ebook img

Properties of parallel upper critical field within Continuous Ginzburg-Landau model PDF

12 Pages·0.23 MB·English
by  L. Wang
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Properties of parallel upper critical field within Continuous Ginzburg-Landau model

Properties of parallel upper critical field within Continuous Ginzburg-Landau model L. Wang, H. S. Lim, and C. K. Ong Center for Superconducting and Magnetic Materials and Department of Physics, Blk. S12, Faculty of Science, National University of Singapore, 2 2 Science Drive 3, 0 Singapore 117542. 0 2 In this paper, we employ a continuous Ginzburg-Landau model to study the behaviors of the n parallel upper critical field of an intrinsically-layered superconductor. Near T where the order c a parameterisnearly homogeneous, theparallel uppercritical fieldisfoundtovaryas(1−T/T )1/2. c J Withawell-localized orderparameter,thesamefieldtemperaturedependenceholdsoverthewhole 8 temperaturerange. The profileof theorderparameter at theparallel uppercritical field may beof 1 aGaussiantype,whichisconsistentwiththeusuallinearGinzburg-Landautheory. Inaddition,the influences of the unit cell dimension and the average effective masses on the parallel upper critical ] n field and theassociated order parameter are also addressed. o c I. INTRODUCTION different thickness was introduced and efficient comput- - ingmethods havebeenadoptedtodetermine the generic r p Most high T superconductors (HTSs) have layered properties of the parallel upper critical field Bk of var- u c c2 structures and the layered superconductivity is closely ious layered superconductors. In the present work, we s . related to the behavior of the order parameter. Spatial shall examine various features pertinent to Bk and the t c2 a variation of the order parameter would aid us to intu- associated order parameter of a typically-layered super- m itively understand various properties such as the coher- conductor. - ence lengths of layered superconductors. On the other d hand, the investigation of the upper critical field B c2 n may provide information on the coherence lengths, and II. MODEL o in principle, allow the testing of existing theories (for c [ example, see Refs. 1–7). Hence, a study involving the orderparameterandtheuppercriticalfieldshouldprove In the CGL model of Koyama et al.4, layered super- 1 valuable. conductors have been classified into three categories10, v 2 The phenomenological continuous Ginzburg-Landau one of which the layered HTS Bi2Sr2CaCu2O8 (Bi2212) 2 (CGL) model4 is convenient for a description of the or- may fall into. Following Ref. 8, Bi2212 shall be chosen 3 der parameter and the upper critical field of layered su- as our modeling prototype for layered superconductors 1 perconductors. The coefficients in the CGL free energy as it possesses a large anisotropy11, and thus is suitable 0 are assumed to be spatially dependent. As a result, the for a detailed study that examines the relationship be- 2 amplitude of the order parameter varies, reflecting the tweenthe amplitude of the orderparameterandthe lay- 0 layered nature. The amplitude of the order parame- ered structure. Note, however, that a study involving / t ter at weakly superconducting layers may be extremely the phase effect of the order parameter (Josephson cou- a m small, corresponding to a weakly linked layer system pling) in Bi221212 may require a LD description1 for an similar to the Lawrence-Doniach (LD) model. On the appropriate investigation. - d other hand, when the spatial dependence is neglected, TheunitcellofBi2212composesoftwoCuO2bilayers, n the CGL model is reduced to the anisotropic Ginzburg- separatedbytheBiO-SrOinterlayer,whichisreferredto o Landau(GL) model. Hence, the CGL model approaches as insulating (I) layerfor convenience. The two adjacent c the limiting cases of the LD model and the anisotropic CuO2 planes of the bilayer (interplane distance ∼ 3 ˚A) : v GL model. are strongly coupled so that they can be treated as a i In a previous work8, a set of spatial coefficients for single superconducting (S) layer; therefore the distance X the CGL model was proposed for a layered supercon- betweentwosuperconductinglayersishalfthec-axislat- ar ducting system in which the unit cell was assumed to tice constant ∼ 15 ˚A13. Denoting the thickness of the I compose ofequivalently thick superconducting andinsu- andSlayersasdI anddS,respectively,wemaywritethe lating layers and no applied magnetic field was present. size of the unit cell D as D = dI +dS. The CGL free Recently9, a magnetic field parallel to the layers with energy for the system is8, 1 ¯h2 ∂ 2ie 2 F = dV α(T,z)|Ψ(~r,z)|2+ β|Ψ(~r,z)|4+ − A (~r,z) Ψ(~r,z) z 2 2M(z) ∂z ¯h Z " (cid:12)(cid:18) (cid:19) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) 1 ¯h2 2ie 2 1 + ∇(2)− A~(2)(~r,z) Ψ(~r,z) + B2(~r,z) , (1) 2m(z) ¯h 2µ (cid:12)(cid:18) (cid:19) (cid:12) 0 # (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) with planar vector ~r = (x,y) and vector potential where α , α , G , G , g and g are the model parame- 0 1 0 1 0 1 A~(~r,z) = (A~(2)(~r,z),A (~r,z)). M(z) denotes the effec- ters. These parameters are found to be relatedto exper- z tive masses along the z-direction (c-axis), and m(z) is imental data, to each other, and to the intrinsic param- the corresponding planar parameter. The GL coefficient eters, dI and dS (see discussions in section IV). α(T,z)and the effective masses are takenas before (β is LetanexternalmagneticfieldB be appliedparallelto assumed as a constant)8: the a- or b-axis which is in the y-direction. Thus, the vector potential can be taken as A~ = (Bz,0,0). Assum- α(T,z)=[α +α cos(2πz/D)](1−T/T ), (2a) 1 0 1 c ing Ψ(~r,z) = eik~k·~rΨ(z), it follows from Eq. 1 that, by =G +G cos(2πz/D), (2b) minimizing the free energy, 0 1 M(z) 1 =g +g cos(2πz/D), (2c) 0 1 m(z) ¯h2 ∂2 ¯h2 ∂ 1 ∂ 1 ¯h2k2 − Ψ(z)− Ψ(z)+ (2eB)2(z−z )2+ y Ψ(z) 2M(z)∂z2 2 ∂zM(z) ∂z 2m(z) 0 2m(z) (cid:20) (cid:21) " # +α(T,z)Ψ(z)+β|Ψ(z)|2Ψ(z)=0, (3) with z =h¯k /(2eB). At B =B , the superconducting ically small. To explore the features of the order param- 0 x c2 orderdevelopsintheSlayerfirstsothatonemaychoose eteralongthe z direction,weassumek =0. Finally, we y z = D/2. The high order term in Eq. 3, β|Ψ(z)|2Ψ(z), obtain 0 maybeomittedsincetheorderparameteratB isphys- c2 ¯h2 ∂2 ¯h2 ∂ 1 ∂ 1 D − Ψ(z)− Ψ(z)+ α(T,z)+ (2eB)2(z− )2 Ψ(z)=0. (4) 2M(z)∂z2 2 ∂zM(z) ∂z 2m(z) 2 (cid:20) (cid:21) (cid:20) (cid:21) For a giventemperature T,the maximum magnetic field spacing or the size of the unit cell, but the order param- B which satisfies the above equation, together with the eter is still assumed to be discontinuous. Thus, there boundaryconditionsΨ(0)=Ψ(D)and ∂ Ψ(z) =0, is the possibility of a true 3-D superconductivity with a ∂z z=D gives a point on the B -T curve. The largest B can be nearly uniformly distributed order parameter even in a c2 (cid:12) readily achieved by treating B2 in Eq. 4 as e(cid:12)igenvalue highlyanisotropicsuperconductor. Thissituationcanbe problems9. obtainedbyjustvaryingthe temperature(seeFig.1(a)). Again, it is found that the peaks of the order parame- III. RESULTS AND DISCUSSION ter can be fitted by a Gaussian function. The exponen- tialfactoristhemostsignificantpartoftheGaussianfit, showingthatthegroundstateoftheCGLlinearequation The order parameter distribution in a unit cell at dif- issimilartothatoftheusuallinearGLequation14,15. We ferent temperatures is plotted in Fig. 1(a). At low tem- emphasize that this similarity, together with many rea- peratures,the orderparameterismainlyconfinedwithin sonable results to be presented, reveals the plausibility the S layer,signifying a two-dimensional(2-D) state. At of our methods of calculating B . The fitted ξ (0) is hightemperatures,iteffectivelypenetratesintotheIlay- c2 ⊥ 0.96 ˚A, which comparesfavorablywith some experimen- ers. Near T , it varies smoothly and is nearly a constant c tal values of ∼1 ˚A16. throughout the unit cell, indicating a three-dimensional (3-D) state behavior. The present model thus correctly The calculated parallel B as a function of temper- c2 accounts for the behavior of a 2-D state at lower tem- ature is shown in Fig. 1(b) and Fig. 2. Near T , the c peratures and a 3-D state near T . Note that the weak feature of B -T is square-root like while far away from c c2 modulationoftheorderparameternearT maygenerate T , it is linear. The linear behavior in Fig. 1(b) can c c a genuine3-Dsuperconductor. This is differentfromthe be understood by identifying B ∝ 1/ξ2 while the lat- c2 so-called 3-D region of the LD model1, where the inter- ter is proportional to 1 − T/T 9. Note that the rela- c layer coherence length is much largerthan the interlayer tionship between B and T is also linear within the c2 2 anisotropy GL theory, in which Bk (T) = Φ0 , pounds of Tl Ba Ca Cu O (n=1,2,4), Mukaida c2 2πξk(T)ξ⊥(T) et al.30 repor2ted2thatn−t1he unpp2enr+4critical field generally whereboththeinterlayerandin-planecoherencelengths ξ⊥(T) and ξk(T) are proportional to (1−T/Tc)−1/2 so decreases as the number of CuO2 layer increases. They attributed their results to the effects caused by the dif- that Bk (T)∝(1−T/T ). c2 c ferentthicknessoftheeffectivesuperconductinglayersin Since the parallelB inBi2212rapidlyexceeds acces- c2 Tl Ba CuO , Tl Ba CaCu O and Tl Ba Ca Cu O , 2 2 6 2 2 2 8 2 2 3 4 12 sible laboratorymagnetic fields when the temperature is whose respective c-axis lattice constants are 23.2, 29.3 reducedfromTc,onlythe calculateddatanearTc canbe and 41.9 ˚A. Clearly, the theoretical trend presented in compared with experiments17,18 (see Fig. 2). By consid- Fig. 3(b) is consistent with their experimental observa- eringaconstantsolutionoftheorderparametertoEq.4, tions. onecanimmediatelyobtainasquare-rootB -T relation c2 The mass dependences of the parallel upper critical near T . Note, however,that with openboundary condi- c field at zero temperature are shownin Fig. 4(a)and (b). tions(OBC,Ψ(z)| =0)imposedonEq.4,wehave z→±∞ Inthesecalculations,thevalueofG (g )wasfixedwhile 1 1 found that there is a linear B -T relation near T (see c2 c that of G (g ) was varied to obtain the varying M 0 0 ⊥ solidcircles in Fig. 2). The deviationfromthe linear be- (m ). It is clear that large values of both M and m k ⊥ k haviorcanbeunderstoodasadimensionalcrossover(see resultinalargecriticalfield,whichisconsistentwiththe Ref. 19 and references therein). Moreover, when using anisotropicGLtheory,theLDmodel1andtheg theory5. 3 spatial-independent coefficients (AGL) in the OBC sim- ItisworthmentioningthatasM increases,wefindthat ⊥ ulation, we obtain a linear B -T relation in the whole c2 the order parameter Ψ(D/2) at the S layer grows while temperature range (as expected). Note that these calcu- that at the I layer, Ψ(0), decreases, leading to a larger lation results are in reasonably and qualitatively agree- difference of Ψ(D/2)−Ψ(0). Since 1/[Ψ(D/2)−Ψ(0)]is ment with experiments (which are diverse due to factors approximately proportional to the strength of interlayer such as crystal quality, measurement methods, etc). couplingbetweenadjacentSandI layers8,thusM sup- ⊥ The square-root behavior near Tc indicates that the presses interlayer coupling. In contrast, mk is found to upward curvature of the Bc2-T curve is absent in the enhance interlayer coupling. We attribute this to the ef- present simulated system. Recent studies6,20 show that fectthatM enhancestheorderparameterinthe super- ⊥ the upward curvature is perhaps not intrinsic. Indeed, conductinglayerwhilem suppressesit. Hence,HTSare k such curvature is neither found nor obviousin the WHH intrinsicallyfavorablefora largeM ,whichcorresponds ⊥ approximation21, the d-wave theory22 and the mixed d- to a weakly linked layered system. and s-wave theory23. Note, however, that the feature of The spatial variation of the order parameter at sev- the Bc2-T curvature is controversial7 and remains to be eral condensation energies is plotted in Fig. 5(a). The tested24. According to Fig. 2, the curvature of Bc2-T is temperature is set to zero. It is obvious that the largest boundary-condition dependent and thus indeed difficult energycorrespondsto the largestorderparameterin the to arrive at an absolutely conclusive conclusion. The S layer and that the smaller the condensed energy, the curvature may also be affected by physical phenomena25 broader the order parameter. Fig. 5(b) further shows such as the spin orbit scattering (for example, see the thatthe criticalfieldincreaseswiththe condensationen- microscopic theory in Ref. 2). ergy. The calculated Bc2 at zero temperature is about 700 Up till now, we have set the parameters α0, α1, G0, Teslaandiscomparablewiththoseextrapolatedfromex- G ,g andg (seeEq.2)intheSlayerthesameasthose 1 0 1 perimentsonBi221217,18andotherHTSsuchasYBCO26 inthe I layer(for example,αS =αI). We shallnow con- 0 0 and Bi2Sr2Ca2Cu3O1027. However, the experimentally sider the case where αS0 6= αI0. The ratios of αS0/αI0 in extrapolateddata might notbe too reliable28 and a pos- Fig. 6 (a) and (b) are 20 and 2000000,respectively. The sible new way to detect Bc2 with Josephson plasma has temperature is zero. The non-monotonic trend (first as- been suggested29. cendingandthendescending)inFig.6(a)isqualitatively Fig. 3(a) shows the spatial distribution of the order consistent with the data extracted from the numerical parameter for different D of the unit cell at zero tem- work of Refs. 3,4. perature. For small D, the order parameter covers the WhentheenergycondensedintheSlayerisextremely entire I layer but as D increases, its penetrations into large, the system would be in an extreme 2-D state, as the neighboring I layers become restricted and quickly illustrated in Fig. 6(b) for different unit cell sizes. The fall to zero. The 3-D (2-D) behavior for small (large) orderparametertotallyresidesintheSlayer. TheSlayer unit cell is in accordance with the features reflected fully decouples with the adjacent I layers and therefore in the calculated B -T curves of Refs. 3,4. Fig. 3(b) the system is in an extreme 2-D state. This interesting c2 presents the variation of the upper critical field with the 2-D behavior can be confirmed by the thickness depen- size of the unit cell at T = 0 K. The obtained criti- denceoftheuppercriticalfield. Thetheoreticaldatacan cal field decreases with D, which is qualitatively consis- be fitted by an inverse relation typical of a 2-D system tent with the g model5. Here a power law (dash line) (forexample,seeRefs.5,15). Itisinterestingtofindthat 3 could not fit the trend well but an exponential fit (solid the Ψ(D/2)-D profile is qualitativelyconsistentwith the line) is acceptable. Experimentally, for the similar com- B -D trend. Such qualitative consistency can also be c2 3 found in Figs. 6(a) and 3. 9L. Wang,H. S.Lim, and C. K. Ong,accepted for publica- The extreme 2-D behavior can be further confirmed tion in Supercond.Sci. Technol. (2001). by the spatial distribution of the order parameter and 10N.Takezawa,T.Koyama,andM.Tachiki,PhysicaC207, the temperature dependence of the upper critical field, 231 (1993). which are shown in Fig. 7. In Fig. 7 (a), the order pa- 11D. E. Farrell, S. Bonham, J. Foster, Y. C. Chang, P. Z. rameterdropsdownsharplyandisconfinedintheSlayer Jiang, K. G. Vandervoort, D. J. Lam, and V. G. Kogan, in a large temperature range till 84.9 K. In Fig. 7 (b), a Phys.Rev.Lett. 63, 782 (1989). 12R.Kleiner,F.Steinmeyer,G.Kunkel,andP.Mu¨ller,Phys. square-root relation between B and T holds over the c2 Rev.Lett.68,2394(1992);R.KleinerandP.Mu¨ller,Phys. whole temperature range and this again is a typical 2-D Rev.B 49, 1327 (1994). behavior, which has been reported in the literature (for 13J. M. Tarascon, Y. Le Page, P. Barboux, B. G. Bagley, L. example, see Refs. 19,10,32,33). H. Greene, W. R. Mckinnon, G. W. Hull, M. Giroud, and D.M. Hwang, Phys.Rev. B 37, 9382 (1988). 14A.A.Abrikosov,Zh.Eksp.Teor.Fiz.32,1442(1957)[Sov. IV. CONCLUSION Phys.JETP 5, 1174 (1957)]. 15M. Tinkham, Introduction to Superconductivity (McGraw- Hill, New York,1996). Within a continuous Ginzburg-Landau model for lay- 16S. H. Han, Yu. Eltsev, and O¨. Rapp, Phys. Rev. B 57, eredsuperconductors,wehavecalculatedtheparallelup- 7510(1998); Y.Hidaka,M.Oda,M.Suzuki,Y.Maeda,Y. percriticalfieldandtheassociatedorderparameterwith Enomoto,andT.Murakami,Jpn.J.Appl.Phys.27,L538 respect to the variation of the temperature, the unit cell (1988). Note,however, that thereare discrepancies among dimension, the averageeffective masses and the GL con- the values of ξ (0) for Bi2212, see, A. Pomar, M. V. Ra- ⊥ densationenergy. NearthevicinityofTc wheretheorder mallo, J. Mosqueira, C. Torr´on, and F. Vidal, Phys. Rev. parameterisnearlyhomogeneous,theparalleluppercrit- B 54, 7470 (1996). ical field is found to be square-root like. With a highly 17T.T.M.Palstra,B.Batlogg,L.F.Schneemeyer,R.B.van localized superconductivity, the same field temperature Dover,andJ.V.Waszczak,Phys.Rev.B38,5102(1988). dependenceholdsoverthewholetemperaturerange. The 18Y. Koike, T. Nakanomyo, and T. Fukase, Jpn. J. Appl. order parameter at B of the linear CGL equation may Phys.27, L841 (1988). c2 demonstrate a Gaussian profile, which is consistent with 19CornellS.L.Chun,Guo-GuangZheng,JoseL.Vicent,and that of the usual linear GL equation. The profile of the IvanK. Schuller, Phys.Rev.B 29, 4915 (1984). maximum order parameter in the superconducting layer 20H. H. Wen, W. L. Yang, Z. X. Zhao, and Y. M. Ni, Phys. againsttheunitcellsizemaybecorrelatedwiththetrend Rev.Lett. 82, 410 (1999). 21N.R.Werthamer,E.Helfand,andP.C.Hohenberg,Phys. of the upper critical filed versus the unit cell dimension. Rev.147, 295 (1966). 22H.Won and K.Maki, Phys.Rev. B 53, 5927 (1996). 23W. Kim, J. X. Zhu,and C. S.Ting, Phys.Rev. B 58, 607 (1998). 24M. C. Dai, T. J. Yang, and C. S. Ting, Phys. Rev. B 59, 9508 (1999). 25C. Uher, J. L. Cohn, and Ivan K. Schuller, Phys. Rev. B 1W. E. Lawrence and S. Doniach, Proc. 12th Int. Conf. on 34, 4906 (1986). Low Temp. Phys., edited byE. Kanda(AcademicPress of 26U.Welp,W.K.Kwok,G.W.Crabtree,K.G.Vandervoort, Japan, Kyoto, 1971), p.361. and J. Z. Liu, Phys. Rev.Lett. 62, 1908 (1989). 2R.A.Klemm,A.Luther,andM.R.Beasley,Phys.Rev.B 27I. Matsubara, H. Tanigawa, T. Ogura, H. Yamashita, M. 12, 877 (1975). Kinoshita, and T. Kawai, Phys. Rev.B 45, 7414 (1992). 3S.TakahashiandM.Tachiki,Phys.Rev.B33,4620(1986); 28M.C.deAndrade,Y.Dalichaouch,andM.B.Maple,Phys. M. Tachiki and S. Takahashi, Physica C 153-155, 1702 Rev.48, 16737 (1993). (1988). 29A.A. Abrikosov,Phys. Rev.B 38, 5112 (1997). 4T. Koyama, N. Takezawa, Y. Naruse, and M. Tachiki, 30H.Mukaida,K.Kawaguchi,M.Nakao,H.Kumakura,D.R. Physica C 194, 20 (1992). Dietderich,and K.Togano, Phys.Rev.B 42, 2659 (1990). 5T. Schneider and A. Schmidt, Phys. Rev. B 47, 5915 31V. G. Kogan, Phys. Rev.B 24, 1572 (1981); V. G. Kogan (1993). and J. R. Clem, Phys.Rev.B 24, 2497 (1981). 6V.B.Geshkenbein,L.B.Ioffe,andA.J.Millis,Phys.Rev. 32V. I. Dediu, V. V. Kabanov, and A. S. Sidorenko, Phys. Lett. 80, 5778 (1998). Rev.B 49, 4027 (1994). 7Yu. N. Ovchinnikov and V. Z. Kresin, Phys. Rev. B 52, 33A. Sidorenko, C. Su¨rgers, T. Trappmann, and H. v. 3075(1995);G.KotliarandC.M.Varma,Phys.Rev.Lett. L¨ohneysen,Phys. Rev.B 53, 11751 (1996). 77, 2296 (1996); A. A. Abrikosov, Phys. Rev. B 56, 446 (1997); A. S. Alexandrov, W. H. Beere, V. V. Kabanov, and W. Y. Liang, Phys. Rev.Lett. 79, 1551 (1997). FIG.1. (a)Spatialdistributionoftheorderparameterfor 8L.Wang,H.S.Lim,andC.K.Ong,Supercond.Sci.Tech- different temperatures. (b) Temperature dependence of the nol. 14, 252 (2001). parallel uppercritical field. 4 FIG.2. Calculated temperature dependences of the par- FIG.4. Upper critical field for (a) perpendicular average allel uppercritical fieldnear Tc,compared with experiments. mass M⊥ and (b) parallel average mass mk. Thesolidsquarescorrespondtotheperiodicboundarycondi- tion with spatial-dependent coefficients (CGL), the solid cir- cles to the open boundary conditions with spatial-dependent FIG. 5. a) Order parameter distribution and (b) upper coefficients(CGL)andtheopendiamondstotheopenbound- critical field at different condensation energies. ary conditions with spatial-independent coefficients (AGL). The solid line is a fit varying as (1−T/T )0.5. The dotted c line signifies thecrossover temperaturefrom 3D to2D in the FIG. 6. Order parameter and upper critical field for PBC-CGL (solid squares) and OBC-CGL (solid circles) cal- αS0/αI0 =20 in (a) and αS0/αI0 =2000000 in (b). The profiles culations. of the maximum order parameter vs D seem consistent with the corresponding Bc2-D trends. The dash line in (b) is ap- proximatelyaninversefitwhilethesolidlineisanexponential FIG. 3. (a) Order parameter distribution and (b) upper decay. critical field at different sizes of theunit cell. FIG.7. Typical2Dtemperaturedependenceoftheparal- lel uppercritical field. 5 Figure1 0.8 900 (b) (a) T(K) 0.6 0 600 40 ) a l s e 0.4 T Ψ ( 74 2 c B 84 300 84.99 84.9 0.2 0.0 0 0 5 10 15 20 25 30 0.0 0.2 0.4 0.6 0.8 1.0 z(a.u.) T/T c Figure 2 50 calc. (PBC, CGL) calc. (IBC, CGL) calc. (IBC, AGL) 40 expt. (Ref. 17) expt. (Ref. 18) fit: ~(1-T/T )0.5 ) a 30 c l s e T ( 220 c B 10 0 0.98 0.99 t* 1.00 T/T c Figure 3 1.0 1200 calculation (a) (b) D (a.u.) exponetional decay power decay (~D-0.17) 5.8 29.2 0.8 52.5 1000 0.6 ) a l s Ψ e T ( 2 c 0.4 B 800 0.2 0.0 600 0.0 0.2 0.4 0.6 0.8 1.0 0 10 20 30 40 50 60 z/D D(a.u.) )LJXUH(cid:3)(cid:23) (cid:25)(cid:25)(cid:27) (cid:25)(cid:25)(cid:27) (cid:11)D(cid:12) (cid:11)E(cid:12) (cid:25)(cid:25)(cid:25) (cid:25)(cid:25)(cid:25) (cid:12) (cid:12) D D O O V V H H 7 7 (cid:11) (cid:11) (cid:21) (cid:21) F F % % (cid:25)(cid:25)(cid:23) (cid:25)(cid:25)(cid:23) (cid:25)(cid:25)(cid:21) (cid:25)(cid:25)(cid:21) (cid:19) (cid:21)(cid:19)(cid:19) (cid:23)(cid:19)(cid:19) (cid:25)(cid:19)(cid:19) (cid:19)(cid:17)(cid:19)(cid:19) (cid:19)(cid:17)(cid:19)(cid:24) (cid:19)(cid:17)(cid:20)(cid:19) (cid:19)(cid:17)(cid:20)(cid:24) (cid:19)(cid:17)(cid:21)(cid:19) 0 P (cid:11)D(cid:17)X(cid:17)(cid:12) __ (cid:11)D(cid:17)X(cid:17)(cid:12) ^ )LJXUH(cid:3)(cid:24) (cid:20)(cid:17)(cid:19) (cid:28)(cid:19)(cid:19) (cid:11)D(cid:12) a (cid:11)D(cid:17)X(cid:17)(cid:12) (cid:11)E(cid:12) (cid:3)FDOFXODWLRQ (cid:19) (cid:3)OLQHDU(cid:3)ILW (cid:3)(cid:22)(cid:17)(cid:27)((cid:16)(cid:22) (cid:3)(cid:20)(cid:17)(cid:28)((cid:16)(cid:22) (cid:19)(cid:17)(cid:27) (cid:3)(cid:26)(cid:17)(cid:27)((cid:16)(cid:24) (cid:27)(cid:19)(cid:19) (cid:19)(cid:17)(cid:25) (cid:12) D O Y V (cid:26)(cid:19)(cid:19) H 7 (cid:11) (cid:21) F (cid:19)(cid:17)(cid:23) % (cid:25)(cid:19)(cid:19) (cid:19)(cid:17)(cid:21) (cid:19)(cid:17)(cid:19) (cid:24)(cid:19)(cid:19) (cid:19) (cid:24) (cid:20)(cid:19) (cid:20)(cid:24) (cid:21)(cid:19) (cid:21)(cid:24) (cid:22)(cid:19) (cid:16)(cid:19)(cid:17)(cid:19)(cid:19)(cid:23)(cid:24) (cid:16)(cid:19)(cid:17)(cid:19)(cid:19)(cid:22)(cid:19) (cid:16)(cid:19)(cid:17)(cid:19)(cid:19)(cid:20)(cid:24) (cid:19)(cid:17)(cid:19)(cid:19)(cid:19)(cid:19) a ’(cid:11)D(cid:17)X(cid:17)(cid:12) (cid:11)D(cid:17)X(cid:17)(cid:12) (cid:19)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.