materials Article Properties of Experimental Dental Composites Containing Antibacterial Silver-Releasing Filler RobertStencel1,JacekKasperski2,WojciechPakieła3,AnnaMertas4,Elz˙bietaBobela4, IzabelaBarszczewska-Rybarek5andGrzegorzChladek3,* 1 PrivatePractice,CenterofDentistryandImplantology,ul.Karpin´skiego3,41-500Chorzów,Poland; [email protected] 2 DepartmentofProstheticDentistry,SchoolofMedicinewiththeDivisionofDentistryinZabrze, MedicalUniversityofSilesia,pl.Akademicki17,41-902Bytom,Poland;[email protected] 3 FacultyofMechanicalEngineering,InstituteofEngineeringMaterialsandBiomaterials,SilesianUniversity ofTechnology,ul.Konarskiego18a,44-100Gliwice,Poland;[email protected] 4 ChairandDepartmentofMicrobiologyandImmunology,SchoolofMedicinewiththeDivisionofDentistry inZabrze,MedicalUniversityofSilesiainKatowice,ul.Jordana19,41-808Zabrze,Poland; [email protected](A.M.);[email protected](E.B.) 5 DepartmentofPhysicalChemistryandTechnologyofPolymers,SilesianUniversityofTechnology, 44-100Gliwice,Poland;[email protected] * Correspondence:[email protected];Tel.:+48-32-237-2907 (cid:1)(cid:2)(cid:3)(cid:1)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7) Received:20May2018;Accepted:11June2018;Published:18June2018 Abstract: Secondary caries is one of the important issues related to using dental composite restorations. Effectivepreventionofcariogenicbacteriasurvivalmayreducethisproblem. Theaim ofthisstudywastoevaluatetheantibacterialactivityandphysicalpropertiesofcompositematerials withsilversodiumhydrogenzirconiumphosphate(SSHZP).Theantibacterialfillerwasintroduced atconcentrationsof1%,4%,7%,10%,13%,and16%(w/w)intomodelcompositematerialconsisting ofmethacrylatemonomersandsilanizedglassandsilicafillers. Theinvitroreductioninthenumber of viable cariogenic bacteria Streptococcus mutans ATCC 33535 colonies, Vickers microhardness, compressive strength, diametral tensile strength, flexural strength, flexural modulus, sorption, solubility,degreeofconversion,andcolorstabilitywereinvestigated. Anincreaseinantimicrobial filler concentration resulted in a statistically significant reduction in bacteria. There were no statisticallysignificantdifferencescausedbytheintroductionofthefillerincompressivestrength, diametraltensilestrength,flexuralmodulus,andsolubility. Statisticallysignificantchangesindegree ofconversion,flexuralstrength,hardness(decrease),solubility(increase),andincolorwereregistered. AfavorablecombinationofantibacterialpropertiesandotherpropertieswasachievedatSSHZP concentrationsfrom4%to13%. Thesecompositesexhibitedpropertiessimilartothecontrolmaterial andenhancedinvitroantimicrobialefficiency. Keywords: dental composites; antibacterial properties; silver; mechanical properties; degree of conversion;sorption;solubility;colorstability 1. Introduction Worldwide, around 2.4 billion people (33% of the population) suffer from dental caries in permanentteeth,andthepercentageofthischronicdiseaseincreasedbetween2005and2015by14%[1]. Moreover, in some countries like Poland, more than 90% of the adult population has experienced dentalcariesandusedentalfillingsordentures[2]. Thesefactsillustratetheprogressiveextentofthe demandfordentalmaterialsandtheroleofconstantdevelopmentinthisspecificfieldofmaterial science. Dentalcaries,butsometimesalsodentaltraumaorextensivewearcaused,e.g.,bybruxism, Materials2018,11,1031;doi:10.3390/ma11061031 www.mdpi.com/journal/materials Materials2018,11,1031 2of27 mayleadtothelossofhardtissuesoftheteeth. Oneofthestrategiesallowingreconstructionofthe teethstructureisusingdirectrestorativematerials,whichareshapedintraorallytocreaterestorations directlyinteethcavities[3]. Currently,themostcommonofthemarephotopolymerizableresin-based composites, introducedfewdecadesagoasasubstituteforamalgams[4]. Thistypeofmaterialis alsoconsideredtobethemostprospective,whichhasresultedinagrowingnumberofnewproducts onthemarketandnumerousinvestigationsinthisarea. Incomparisonwithotherdirectrestorative materials, composites show optimal esthetic properties, which are related to possibilities of color matching(translucency,shades),satisfyingcolorstabilityandpolishability[5]. Compositesarealso reasonablyeasytouseandneedlessinvasivepreparationtechniquesthanamalgams[6],whichshould be considered as additional clinical advantages. As a result of many years of evolution, modern composites show good mechanical and physical properties [7], with wear rates similar to human enamel[8]aswellassuitablebiocompatibility[9]. Nevertheless,useofresincompositesmaystilllead tohigherfailureratesincomparisontoamalgams[10,11].Thetwomostfrequentreasonsforcomposite failuresarefracturesandsecondarycaries[12,13]. Pereira-Cencietal.[14],intheirextensivereview, concluded that secondary caries is the cause of up to 55% of resin composite filling replacements. It is defined as “positively diagnosed carious lesion, which occurs at the margins of an existing restoration” [15]. However, currently, it is commonly accepted that it is a primary carious lesion ofteethatthemarginofafilling,butitoccursaftersometimefromplacingtherestoration[15,16], incontrasttotheremainingcaries,whicharecausedbyincompleteeliminationofinfectedtoothtissues duringcavitypreparation[15]. Secondarycariesisoftenlinkedtothepresenceofmicroleakagecaused byvariousfactors[17–19],whichmaybethereasonfortheoccurrenceofliquids,chemicalsubstances, andfinallybacteriabetweenthetoothandtherestoration[20,21]. Regardlessofthedoubtsaboutthe etiologyofcariesaftertheplacementoffillings,itisrecognizedasaseriousandwidespreadclinical problem. Moreover,compositesaccumulatemorebiofilmandplaquethanotherdirectrestorative materials[22].Forthisreason,itisbelievedthattheperfectresincompositefillingshouldnotonlyhave suitablemechanicalandestheticpropertiesbutalsooughttopossessantibacterialpropertiestoavoid colonizationofthetooth/restorationinterfacebypathogenicbacteria,suchasStreptococcusmutans (S.mutans)[23,24]. Diverse research with different additives has been carried out to develop effective antibacterial composites. Numerous experiments have focused on resins containing polymerizableantibacterialadditives,suchasquaternaryammoniumdimethacrylate(QADM)[25], 12-methacryloyloxydodecylpyridiniumbromide(MDPB)[26],dimethylaminohexadecylmethacrylate (DMAHDM) [27], dimethyl-hexadecyl-methacryloxyethyl-ammonium iodide (DHMAI) [28], ordimethylaminododecylanddimethylaminohexadecylmethacrylates[29]. Otherorganicmaterials includingquaternaryammoniumpolyethylenimine(PEI)nanoparticles[30],chlorhexidine[31,32], triclosan [33], chitosan [34], and benzalkonium chloride and acrylic acid [35] were also tested with varying degrees of success. The use of different experimental fillers is another important strategy for developing antimicrobial composites. Tavassoli Hojati et al. [36], Kasraei et al. [37], and Aydin Sevinç et al. [38] reported the reduction of cariogenic bacteria after incorporation of zinc oxide nanoparticles, probably due to the mechanism of production of active oxygen species, such as H O or the possible leaching of Zn2+ ions. Khvostenko et al. [39] used bioactive glass 2 2 (65% SiO , 31% CaO, 4% P O ) and obtained a 61% reduction of S. mutans penetration of the gap 2 2 5 depth under laboratory conditions, which suggests that the release of ions from glass into the gap may help control the local chemistry by creating an antimicrobial environment that reduces biofilm propagation. Łukomska-Szyman´ska et al. [20] noted that composites additionally filled withcalciumfluoridehadshownasignificantreductionofS.mutansandL.acidophilus,whichwas probablyrelatedwithcreatinghydrofluoricacidthatcanpenetratethebacterialmembrane,generate acidification of cytoplasm, and inhibit enzymes. Sodagar et al. [40] modified the commercially available orthodontic composite with titanium dioxide nanoparticles and proved inhibition of S.mutansandS.sanguinisgrowth. Themostwidelytestedmaterialsinpreviousyearswerethose Materials2018,11,1031 3of27 containingsilver. Niuetal.[41]successfullyappliedtetrapod-likezincoxidewhiskerstoincrease antibacterialresistance. Chatzistavrouetal.[42]confirmedasignificantreductionofS.mutansfor Ag-doped bioactive glass and additional bioactivity of tested materials. Ai et al. [43] investigated compositeresinreinforcedwithsilvernanoparticle-ladenhydroxyapatitenanowires,wherenanowires wereusedasreinforcementandnanosilverasanantimicrobialagent. Thereductionofmicroorganisms wasnoted,however,onlywhentheexperimentalfillerwasaddedintothematrixanditsconcentration was limited to 10%, so those interesting results needs confirmation in follow-up experiments on materials with typical reinforcing fillers. Łukomska-Szyman´ska et al. [44], reported a viability of S. mutans from 48% to 87% in comparison to control samples on the surface of experimental compositeswiththeadditionofsilverparticlesaloneandcombinedtitaniumdioxide,silicadioxide, and zirconium dioxide nanoparticles or microparticles. Kasraei et al. [37] and Azarsina et al. [45] modified commercially available composites with silver nanoparticles and noted a reduction of bacterialcolonies.However,ambertobrowndiscolorationofmaterialswithnanosilverhasbeennoted, whichisalimitationforanestheticmaterial[37,44,45]. Also,theinhibitoryeffectagainstS.mutans of resin composites with silver-containing inorganic particles like silica gel have been confirmed, whichtheauthorslinkednotwithsilverionreleasebutwiththepresenceofactiveoxygen,including hydroxylradicals,createdbythecatalyticactionofsilverduringphotoactivationorcontactwithwater atpolarsurfaces[46]. Additionally,simultaneouseffectsofsilvernanoparticleswithhydroxyapatite nanoparticles[47]orantimicrobialmonomers[27,48]werealsoinvestigated. Silver sodium hydrogen zirconium phosphate (SSHZP) is a silver-releasing ceramic. Thissubmicron-sizedantimicrobialmaterialiswhiteandstable,soasopposedtosilvernanoparticles, itshouldnotcausethetypicalinitialamberorbrowndiscolorationduetotheplasmoneffect[49], whichisproblematicinthecaseofdentalmaterials. However,thequestionoffurthercolorchanges relatedwithsilverionreleaseduringcontactwithawetenvironmentanditsoxidationremainsopen. So far, SSHZP has been reported as an additive into a polymethyl methacrylate (PMMA) denturebasematerial[50]andapolydimethylsiloxane-basedsoftdenturelining[51]. SSHZPwas also previously investigated as an antimicrobial additive into chitosan and alginate fibers [52,53]. Moreover,itisincorporatedintosomecurrentlyavailablealginateandcarboxymethylcellulosewound dressings[54,55].Inthisstudy,wereporttheuseofSSHZPasantibacterialfillerforadistinctlydifferent material—aexperimentaldirectrestorativephotopolymerizableresin-basedcomposite,reinforcedwith variedfillertypesathighconcentrations. Therefore,theaimofthepresentedworkwastoinvestigate theimpactoftheproposedfiller(SSHZP),introducedintoresin-basedcompositesintendedasdirect restorativematerials,foritsantimicrobialeffectiveness,mechanicalproperties,degreeofconversion, sorption,solubility,andcolorchanges. Ourhypothesiswasthatcompositesadditionallyfilledwith SSHZPwouldshowantimicrobialeffectivenessagainstcariogenicbacteriaandsuitablepropertiesfor dentalrestorativematerials. 2. MaterialsandMethods 2.1. MaterialsPreparation Thematrixconsistedofthreemixedmonomers: bisphenolAglycidylmethacrylate(bis-GMA), urethane-dimethacrylate (UDMA), and triethylene glycol dimethacrylate (TEGDMA) at a weight ratioof42:38:20,respectively(allpurchasedformSigma-Aldrich,St. Louis,MO,USA).Additionally, 0.4% (w/w) of camphorquinone (CQ, Sigma-Aldrich, St. Louis, MO, USA) as the photosensitizer and 1% (w/w) of N,N-dimethylaminoethyl methacrylate (DMAEMA) as a photoaccelerator (both Sigma-Aldrich, St. Louis, MO, USA) were introduced. The reinforcing fillers were two silanized bariumborosilicateglassfillers(Esschem, Linwood, PA,USA),withameanparticlesizedeclared by the manufacturer of 2 µm (G1) or 0.7 µm (G2), and silanized silica nanofiller Aerosil R7200 (AR) (Evonic Industries, Essen, Germany), used at a weight ratio of 50:35:15, respectively. Silver sodiumhydrogenzirconiumphosphatecontainingapproximately10%ofsilver(w/w),withmolecular Materials2018,11,1031 4of27 formulaAg Na H Zr (PO ) [56](MillikenChemical,Spartanburg,SC,USA)wasusedasan 0.46 0.29 0.25 2 4 3 antimicrobialfiller. TheSSHZPwascompoundedatconcentrationsof1%,4%,7%,10%,13%,and16% (w/w),andthemassesnecessarytopreparethecompositeswerecalculatedaccordingtotheequation: c × m m = SSHZP MRF (1) SSHZP 1− c SSHZP wherem wastheSSZHPg;c wastheSSZHPconcentration,%(w/w);andm wasthe SSHZP SSHZP MRF matrixwithreinforcingfillermass(alwaysconstant). The fillers were compounded into a matrix in 50 mL glass Griffin form beakers at room temperature in the following order: SSHZP, G1, G2, and AR as the last one. All composites werepreparedinstandardizedportionsbasedonthesamemassesofmatrixandreinforcingfillers. ThecompositionsofstandardizedportionsoftestedmaterialsarelistedinTable1. Theintroducing processwascarriedoutgraduallyinstandardportionsof1g(SSHZP,G1,G2)or0.5g(AR).Forthe lowestconcentrationofSSHZP,orwhenthelastportionofparticularfillerswasadded,theywere smaller. Compoundingwaseffectedbymultiplespreadingsandmixingsofmaterialswithastainless steelspatulaonthewallofthebeakertoapplyshearforces. Thesubsequentdosesoffillerswereadded whenahomogeneousconsistencyforthepreviousdosewasachieved. Theprocessofcompounding for one material took about 2.5–4 h; the longer time was needed for materials with higher filler concentrationsduetotheirincreasingviscosity. Theobtainedcompositionswereplacedunderthe pressure of 80 mbar for 25 min in a modified vacuum stirrer (Twister evolution, Renfert GmbH, Hilzingen, Germany). AllmaterialswerepolymerizedwithaDY400-4LEDlamp(DenjoyDental, Changsha,China),power5W,intensity1400–2000mW/cm2,opticalwavelength450–470nm. Table1. Compositionsofinvestigatedmaterialswiththemassesofcomponentsneededtoprepare standardportions. Code Matrix,g Matrix,%(w/w) RF,g RF,%(w/w) SSHZP,g SSHZP,%(w/w) TF,%(w/w) Control 15.00 35.00 27.86 65.00 0 0 65.00 AC1 15.00 34.35 27.86 64.65 0.43 1 65.35 AC4 15.00 33.60 27.86 62.40 1.76 4 66.40 AC7 15.00 32.55 27.86 60.45 3.22 7 67.45 AC10 15.00 31.50 27.86 58.50 4.76 10 68.50 AC13 15.00 30.45 27.86 56.55 6.40 13 69.55 AC16 15.00 29.40 27.86 54.60 8.16 16 70.60 AC—antibacterial composite, RF—reinforcing fillers, SSHZP—silver sodium hydrogen zirconium phosphate, TF—totalconcentrationofcompoundedfillers. 2.2. ScanningElectronMicroscopy(SEM)Investigations Fillerswereaddedto99.8%ethanol,ultrasonicallyhomogenized,anddroppedoncarbontape. Polymerizedsamplesforcompositemorphologyobservationsmeasured10×2×2mm. Twotypes of specimens were used. The first type was subjected to the standard procedure which involved wet-grindingandpolishingusingdiamondpastes.Theothertypewasimmersedinliquidnitrogenand broken. Compositesamplesafterpolishingwerealsoetchedwithorthophosphoricacid. Allsamples weresputteredwithgold. ObservationswereperformedusingaZeissSUPRA35scanningelectron microscope(Zeiss,Oberkochen,Germany)atacceleratingvoltagesfrom3kVto20kV. 2.3. AntibacterialTest Specimensmeasured11mmindiameterand2mminthicknessandwerepreparedinTeflon molds.Themoldwasplacedatamicroscopeslidecoveredwith50µmthickpolyesterfoil.Thematerial wasplacedintothemoldandcoveredwiththefoilandmicroscopeslide. Then,theuppermicroscope slidewasmanuallypressedandtakenaway. Whenthesamplewaspolymerized,thepolyesterfoilwas removed. Themoldswithsampleswerewet-groundsequentiallywithP800-andP1200-gritabrasive Materials2018,11,1031 5of27 paperstoremoveexcessofmaterialandtostandardizethesurface. Next,thesampleswererinsed withdistilledwaterandpushedoutofthemolds. The invitro reduction of bacteria was examined according to the previously described method [51,57,58] with some modifications. The standard strain of bacterium Streptococcus mutans ATCC 33535 was used. Sterilized samples of composites were immersed individually in 2 mL of bacterial suspensions in tryptone water, which contained approximately 1.5 × 105 CFU/mL (CFU—colonyformingunits)ofS.mutans. Asuspensionofbacteriaintryptonewaterwastestedasa positivecontrol. Puretryptonewaterwastestedasanegativecontrol. Incubationwascarriedoutina shakingincubatorfor17hat37◦C.Afterincubation,20µLofsuspensionwasseededontoColumbia agar(bioMerieux,Marcyl’Etoille,France)with5%sheepbloodplates. Theculturedplateswerefinally incubatedat37◦Cfor24h,andthenumbersofbacterialcolonieswerecounted. Therelativereduction inthenumberofviablebacteriacolonies(RB)wascalculatedaccordingtotheequation: V −V RB = c t ×100% (2) V c whereV wasthenumberofviablemicroorganismcoloniesofthepositivecontrol(BLANK)andV c t wasthenumberofviablemicroorganismcoloniesofthetestspecimen. 2.4. CompressiveStrength Compressive strength was examined according to the method presented by Mota et al. [59], withsomenecessaryspecificationsconcerningsamplepreparation. Cylindricalspecimens(3mmin diameterand6mminheight)werepreparedasdescribedforthemicrobiologicaltest. However,due totheirheight, polymerizationwascarriedoutatthetopandatthebottombeforetheremovalof thepolyesterfoil. Furthermore,afterremovingthemfromthemold,thesampleswerecuredonfour lateralsurfaces,accordingtotherecommendationofGalvãoetal.[60]. Tensampleswereprepared fromeachcomposite. Thesampleswereconditionedindistilledwaterat37±1◦Cfor24h. Testswere conductedusingauniversaltestingmachine(ZwickZ020,ZwickGmbH&Com,Ulm,Germany)ata cross-headspeedof0.5mm/min. Compressivestrengthwascalculatedaccordingtotheequation: F σ = (3) cs A where σ was the compressive strength, MPa; F was force at fracture, N; and A was the initial cs cross-sectionalareaofspecimen,mm2. 2.5. DiametralTensileStrength The samples for the diametral tensile strength (DTS) tests (6 mm in diameter and 3 mm in height) [61] were prepared with a method similar to the microbiological test, but irradiation was carried out at the top and at the bottom before removing the polyester foil. Ten samples were prepared from each composite. The samples were conditioned in distilled water at 37 ± 1 ◦C for 24h[61]. Compressiveloadwasappliedonthelateralsurfaceofthesamplesatacross-headspeed of0.5mm/min[20]usingauniversaltestingmachineZwickZ2.5. TheDTSvalueswerecalculated accordingtotheequation: 2F DTS = (4) πdh whereDTSwastheultimatediametraltensilestrength,MPa;Fwastheforceatfracture,N;dwasthe diameter,mm;andhwasthethickness,mm. 2.6. FlexuralStrength Three-point bending tests were carried out using a universal testing machine Zwick Z2.5 in accordance with the ISO 4049 standard [62], with specifications concerning sample preparation. Specimens measuring 25 × 2 × 2 mm were prepared using silicone (Zetalabor Platinum 85Touch, Materials2018,11,1031 6of27 ZhrmackSpA,BadiaPolesine,Italy)moldsplacedinastainless-steelframe. Materialswerepacked intoamoldandpolymerizedbyamethodsimilartotheprevioustest,butfiveoverlappingirradiations werecarriedout,startingfromthecenterofthesample. Aftercuring,samplesweretakenoutofthe mold,theexcessofmaterialwascutoffwithascalpel,andthespecimenswerethenwet-groundwith P800-andP1200-gritabrasivepapers. Tensampleswerepreparedfromeachcomposite. Thesamples werestoredindistilledwaterat37 ± 1◦Cfor24h. Thetestwasperformedatacross-headspeed of0.75mm/minandthedistancebetweenthesupportswas20mm. Flexuralstrengthandflexural moduluswerecalculatedaccordingtotheequations: 3Pl σ = (5) fl 2bh2 P l3 E = 1 (6) 4bh3δ where σ was flexural strength, MPa; E was flexural modulus, GPa; l was distance between the fl supports,mm;bandhwerethespecimenwidthandheight,mm;Pwasmaximalforce,N;P was 1 theloadatchosenpointattheelasticregionofthestress-strainplot,kN;andδwasthedeflectionat P ,mm. 1 2.7. VickersHardness Vickers microhardness was measured on specimens like for DTS, however, samples after wet-grindingwerealsopolishedwith6-µmand3-µmdiamondsuspensions(StruersGmbH,Willich, Germany). Threesamplesweremadefromeachcomposite. Thesampleswerestoredindistilledwater at37±1◦Cfor24h.Hardnesswasmeasured10timesforeachspecimenatrandomlychosenlocations usingthemicrohardnesstester(Future-TechFM-700,Future-TechCorp,Tokyo,Japan)ata100-gload andaloadingtimeof15s[63]. Vickershardnesswascalculatedaccordingtotheequation: 1.8544×F E = (7) d2 whereFwastheload,N,anddwastheaveragelengthofthediagonalleftbytheindenter,mm. 2.8. DegreeofConversion Thedegreeofconversion(DC)wasdeterminedusingthemethoddescribedbyAtiraetal.[64] withmodificationsmadeduringsamplepreparation. Specimens,measuring5mmindiameterand 2mminheight,werepreparedinTeflonmoldsaspreviouslydescribed,butirradiationwascarriedout onlyatthetop. Thesampleswereremovedfromthemoldsanddriedindesiccatorswithfreshlydried silicagelat37±1◦Cfor24h. SpectrawererecordedbyaFouriertransforminfraredspectroscopy (FTIR)spectrophotometer(PerkinElmerSpectrumTwo,PerkinElmer,Waltham,MA,USA),equipped with an attenuated total reflectance (ATR) crystal. The absorption intensity of selected peaks was measured in the range of 1800–1500 cm−1 and recorded with 128 scans at a resolution of 1 cm−1. TheDCwascalculatedfromthedecreaseoftheabsorptionbandat1637cm−1,referringtotheC=C stretchingvibration(A )inrelationtothepeakat1608cm−1,andassignedtothearomaticstretching C=C vibrations(A )inaccordancewiththeequation[65]: Ar (AC=C/AAr)aftercuring DC(%) = (1− )×100 (8) (AC=C/AAr)beforecuring 2.9. SorptionandSolubility Thespecimensmeasuring15mmindiameterand1mminheightwerepreparedusingTeflon molds[66]andpolymerizedatnineoverlappingirradiationzonesinaccordancewiththemethod describedintheISOstandard[62]. Aftercuring,theyweregroundwithP1200-gritabrasivepaperto removeexcessmaterialwithpotentiallypoorlypolymerizedlayers[67]andtostandardizethesurface. Materials2018,11,1031 7of27 Then, the samples were removed from the molds. Five test samples of each material were made. ThemeasurementofsorptionandsolubilitywasperformedinaccordancewithISO4049. Thesamples weredriedinsidedesiccatorswithfreshlydriedsilicagelinadryerat37±1◦Candweigheddaily (AS110/C/2,Radwag,Radom,Poland)withanaccuracyof0.1mg. Whenthechangesinmasswere nohigherthan0.1mg,themassvalueswererecordedasm ,andthethicknessanddiameterwere 1 measuredwithadigitalcaliperwithanaccuracyof0.1mm. Eachsamplewasplacedin10mLof distilled water for 7 days at 37 ± 1 ◦C. After storing, the samples were removed from water with tweezers,driedfromvisiblemoisturewithfilterpaper,keptatroomtemperaturefor15s,andweighed (m massvaluesweredenoted). Thedryingprocesswasrepeatedasdescribedabove,andstablemass 2 wasdenotedasm . Sorptionandsolubilitywerecalculatedusingequations: 3 m −m w = 2 3 (9) sp V m −m w = 1 3 (10) sl V wherew wassorption,w wassolubility,m wastheinitialmassofdriedsample,µg;m wasthe sp sl l 2 massafterstoring,µg,andm wasthemassaftertheseconddrying,µg;andVwasthevolumeofthe 3 sample,mm3. 2.10. ColorChangeMeasurement Toevaluatethecolorchanges,thespecimensmeasuring7mmindiameterand3mminthickness werepreparedinTeflonmolds. Themoldwasplacedonamicroscopeslide. Thematerialwasplaced intothemold,coveredwithpolyesterfoilandfinallywithsecondmicroscopeslide. Then,theupper microscopeslidewasmanuallypressedandtakenaway. Theformpreparedinthiswaywasinverted (theslidewasontop,foilonthebottom). Thiswasimportanttodobecauseduringpolymerization, theelasticfoilallowedthematerialtomoveduetopolymerizationshrinkage(typicalmeniscuswas formed), while the working surface of the composite in contact with the slide adhered to it and remainedflat. Thecuredsamplewaspushedoutofthemold. Fivesampleswerepreparedfromeach material. Afterpreparation,sampleswerestoredindryanddarkconditionsat37◦Cfor24handnext wereimmersedin10mLofdistilledwaterindarknessat37±1◦C.Distilledwaterwasreplacedafter thesecondandfourthday. Colormeasurementswereobtained24hafterpolymerization(baseline) andafter7daysofimmersion. Aspectrophotometer(CM2600d,KonicaMinolta,Takyo,Japan)was usedtorecordtheCIEL*a*b*parameterswithaD65illuminantonawhiteceramictile. TheCIELab systemiscomposedofthreeaxes: L*isthelightnessfrom0(black)to100(white),a*representsthered (+a*value)—green(−a*value)axis,andb*representstheblue(−b*value)—yellow(+b*value)axis. Thecolorchange(∆E*)wascalculatedusingtheequation[68]: (cid:113) ∆E∗ = (∆L∗)2+ (∆a∗)2+ (∆b∗)2 (11) where∆L*=L −L ;∆a*=a −a ;and∆b*=b −b . (7days) (baseline) (7days) (baseline) (7days) (baseline) 2.11. StatisticalAnalysis Statistical analysis of the results was done with the use of the Statistica software (software version 13.1, TIBCO Software Inc., Palo Alto, CA, USA). The distributions of the residuals were tested with the Shapiro–Wilk test, and the equality of variances was tested with the Levene test. When the distribution of the residuals was normal and the variances were equal, the one-way or two-wayANOVAwithTukeyHSDposthoctestswereused(α=0.05),otherwisethenonparametric Kruskal–Wallis test (α = 0.05) was used. Regression analysis was performed to determine the correlationbetweenDCandhardness(α=0.05). Materials2018,11,1031 8of27 3. Results Materials 2018, 11, x FOR PEER REVIEW 8 of 26 3.1. ScanningElectronMicroscopyInvestigations 3.1. Scanning Electron Microscopy Investigations Figure1presentsthemorphologiesoftheusedfillers.Forbothglassfillers(Figure1a,b),numerous particles sFhigouwree d1 aprmesuencths stmhea mlleorrp(shtoalrotginiegs forfo tmhe5 u0snedm f)ilolerrsl.a rFgoerr b(outph tgola8ssµ fmill)erssi z(eFigthuaren 1tha,eb)m, ean size dneucmlaerreodusb pyartthicelems sahnouwfeadc tau mreurch(2 smµmallearn (dsta0r.t7inµg mfro).mT 5h0 enmsh) aopr elasrgoefr t(huep tpoa 8r tµicmle) ssizwee trheanir trheeg ular. Nanompeaarnti csliezea gdgercelagraetdio bnys mthee amsuarniunfgacutupretor 5(20 µnmm wanedr e0n.7o µtemd).f oTrhsei lischaapfielsle rof( Fthigeu prear1ticc)l.esF owreSrSe HZP irregular. Nanoparticle aggregations measuring up to 50 nm were noted for silica filler (Figure 1c). particles measured approximately from 100 nm to 500 nm (Figure 1d) but also larger structures, For SSHZP particles measured approximately from 100 nm to 500 nm (Figure 1d) but also larger consistingofparticlesconnectedtoeachother,wereobserved(Figure1e). structures, consisting of particles connected to each other, were observed (Figure 1e). (a) (b) (c) (d) (e) Figure 1. Scanning electron microscopy images presenting the morphologies of used fillers: glass Figure1.Scanningelectronmicroscopyimagespresentingthemorphologiesofusedfillers:glassfillers fillers with a mean particle size of 0.7 μm (a); 2 μm (b); silica nanofiller (c); and silver sodium withameanparticlesizeof0.7µm(a); 2µm(b); silicananofiller(c); andsilversodiumhydrogen hydrogen zirconium phosphate (d,e). zirconiumphosphate(d,e). Materials2018,11,1031 9of27 Materials 2018, 11, x FOR PEER REVIEW 9 of 26 SEMSiEmMa gimesagiellsu isllturasttriantgintgh tehem moroprphhoollooggiieess ooff ccoommppoosistiet ererienifnofrocerdce wditwh igthlasgsl aasnsd asnildicas ifliilclearsfi llers areparrees epnretesednitendF iing uFirgeu2rea ,2ba.,bT. hTehem moroprphhoollooggiieess ooff mmaatteerriaialsl swwithit hadadditdioitniaoln aanltiabnatcitbearicatle friillaelr fialrlee rare presepnrteesdeninteFdi ginu Freig2ucr–ef .2cG–of.o Gdodoids tdriibsturitbiountioonf soifl iscialicnaa nnaonpoapratrictilcelsesb ebtewtweeeenng gllaassss ssuubbmmiiccrrooppaarrttiiccleless and microapndar tmiciclerospinarttihcelesm iant rtihxe wmaastroixb sweravs eodbs(eFrivgeudr e(F2ibg)u.rLe a2rbg)e. Laagrggree gagagtiroengastoiofnAs Rofw AeRre wneorte dneotte cted. detected. The SSHZP was also well distributed up to the highest concentrations. Single particles TheSSHZPwasalsowelldistributeduptothehighestconcentrations. Singleparticleswereclearly were clearly visible, however, clusters measuring up to 2 µm were also noted. Observations for visible,however,clustersmeasuringupto2µmwerealsonoted. Observationsforfrozen-brokenbut frozen-broken but not etched samples (Figure 2e,f) showed good contact between the particles and notetchedsamples(Figure2e,f)showedgoodcontactbetweentheparticlesandthematrix. the matrix. (a) (b) (c) (d) (e) (f) Figure 2. Representative SEM images presenting the morphologies of the cured base composite Figure 2. Representative SEM images presenting the morphologies of the cured base composite compounded with: reinforcing fillers (a,b); addition of 7% (c) and 16% (c–f) of silver sodium compoundedwith:reinforcingfillers(a,b);additionof7%(c)and16%(c–f)ofsilversodiumhydrogen hydrogen zirconium phosphate; (a–d)—wet-ground, polished, etched samples (e,f)—frozen-broken zirconium phosphate; (a–d)—wet-ground, polished, etched samples (e,f)—frozen-broken but not etchedsamples,blackarrows(c,d)indicatethegapsbetweenSSZHPandmatrixafteretching. Materials 2018, 11, x FOR PEER REVIEW 10 of 26 but not etched samples, black arrows (c,d) indicate the gaps between SSZHP and matrix after Materiealtsch20in18g,.1 1,1031 10of27 3.2. Antibacterial Test 3.2. AntibacterialTest The achieved results of the antibacterial tests are listed in Table 2. Introducing the SSZHP into the cTohmepaocshiiteevse dhardes ua ltssigonfitfhiceaanntt iebfafcetcetr i(apl t=e s0ts.0a0r0e2l)i sotend tihneT arebdleu2c.tiIonntr oodf uSc.i nmgutthaenSs ScZoHloPniienst.o Fthoer cmoamteproiasli twesithhaoduta asnitginmiificcraonbtiaelf ffielcletr(,p R=B 0v.a0l0u0e2s) wonerteh ceormedpuacrtaibolne otof Sth.em puotasintsivceo cloonniterso.l.F Coormmpaotesritieasl wwiitthho fuiltlearn ctiomncicernotbriaatliofinllse fr,roRmB v1a%lu teos 4w%e rsehocowmedp aRraBb mleetdoiathnes pfroosmiti v4e3.c8o%n ttroo 7l.0C.1o%m, paonsdi ttehsowseit vhafilulleesr cshonouceldn trbaet icoonnssifdroemred1 %ast odi4ff%ersehnot wif ewdeR tBakme eidnitaon ascfcrooumnt4 3th.8e% obtota7in0.e1d% m, ainndimtahlo asendv amluaexsimshaol uRldB bvealucoens.s Fidoerr ceodnacesndtrifafteiroennst sitfarwtiengta fkroemin 7to%a, cacllo oubnttaitnheedo RbBta vinaeludems wineirme a1l0a0n%d. maximal RB values. Forconcentrationsstartingfrom7%,allobtainedRBvalueswere100%. Table 2. The reduction in the number of viable colonies (RB) of Streptococcus mutans ATCC 33535, Taaftbelre 127. hT hofe irnecduubcatitoionni nwtihthe cnoummpboesritoefsv siaamblpelceosl.o nies(RB)ofStreptococcusmutansATCC33535,after 17hofincubationwithcompositessamples. CFU/mL (Vt) ×104 RB, % cSSZHP, % MedC FU/mLM(Vat)x ×104 Min Med RB,M%ax Min cSS0Z HP,% 3.53 3.99 3.13 4.7 15.5 −7.7 Med Max Min Med Max Min 1 2.08 2.89 1.87 43.8 49.6 21.9 0 3.53 3.99 3.13 4.7 15.5 −7.7 4 0.68 0.13 0.00 70.1 93.2 65.7 1 2.08 2.89 1.87 43.8 49.6 21.9 7 4 00.6.080 0.01.300 0.000.00 701.100.0 93.1200.0 65.7100.0 107 00.0.000 0.00.000 0.000.00 1001.000.0 1001.000.0 100.1000.0 131 0 00.0.000 0.00.000 0.000.00 1001.000.0 1001.000.0 100.1000.0 13 0.00 0.00 0.00 100.0 100.0 100.0 16 0.00 0.00 0.00 100.0 100.0 100.0 16 0.00 0.00 0.00 100.0 100.0 100.0 cSSZHP—concentration of silver sodium hydrogen zirconium phosphate; CFU—colony forming units; cSSZHP—concentration of silver sodium hydrogen zirconium phosphate; CFU—colony forming units; RRBB——tthhee rreelalatitviveer erdeudcuticotnionin inth tehne unmubmerbeorf ovfi avbilaebblea cbtearcitaercioal ocnoileosn; iMese;d M—emde—dimane,dMiainn,— Mmiinn—immalinviamluael, Mvaalxu—e,m Maxaixm—almvaalxuiem. al value. 33..33.. CCoommpprreessssiivvee SSttrreennggtthh TThhee mmeeaann ccoommpprreessssiivvee ssttrreennggtthh vvaalluueess aarree pprreesseenntteedd iinn FFiigguurree 33.. TThhee SSSSHHZZPP ccoonncceennttrraattiioonn ddiidd nnoott hhaavvee aa ssiiggnniifificcaanntt iinnflfluueennccee oonn tthhee ccoommpprreessssiivvee ssttrreennggtthh ooff tthhee ccoommppoossiitteess ((pp == 00..00552244)).. TThhee mmeeaann vvaalluueess wweerree ffrroomm 228844 MMPPaa ttoo 330077 MMPPaa.. Figure 3. Mean values and standard deviations of compressive strength. Figure3.Meanvaluesandstandarddeviationsofcompressivestrength. 3.4. Diametral Tensile Strength
Description: