rather than being destroyed at a sufficiently high magneticfield,iscreatedatacertaincriticalfieldstrength. By assuming the very same ansatz (2.10) for W as before, we can find a variational lattice solutionifwerewritetheenergyfunctionalintermsoftheW-condensateonly. Thisinvolvessome carefulbookkeepingincoefficients,butisfairlystraightforward: e2 1 1 g2 (cid:28) (cid:18) 1 1 (cid:19) (cid:29) (cid:104)E(cid:105)= (cid:104)|W|2(cid:105)2+ (M2 −eB )(cid:104)|W|2(cid:105)+ B2 + M2 |W|2 − |W|2 . 8 2 W ext 2 ext 8 W ∆−M2 ∆−M2 H Z (2.22) Clearly,theBogomolnyilimitappearsforM =M ,exactlyaswasalreadyshowninAmbjornand Z H Olesen’soriginalwork. 2.3 QCDvacuum Armedwithinsightfromthepreviousmodels,wecanputthemachinerytoworkincaseofan effective model for the ρ–meson sector of QCD. As argued in the introduction, this will hold the 5 ElectroweakversusQCD-vacuuminstrongmagneticfields dominatingcontributiontoavacuumcondensateinastrongmagneticfield. TheDSGSLagrangian isgivenby[10]: 1 1 m2 e L=− (ρa )2− F2 + ρ(ρa)2+ ρ(0)Fµν. (2.23) 4 µν 4 µν 2 µ 2g µν s For consistency, we will assume the same notation for the charged mesons as we did previously forthevectorbosonswhenrewritingthetheoryinthetransverseplane. Itisgoodtoknowthatthe conventionintheoriginalpaper[1]isfoundbyρ¯ (cid:55)→2ρ intheformulabelow. Neglecting the ρ-polarization in favor of the ρ¯ for the same reason as we droppedW¯ previ- ously, but the other way around due to the conventions in [10, 1]. We obtain for the transversal degreesoffreedom: 1 1 1(cid:16) (cid:17) g2 1 1 e E = F2 + |Dρ¯|2+ m2 +g f(0)−eF |ρ¯|2+ s|ρ¯|4+ (f(0))2+ m2|ρ(0)|2− F f(0) 2 12 2 2 ρ s 12 12 8 2 12 2 ρ g 12 12 s (2.24) with Dρ = ∂ρ¯ −ieAρ¯ +ig ρ(0)ρ¯ and f(0) = −i(∂¯ρ(0)−∂ρ¯(0)). The similarity with the elec- s 12 2 troweakmodelisobviousandweproceedinexactlythesameway,makingtheappropriateestimate forallfieldsassuminge(cid:104)F (cid:105)=eB(cid:38)m2. Theequationsofmotiongiveus 12 ρ g 1 e e e 1 ρ(0)=−i s∂ |ρ¯|2; F =B+ |ρ¯|2− (cid:104)|ρ¯|2(cid:105)− ∂¯∂ |ρ¯|2; (2.25) 2 ∂¯∂−m2 12 2 2 2 ∂¯∂−m2 0 0 using(cid:104)f(0)(cid:105)=0andm2=m2/(1−e2). Thisleadstediouslyto 12 0 ρ g2 s (cid:42) (cid:43) 1 e2 1 g2 1 (cid:104)E(cid:105)= B2 + (cid:104)|ρ¯|2(cid:105)2+ (m2 −eB )(cid:104)|ρ¯|2(cid:105)+ sm2 |ρ¯|2 |ρ¯|2 , (2.26) 2 ext 8 2 ρ ext 8 ρ −∂∂¯ +m2 0 wherewereplaceρ¯ bytheAbrikosovansatzillustratedbeforeandproceedtothenumericalmini- mization. It must be noted that the coefficient of the last term is much larger than in the electroweak case,asthere’snocompensatingsecondterminit. Thismakesthealgoritmmuchmorestable,and isexactlythereasonweobtainedsofaronlyresultsforthiscase,theelectroweakstructureshould soonfollow[5]. 3. Results The results show an ordering of vortices in a hexagonal structure, which can be obtained in a 2–parameter Abrikosov ansatz, reducing the energy of the more obvious 1–parameter square structure only slightly. More parameters do not improve the result. The ρ¯-condensate lattice is superimposed with a more involved lattice of much smaller neutral vortex-like structures, that we callsuperfluid-vortices. Thesuperconductivityismediatedbythechargedcondensate. Whilewenowhaveproofitis organizedhexagonally,thestructureofthevorticesisnotessentiallydifferentfrompreviousresults [1,2]. WhatisinterestingistheLondonrelation,whichbecomesmoreinvolvedbyinteractionwith theneutralcondensate. Onegets: (cid:16) 1 (cid:17) ∂ J3−∂3J =e2m2 |ρ¯|2 E3 (3.1) 0 0 0 −∂¯∂+m2 0 6 ElectroweakversusQCD-vacuuminstrongmagneticfields Figure1: Structureofthecharged(left)andneutral(right)condensates. compared to the result for the ordinary superconductor (2.16) we have that the right hand side coefficient is much more ’smoothed out’, and in particular does not make the superconductivity vanishatthevortexcore. Asecondinterestingdiscoveryistheexistenceofthesuperfluidvortices: configurationswith a non-trivial winding of the complex phase. The essential difference with the superconducting vorticesisthatthelattertellsomethingaboutthephaseofthechargedfields,whichisinthiscasea gaugeparameter. Thisallowsforthewindingpropertytocreateatopologicallystablelattice. Ifthe gauge parameter were not local, we would get a Goldstone boson and see a massless fluctuation, rather that seeing it eaten by a photon turned massive. This phenomenon is superfluidity, and can be seen in cold liquid Helium by the lack of both translational and rotational resistivity for low velocities. a superfluid vortex on top superfluid vortex of a superconductor vortexsuperfluid antivortex Figure 2: Phase of the neutral condensate: left the argument explicitly plotted, right the vorticity of the branchpoints. Redcircledarebranchpointstobothρ(0)andρ¯. Thelowerordervorticesinoursuperconductingbackgroundhaveindeedanon-trivialwinding of a non-gauged phase of the neutral fields, hence we call them superfluid. But while the phase of ρ(0) is no symmetry of the DSGS Lagrangian, no massless states are present and there is no topologicalstability. Ratherthesuperfluidvorticesarestabilizedbythesuperconductingvortices, and we could for example not have an isolated vortex solution. We can see from the plots clearly thatthesuperfluidvorticescomeinpairs,anddonothaveanetvorticity. 7 ElectroweakversusQCD-vacuuminstrongmagneticfields 4. Outlook Whilewehavenowcomputedthestructureofthemagnetizedvacuaclosetothecriticalmag- netization, an approximation for larger magnetic fields would be interesting. The equations are unfortunately much more involved once the condensates get larger. An interesting limit that may beinreachcouldbethecaseofmagneticfieldgreatlyexceedingallmassparametersinthemodel. For the electroweak model this means symmetry breaking is no longer caused by the Higgs field and a new phase appears. For the ρ–mesons no such effect exists, but as the masses become neg- ligible, we could approach a phase with more symmetry. The hopes would be then to infer the intermediateregimefrombothnear-criticalsolutions. Within the near-critical magnetization considered here, the existence of superfluidity is still an unsolved question. No straightforward evidence seems to follow from the theory, but further numerical research could shed light on the effect of translations and rotations of the lattice and possiblytheexistenceofLondon-likeequations. I thank Daniele Binosi for the kind welcome at the TNT-II workshop and Maxim Chernodub andHenriVerscheldeforcollaborationonthissubject. References [1] M.N.Chernodub,“SuperconductivityofQCDvacuuminstrongmagneticfield,”Phys.Rev.D82, 085011(2010).[arXiv:1008.1055[hep-ph]]. [2] J.Ambjorn,P.Olesen,“OnElectroweakMagnetism,”Nucl.Phys.B315,606(1989);“AMagnetic CondensateSolutionOfTheClassicalElectroweakTheory,”Phys.Lett.B218,67(1989). [3] V.Skokov,A.Y.Illarionov,V.Toneev,“Estimateofthemagneticfieldstrengthinheavy-ion collisions,”Int.J.Mod.Phys.A24,5925-5932(2009).[arXiv:0907.1396[nucl-th]]; [4] D.Grasso,H.R.Rubinstein,“Magneticfieldsintheearlyuniverse,”Phys.Rept.348,163-266 (2001).[astro-ph/0009061]. [5] M.N.Chernodub,J.VanDoorsselaere,H.Verschelde,inprogress [6] A.AchucarroandT.Vachaspati,"Semilocalandelectroweakstrings,”Phys.Rept.327,347(2000) [hep-ph/9904229];E.RaduandM.S.Volkov,Phys.Rept.468,101(2008)[arXiv:0804.1357]. [7] M.N.Chernodub,J.VanDoorsselaere,H.Verschelde,"Electromagneticallysuperconductingphaseof vacuuminstrongmagneticfields",[arXiv:1111.4401] [8] V.V.Braguta,P.V.Buividovich,M.N.Chernodub,M.I.Polikarpov,“Electromagnetic superconductivityofvacuuminducedbystrongmagneticfield: numericalevidenceinlatticegauge theory,”[arXiv:1104.3767]. [9] N.Callebaut,D.Dudal,H.Verschelde,“Holographicrhomesonsinanexternalmagneticfield,” [arXiv:1105.2217]. [10] D.Djukanovic,M.R.Schindler,J.Gegelia,S.Scherer,“Quantumelectrodynamicsforvector mesons,”Phys.Rev.Lett.95,012001(2005).[hep-ph/0505180]. [11] A.A.Abrikosov,FundamentalsoftheTheoryofMetals(NorthHolland,Amsterdam,1988); A.A.Abrikosov,“Onthemagneticpropertiesofsuperconductorsofthesecondgroup,”Sov.Phys. JETP5,1174-1182(1957).B.RosensteinandD.Li,“Ginzburg–LandautheoryoftypeII superconductorsinmagneticfield,”Rev.Mod.Phys.82,109(2010). 8

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.