ebook img

Properties of AGN coronae in the NuSTAR era II: hybrid plasma PDF

0.13 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Properties of AGN coronae in the NuSTAR era II: hybrid plasma

Mon.Not.R.Astron.Soc.000,000–000(0000) Printed25January2017 (MNLATEXstylefilev2.2) Properties of AGN coronae in the NuSTAR era II: hybrid plasma A.C. Fabian1∗, A. Lohfink1, R. Belmont2,3, J. Malzac2,3 and P. Coppi4 1InstituteofAstronomy,MadingleyRoad,CambridgeCB30HA 2UniversitedeToulouse;UPS-OMP;IRAP;Toulouse,France 7 3CNRS;IRAP;9Av.colonelRoche,BP44346,F-31028Toulousecedex4,France 1 4YaleCenterforAstronomyandAstrophysics,YaleUniversity,NewHaven,Connecticut06520-8121,USA 0 2 n 25January2017 a J 4 ABSTRACT 2 Thecorona,ahotcloudofelectronsclosetothecentreoftheaccretiondisc,producesthehard X-raypower-lawcontinuumcommonlyseeninluminousActiveGalacticNuclei(AGN).The ] E continuumhas a high-energyturnover,typicallyin therangeof oneto several100keV and issuggestiveofComptonizationbythermalelectrons.WearestudyinghardX-rayspectraof H AGNobtainedwithNuSTARaftercorrectionforX-rayreflectionandundertheassumption . h thatcoronaearecompact,beingonlyafewgravitationalradiiinsizeasindicatedbyreflection p and reverberation modelling. Compact coronae raise the possibility that the temperature is - limitedandindeedcontrolledbyelectron-positronpairproduction,asexploredearlier(Paper o I).Hereweexaminehybridplasmasinwhichamixtureofthermalandnonthermalparticles r t ispresent.Pairproductionfromthenonthermalcomponentreducesthetemperatureleading s a toawidertemperaturerangemoreconsistentwithobservations. [ Keywords: blackholephysics:accretiondiscs,X-rays:binaries,galaxies 1 v 4 7 7 1 INTRODUCTION blackholehasaverysmallmassofMc=10−8m26R21M⊙,thermal 6 energy Theprimarypower-law, X-rayemission fromluminous accreting 0 . blackholesoriginatesfromthecorona,whichisahotcloudclose E ≈1042m2R2erg (1) 1 tothecentreoftheaccretiondisc.SoftdiscphotonsareCompton- th 6 1 0 7 upscatteredinthecoronatomakethepower-lawcontinuum.Itof- and crossing time tcross =50m6R1s. The luminosity obtained if 1 ten shows a high-energy turnover somewhere between about 30 all the coronal energy is released on a crossing time Lcross ≈ : keV and 1 MeV, generally interpreted as the temperature of the 2×1040m6R1ergs−1ismuch less than the Eddington luminosity v corona(oravalueclosetoit).Theprimarycontinuumisusuallythe LEdd, in that Lcross/LEdd ≈10−4R1. Higher luminosities, as are Xi mostvariablepartofthespectrum,showingrapidchangeswhich, typicallyobserved,requirethatbothcoolingandheatingoccuron when interpreted using X-ray reflection and reverberation signa- afaster timescale. Asargued by MF01, the energy supplying the r a tures, indicate that the corona has a relatively small size of less heatmustbestoredinthecorona,probablyintheformofmagnetic thanafewtensofgravitationalradii(rg=GM/c2)(Fabian2013; fieldspoweredbytheaccretiondisc.Itisthenunclear,ifonlyheat- Reis&Miller 2013; Uttleyetal. 2014). The fraction of the bolo- ingandcoolingareinvolved,whatcontrolstheplasmatemperature, metricpowerpassingthroughthecoronarangesfromabout10to ortemperatures,inthecoronaandhowanystableequilibriumises- 50percent(Vasudevan&Fabian2007). tablished. A compact corona in a luminous accreting black hole sys- Herewefollowuponourrecentpaper(F15),whichexplored tem must be a dynamic structure since the heating and cooling theproperties(temperatureandcompactness)ofcoronaededuced timescalesforthehotelectronsarelessthanthelightcrossingtime in the light of NuSTAR observations. The coronal plasma is as- ofthecorona(Fabianetal.2015,PaperI,F15).Thereisnotenough sumedtobethermalandthetemperatureatthemaximumallowed timeforanysimpleequilibriumtobeestablished.Thiscanbefur- byelectron-positronpairproduction: heatingpushes thetempera- ther considered by looking at the thermal energy content of the tureupwarduntilitisbalancedbythecreationofpairs–thepair corona,whichissmall(Merloni&Fabian2001,MF01).Aspheri- thermostat(Svensson1984;Zdziarski1985).NuSTARobservations calcoronawithtypicalpropertiesofunitThomsondepth,tT=1, ofActiveGalacticNuclei(AGN)showtheyavoidtheregionwhere temperature kT =50keV and radius 10R1rg above a 106m6M⊙ pairproductionrunsaway,indicatingthattheprocessmayplaya role.HoweverthereisasignificantnumberofAGNforwhichthe temperatureismuchsmallerthanexpectedonthebasisofpurely thermal pair production (e.g., Balokovic´etal. 2015; Ursinietal. ∗ E-mail:[email protected] 2016). (cid:13)c 0000RAS 2 A.C. Fabianet al Hereweaimtotackletheissueofalowtemperaturecorona e−−e− byconsideringhybridcoronaecontainingamixtureofthermaland coupling 1000 nonthermalparticles.Weassumethatthecoronaishighlymagne- slab tizedandpowered bydissipationof magnetic energy. Such dissi- hemisphere pation is often intermittent in both space and time. In a compact sphere at 0.5h 100 coronatheheatingandcoolingaresointensethatenergeticparti- clesmaynothavetimetothermalizebeforeinverseComptoncool- ingreducestheirenergy(seetheelectron-electronequilibrationline ℓh 10 inFig.1,whichisadaptedfromF15:theelectron-protonlinelies about 3 orders of magnitude lower). Only a small fraction of the electronsneedstartfromenergiesofanMeVormoreforthemto 1 emithardphotonswhichcollideandcreateelectron-positronpairs. Ifthepairsareenergeticenoughthenyetmorepairsareproduced andarunawaysituationcanoccur.Meanwhilethecooledpairscan, beforeannihilating,sharetheavailableenergyleadingtoareduc- 10 100 1000 tion in the mean energy per particle and thus temperature of the kT [keV] thermalpopulation,whichmaybecomposedmostlyofpairs.This can result in a relatively cool thermal particle population with a Figure1.Electrontemperature(kT)–compactness(ℓ)distributionforNuS- temperaturewellbelow100keV,alow-levelhardtailandapossi- TAR observed AGN (blue points) as first shown in Fabianetal. (2015). blebroadannihilationlineat511keV.Unlessverysensitivehard Thee–ecouplinglinefromGhisellini,Haardt&Fabian(1993)isincluded: X-rayobservationsareobtained,theemittedcontinuumappearsto electronsintheregionabovethedashedlinedonothavetimetothermally originatefromalow-temperaturethermalplasmaincapableofpair equilibratewitheachotherbeforecoolingoccurs.Pairlines,aboveandto therightofwhichthereisrunawaypairproduction,takenfromSternetal. production. Paradoxically, what appear to be thelowest tempera- (1995)arealsoshown.Theslablinehasbeenextrapolatedslightlytohigher tureobjectscanbethemostpair-dominated. ℓ.Opencirclesareusedforobjectswherethetemperaturemeasurementisa Hybrid models for the corona were introduced over two lowerlimit.Thetemperaturesshownaretheobservedvaluesreportedfrom decadesago(Zdziarski,Lightman&Maciolek-Niedzwiecki1993; spectralfits. Ghisellini,Haardt&Fabian 1993) providing a better explanation forthehardX-rayspectraofluminousaccretingblackholesthan purelynonthermal(Svensson1994)orthermal(Fabian1994)mod- 1 ℓnth/ℓh=0.0 els. Comparison of hybrid models with AGN spectra has been ℓnth/ℓh=0.1 cJoahrrniesodnoeuttaol.n1N99G7C),4u1s5in1g(ZOdSzSiaErsdkait,aJforhonmsotnhe&CMomagpdtozniaGrzam19m96a-; 10−1 ℓℓnntthh//ℓℓhh==00..23 Ray Observatory to conclude that the nonthermal contribution in NGC4151islessthan15percent.AstudyofstackedAGNspec- 10−2 trafromOSSEbyGondeketal.(1996)wasunabletodistinguish dτdp between the possibilities. More recent work on NGC4151 using INTEGRALdataLubinskietal.(2010)showsthatthermalmodels 10−3 fitthespectra,whichextendupto200keV,initsbrightstateand thatthesourceappearsharderinitslowstate.Thereisnonewin- 10−4 formation on any possible hard tail or annhilation feature; OSSE resultsremain the most sensitive at those energies. Integral spec- trainthe2–200keVbandof28brightSeyfertgalaxies,combined 10−5 with lower energy data from other instruments, are characterized 10−3 10−2 10−1 1 10 bythermalComponizationwithameantemperaturekT ∼50keV p (Lubin´skietal.2016)andatailtohighervalues.Wefoundasimi- lardistributionfromNuSTARdata(F15,Fig.1). Figure2.Lepton distributions foranincreasing sequence ofℓnth/ℓh and ℓh/ℓs=1atℓh=100,wherepisthedimensionlessleptonmomentum(bg ) Hybrid models have been successfully applied to the spec- and ddtp =R×s T×ddnp withRbeingtheradiusofthespheremodelledby tra of X-ray Black Hole Binaries (BHB) such as Cyg X-1 Belm,s TtheThomsoncross-section,andntheleptonnumberdensity.As where high energy tails are clearly seen (Gierlinskietal. 1999; the non-thermal fraction increases the peak of the distribution moves to McConnelletal. 2001; Parkeretal. 2015), for other sources see lowerenergies. also (Groveetal. 1998; Kalemcietal. 2016; Wardzinskietal. 2002;Droulansetal.2010).Inthispaper,weconcentrateonAGN, conclusions inSection3.Detailedspectralcomparison withindi- sincehigh-frequency,X-rayreverberationresultsindicatetheloca- vidualobjectsislefttoalaterpaper. tion and size of the corona. Such reverberation has not yet been detectedinBHB. OurgoalhereistocomparetherangeofNuSTARresultswith 2 HYBRIDPLASMAS thepairthermostatoperatinginhybridplasma.Wearenotatthis stageattemptingtoreproducespectraofindividualobjects.Wede- The excellent hard X-ray sensitivity of NuSTAR has allowed de- fine our parameters and discuss hybrid plasmas in more detail in tailedspectral modelling of the reflection component and precise Section2.WecomputeandshowkT−ℓdiagramsforvariouslev- measurementsofthespectralturnoverinthecontinuumspectrum elsofthenonthermalfractionalcontribution.Finallywediscussour ofmanyX-raybrightActiveGalacticNuclei(AGN)tobemade. (cid:13)c 0000RAS,MNRAS000,000–000 PropertiesofAGNcoronaeII 3 1000 1000 h 100 h 100 ℓ ℓ ℓnth/ℓh=0.0 ℓnth/ℓh=0.0 ℓnth/ℓh=0.01 ℓnth/ℓh=0.01 ℓnth/ℓh=0.09 ℓnth/ℓh=0.09 ℓnth/ℓh=0.17 ℓnth/ℓh=0.17 ℓnth/ℓh=0.23 ℓnth/ℓh=0.23 ℓnth/ℓh=0.29 ℓnth/ℓh=0.29 ℓnth/ℓh=0.33 ℓnth/ℓh=0.33 10 10 10 100 10 100 kT [keV] kT [keV] Figure3.kT−ℓdistributionsforanincreasingsequenceofℓnth/ℓhandtwodifferentℓh/ℓsvalues:1(leftpanel),0.1(rightpanel).Asthenon-thermalfraction increasestheequilibriumtemperatureislower.Similarly,ageometrywithmoresoftphotonsenteringthecoronaleadstolowerequilibriumtemperatures. Inordertounderstandwhatsetsthosetemperatures,itisuse- ful to show these measurements in the form of a temperature- 100 compactness, kT−ℓ, diagram (Fig. 1; adapted from F15), where kT istheelectrontemperatureandℓisthedimensionlesscompact- nessparameter L s 10 ℓ= RmeTc3 (2) νFν withL being theluminosity, R theradius of thesource (assumed spherical), s T theThomson crosssectionandme themassof the 1 ℓnth/ℓh=0.0 electron. ℓnth/ℓh=0.1 Coronaeshould liealongoneofthelinesinthekT−ℓplot, ℓnth/ℓh=0.2 which in Fig. 1 represent the expectation for a purely thermal ℓnth/ℓh=0.3 plasma,whosetemperatureisregulatedbypairs.Thistakesplace 0.1 1 10 100 1000 asthecoronaisheatedanddrivendiagonallyupwardsfromleftto Energy [keV] rightintheplot(i.e.increasingbothLandkT)untilpairsstartto formfromenergeticcollisions.Thisthenreducesandfinallystabi- Figure4.Simulatedspectraforℓhof10,100,1000(dashed,solid,dotted) lizesthetemperatureattheline. andℓh/ℓsof1foranincreasingsequenceofℓnth/ℓh. Sourcesshouldnotbeseentotherightoftheline,sincecatas- trophicpairproductionwouldensue,rapidlydrivingdownthetem- results are obtained using EQPAIR1 (Coppi 1999).) BELM si- perature.Ifasourceisconfirmedtooccurandremainintheforbid- multaneouslysolvesthecoupledkineticequationsforleptonsand denregion,thenthebasisofthemodelneedstobere-considered, photons ina(magnetized,) uniform, isotropic medium. Theequi- withsomethingotherthanastaticcompactcoronabeingrelevant. libriumenergydistributionsof theComptonizing leptonsarecal- Jettedemissionwouldbemorelikelyinthiscase.Objectswellto culatedself-consistently,takingintoaccountthecouplingbetween theleftofthelineposetheproblemofwhatstabilizestheminsuch particlesandradiation.Radiationtransferisdealtwithusingasim- ahighlydynamicsituation? pleescapeprobabilityformalism.Thecodetakesintoaccount all Weproposeherethathybridcoronaecansolvethisproblem. therelevantradiationprocessessuchasself-absorbedsynchrotron In our hybrid corona scenario, we assume that part of the coro- radiation,Comptonscattering,self-absorbedbremsstrahlungradi- nal heating power, Lnth, creates a nonthermal power-law electron ation, pair production/annihilation, coulomb collisions, and uses spectrumwithinthesource,withcompactnessparameterℓnth.The prescriptions for particle heating/acceleration. In the simulations thermalheatingoftheelectronpopulationℓth andtheinjectionof showninthispaper theeffectsof cyclo-synchrotron radiationare soft photons ℓs continues as in a standard, thermal scenario. The neglected (magnetic fieldisset to0G). EQPAIRisvery similar total heating is then given by ℓh=ℓth+ℓnth and the nonthermal (andgivesidenticalresults)butassumesthelowenergycomponent forpatcitciaolndiesptthhust ,ℓnpthla/yℓsh.aTshterornagtioroℓlhe/iℓns,dtoetgeertmheinriwngiththtehepTowhoemr-lsaown oftheelectrondistributionisaperfectMaxwellian,whileourelec- trondistributionsarecalculatedaccordingtothefullkineticequa- slopeoftheemergingX-rayradiation,withhighvaluesleadingto aflatspectrumandlowvaluestoasteepone.Increasingt ,which canbearesultofpairproduction,tendstohardenthespectrum. 1 An excellent discussion of hybrid plasmas and their possible appli- We use the BELM code (Belmont,Malzac&Marcowith cation to BHB is given in the unpublished paper by Paolo Coppi at 2008)forsimulatingemissionfromhybridplasmas.(Comparable http://www.astro.yale.edu/coppi/eqpair/eqpap4.ps (cid:13)c 0000RAS,MNRAS000,000–000 4 A.C. Fabianet al 1000 ℓnth/ℓh=0.0 ℓnth/ℓh=0.01 1000 ℓnth/ℓh=0.09 ℓnth/ℓh=0.17 ℓnth/ℓh=0.23 ℓnth/ℓh=0.29 h 100 100 ℓnth/ℓh=0.33 ℓ ℓnth/ℓh=0.0 ℓh ℓnth/ℓh=0.01 ℓnth/ℓh=0.09 10 ℓnth/ℓh=0.17 ℓnth/ℓh=0.23 ℓnth/ℓh=0.29 ℓnth/ℓh=0.33 1 10 0.95 1.0 10 100 1000 PairFraction(2×τe+) kT [keV] τtotal Figure6.NuSTARdataoverplottedonthetheoreticalpredictionsforkT−ℓ Figure5.Pairfractionforanincreasingsequenceofℓnth/ℓhandℓh/ℓs=1. distributionsforanincreasingsequenceofℓnth/ℓhwithℓh/ℓs=1.Thedata Whilethecoronacanbeconsideredpairdominatedforallcases,thepair havebeencorrectedforgravitationalredshift. fractionincreasesfurtherforahighernon-thermalcontribution. tionsinBELM.Non-thermalparticlesareinjectedwithapower- temperature, since the cutoff energy is 2–3 times higher than the lawindexof2.5rangingfromg1=1.3tog2=1000forthepurpose gastemperaturedepending ontheopticaldepthofthecorona(i.e ofthispaper. whetherthinorthick)andalsoonthegeometryofthecoronaand Theelectrontemperatureisobtainedbyfittingthethermalpart itsillumination(seee.g.Petruccietal.2001). of the lepton distribution with a Maxwellian. While this approx- imationbecomes lessaccurate as thenon-thermal contribution to the lepton distribution increases (Fig. 2), it still characterizes the generalbehaviorofthetemperaturewell. 3 DISCUSSION Figs3showthekT−ℓdistributionaslinesatconstantvalues ofℓnth/ℓhandfortwodifferentvalues(1and0.1)ofℓh/ℓs.HardX- Wefindthatcurrentdataareconsistentwiththepairthermostatop- rayspectraforafixedratioofℓth=100andanincreasingsequence eratinganddeterminingthetemperatureofcompactAGNcoronae, ofℓnth/ℓhareshowninFig.4.Weseethatasthenonthermalpower providedthatahybridplasmaisinvolved.Formostsources,only isincreased from zero, then the temperature of the thermal com- asmalladditionofnonthermalplasmaisrequired.Thewiderange ponent drops from around several hundred keV to below 20keV. oftemperaturesatafixedvalueofℓh canbeaccountedforwitha The drop in spectral turnover is apparent in the spectra as is the non-thermalfractionrangingupto30percent.Objectsmeasured riseofthehardX-rayfluxandtheannihilationlineatthehighest to have the lowest temperatures require the greatest nonthermal nonthermalfractions. fraction.Theyshouldthenhavethestrongesthighenergytailand Toassureourselvesthattheobserveddecreaseinelectrontem- broad annihilationlines. Suchfeaturesaregenerally undetectable peratureisduetopairsweplotthepairfractioninFig5.Itisclear withpresentinstrumentationinAGN. thatthecoronaearepairdominated. Wealsoacknowledgethatthesimpleonezoneapproachinthe Finally,inFig.6weshowtheNuSTARdatapointsfromFig.1 current modelling is probably too simplistic to capture the likely againinthekT−ℓdiagramwithourhybridcoronaresultsoverlaid. geometry of the corona and introduces a small uncertainty in the Afew new datapointshavebeen addedfromveryrecent results, predictedtemperatures. seeTable1fordetails.Thenewvalueswereobtainedinasimilar In future work, we shall explore the location of individual fashiontoFabianetal.(2015).IncontrasttoFig.1,wecorrected sourcesinkT−ℓh−ℓh/ℓsspace,whichplaysaroleindetermining thedatapointsforgravitationalredshiftingassumingthemeasured the spectral index as well as the continuum cutoff. We shall also coronalsizeandheightgiveninTable1or10rgifnomeasurement include Stellar Mass Black Hole Binaries (BHB) and investigate exists. A 10 to 30 per cent nonthermal contribution appears suf- theeffectofmagneticfieldsactingthroughthesynchrotronboiler ficienttoaccount formost of theseobjectsand particularlythose (see e,g. Malzac&Belmont (2009); Veledina,Vurm&Poutanen withwellconstrainedtemperatures. (2011))oncurrentspectralresults. Wehavenotaccountedfortheeffectoflightbendingoncoro- nalfluxasthisdependsontheinclinationandotherparameters.It couldincreasetheintrinsicvalueofℓh byafactoroftwo,oreven moreifthecoronaliesclosetotheblackhole.Iftheemissionsite ACKNOWLEDGEMENTS withinthecoronaisverylocalizedthentheobservationallyinferred valueofℓhcouldbeunderestimatedbyafactorofafew. Wethanktherefereeforhelpfulcomments.ACFandALacknowl- Wenotethatmostofthespectralfitsusedindeterminingthe edge support from ERC Advanced Grant FEEDBACK 340442. coronal temperaturesassume apower-lawcontinuum withanex- R. Belmont and J. Malzac acknowledge financial support from ponentialhigh-energycutoffasanapproximationtoafullComp- theFrenchNational ResearchAgency (CHAOSprojectANR-12- tonizationspectrum.Thisintroducesasystematicuncertaintyinthe BS05-0009) (cid:13)c 0000RAS,MNRAS000,000–000 PropertiesofAGNcoronaeII 5 REFERENCES Zdziarski A. A., Johnson W. N., Magdziarz P., 1996, MNRAS, 283,193 Balokovic´M.etal.,2015,ApJ,800,62 ZdziarskiA.A.,LightmanA.P.,Maciolek-NiedzwieckiA.,1993, BelmontR.,MalzacJ.,MarcowithA.,2008,A&A,491,617 ApJ,414,L93 BentzM.C.,WalshJ.L.,BarthA.J.,2010,ApJ,716,993 ZoghbiA.etal.,2015,ApJL,799,5 Coppi P. S., 1999, High Energy Processes in Accreting Black Holes DroulansR.,BelmontR.,MalzacJ.,JourdainE.,2010,ApJ,717, 1022 FabianA.C.,1994,ApJS,92,555 FabianA.C.,2013,inIAUSymposium,Vol.290,FeedingCom- pactObjects:AccretiononAllScales,ZhangC.M.,BelloniT., Me´ndezM.,ZhangS.N.,eds.,pp.3–12 FabianA.C.,LohfinkA.,KaraE.,ParkerM. L.,Vasudevan R., ReynoldsC.S.,2015,MNRAS,451,4375 FuerstF.,MuellerC.,MadsenK.K.,LanzL.,2015,ApJ,819,13 GhiselliniG.,HaardtF.,FabianA.C.,1993,MNRAS,263 GierlinskiM.,ZdziarskiA.A.,PoutanenJ.,CoppiP.S.,Ebisawa K.,JohnsonW.N.,1999,MNRAS,309,496 Gondek D., Zdziarski A. A., Johnson W. N., George I. M., McNaron-BrownK.,MagdziarzP.,SmithD.,Gruber E.,1996, MNRAS,282,646 GrierC.J.etal.,2013,ApJ,773,90 GrierC.J.etal.,2012,ApJ,755,16 GroveJ.E.,JohnsonW.N.,KroegerR.A.,McNaron-BrownK., SkiboJ.G.,PhlipsB.F.,1998,ApJ,500,899 Johnson W. N., McNaron-Brown K., Kurfess J. D., Zdziarski A.A.,MagdziarzP.,GehrelsN.,1997,ApJ,482,173 KalemciE.,BegelmanM.C.,MaccaroneT.J.,DincerT.,Russell T.D.,BailynC.,TomsickJ.A.,2016,MNRAS,463,615 LanzuisiG.,PernaM.,ComastriA.,CappiM.,DadinaM.,2016, Astronomy&Astrophysics,590,12 Lubin´skiP.etal.,2016,MNRAS,458,2454 LubinskiP.,ZdziarskiA.A.,WalterR.,PaltaniS.,BeckmannV., SoldiS.,FerrignoC.,CourvoisierT.J.L.,2010,MNRAS,408, 1851 MadsenK.K.etal.,2015,ApJ,812,14 MalzacJ.,BelmontR.,2009,MNRAS,392,570 McConnellM.L.etal.,2001,ApJ,572,984 MerloniA.,FabianA.C.,2001,MNRAS,321,549 Neumayer N., Cappellari M., Reunanen J., Rix H. W., van der WerfP.P.,deZeeuwP.T.,DaviesR.I.,2007,ApJ,671,1329 ParkerM.L.etal.,2015,ApJ,808 PetersonB.M.etal.,2005,ApJ,632,799 PetersonB.M.etal.,2004,ApJ,613,682 PetrucciP.O.etal.,2001,ApJ,556,716 ReisR.C.,MillerJ.M.,2013,ApJ,769,L7 SternB.E.,PoutanenJ.,SvenssonR.,SikoraM.,BegelmanM.C., 1995,ApJ,449,13 SvenssonR.,1984,MNRAS,209,175 SvenssonR.,1994,ApJS,92,585 TreveseD.,PernaM.,VagnettiF.,SaturniF.G.,DadinaM.,2014, ApJ,795,9 UrsiniF.etal.,2016,MNRAS,463,382 Uttley P., Cackett E. M., Fabian A. C., Kara E., Wilkins D. R., 2014,TheA&AReview,22,72 VasudevanR.V.,FabianA.C.,2007,MNRAS,381,1235 VeledinaA.,VurmI.,PoutanenJ.,2011,MNRAS,414,3330 WardzinskiG.,ZdziarskiA.A.,GierlinskiM.,GroveJ.E.,Jahoda K.,JohnsonW.N.,2002,MNRAS,337,829 WooJ.,UrryC.M.,2002,ApJ,579,530 ZdziarskiA.A.,1985,ApJ,289,514 (cid:13)c 0000RAS,MNRAS000,000–000 6 A.C. Fabianet al Table1.Thetargets andproperties oftheactive galactic nuclei withcut-off constraints resulting fromobservations withNuSTAR.Thereferences tothe individualworksaregivenintheright-mostcolumn. Source z log(M) rco Fx Ecut kT ℓ (1+zgrav) G Data References [M⊙] [rG] [keV] CenA 0.002 7.65+0.11 10 34.34 >1000 >333 11+4 1.12 1.80±0.01 XMM/NU 1−2 −0.14 −3 NGC4593 0.009 5.45+0.13 10 0.50 90+40 45+20 612+242 1.12 1.59+0.03 XMM/NU 3−4 −0.15 −20 −22 −158 −0.02 Mrk766 0.013 6.8+0.05 3.4 0.88 >441 >147 244+34 1.48 2.22+0.02 XMM/NU 5−6 −0.06 −27 −0.03 3C120 0.033 7.75±0.04 10 2.23 305+142 153+71 153+18 1.12 1.70+0.10 XMM/NU 7−8 −74 −76 −16 −0.03 PG1211+143 0.081 8.16+0.11 10 0.32 >124 >41 63+28 1.12 2.51±0.2 NU 9−10 −0.16 −14 4C74.26 0.104 9.6±0.5 7 1.17 183+51 92+26 20+42 1.18 1.81±0.03 Swift/NU 11−12 −35 −42 −13 3C273 0.158 8.84+0.16 10 1.71 52+2 26+1 365+79 1.12 1.66±0.01 NU 13−14 −0.11 −2 −9 −43 PG1247+267 2.038 8.3+0.17 4 0.02 89+134 45+56 2480+1023 1.38 2.35+0.09 XMM/NU 15−16 −0.15 −34 −26 −803 −0.08 53+2 XX XX XMM/NU 17−18 −2 Fxisthe0.1-200keVX-rayfluxin10−10ergcm−2s−1. References:1:Fuerstetal.(2015),2:Neumayeretal.(2007),3:Ursinietal.(2016),4:Petersonetal.(2005),5:Buissonetal.,inprep.,6: Bentz,Walsh&Barth(2010),Grieretal.(2013),7:Lohfinketal.,inprep.,8:Grieretal.(2012),9:Zoghbietal.(2015),10:Petersonetal.(2004),11: Lohfinketal.,submitted,12:Woo&Urry(2002),13:Madsenetal.(2015),14:Petersonetal.(2004),15:Lanzuisietal.(2016),16:Treveseetal.(2014) (cid:13)c 0000RAS,MNRAS000,000–000

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.