ebook img

Proof that the real part of all non-trivial zeros of Riemann zeta function is 1/2 PDF

0.19 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Proof that the real part of all non-trivial zeros of Riemann zeta function is 1/2

Proof that the real part of all non-trivial zeros of Riemann zeta function is 1/2 6 KimichikaFukushima 1 ∗ 0 AdvancedReactor SystemEngineeringDepartment, 2 ToshibaNuclearEngineeringService Corporation, t 8, Shinsugita-cho,Isogo-ku,Yokohama235-8523,Japan c O 1 ThisarticleprovestheRiemannhypothesis,whichstatesthatallnon-trivialzerosofthezetafunctionhaveareal 3 partequalto1/2.Weinspectindetailtheintegralformofthe(symmetrized)completedzetafunction,whichisaproduct ] between the zeta and gamma functions. It is known that two integrallines, expressing the completed zeta function, M rotatedfromtherealaxisintheoppositedirections,canbeshiftedwithoutaffectingthecompletedzetafunctionowing G totheresiduetheorem.Thecompletedzetafunctionisregularintheregionofthecomplexplaneunderconsideration. . Forconvenienceinthesubsequentsingularityanalysisoftheaboveintegral,wefirsttransform(convert)thisintegralto h thatalongthelineparalleltotherealaxis. Wetheninvestigatethesingularitiesofthecompositeelements(causedby t a polynomialintegralsinoppositedirections),whichappearonlyinthecaseforwhichthedistancebetweenthecontours m andtheoriginofthecoordinatesapproacheszero. Therealpartofthezerosofthezetafunctionisdeterminedtobe [ 1/2alongasymmetrylinefromthesingularityremovalcondition.(Intheotherpoints,thesingularitiesareadequately cancelledasawholetoleadtoafinitevalue.) 6 v 3 5 5 1 Introduction 3 0 Byconnectingcomplexanalysiswithnumbertheory,Riemannobserved[1]that(denotingasetofrealnumbersbyR 2. andlettingx R)thefunctionp (x), whichdenotesthenumberofprimenumbersbelowagivennumberx, contains 0 thesummatio∈novernon-trivialzeros(pointsatwhichthefunctionvanishes)ofthezetafunction. Riemannexpected 6 (denotingasetofcomplexnumbersbyCandlettingz C)therealpartofthenon-trivialzerosofthezetafunction 1 z (z) to be 1/2, which is known as the Riemann hypot∈hesis. Furthermore, von Koch showed [2] that p (x) is well : v approximatedbytheoffsetlogarithmicintegralfunctionLi(x)as i X p (x)=Li(x)+O(x12logx), (1) r a which is equivalentto the Riemann hypothesis. We denote a set of naturalnumbersby N and let n N and z C, thenthe zeta functionz (z) is definedas a function,which is analyticallycontinuatedin the complex∈planefrom∈the expressiondefinedbelow[3-5] ¥ z (z):= (cid:229) 1, (2) nz n=1 forzthatsatisfiesRe(z)>1(wedenotetherealandimaginarypartsofzasRe(z)andIm(z), respectively.) Thezeta functionis also obtained with the help of the gammafunction G (z), and, lettingt R, then the gamma functionis ′ ∈ definedasafunctionthatisalsoanalyticallycontinuatedintoallpointsinthecomplexplanefrom[3,6-9] ¥ G (z):= dt′(t′)z−1exp( t′), (3) 0 − Z E-mail:[email protected];[email protected]:+81-90-4602-0490Phone/Fax:+81-45-831-8881 ∗ 1 forRe(z)>0. Concerningthezerosofthezetafunction,whichstatesz (z)=0,thereexisttrivialzeros,suchasnegativeintegers 2, 4, [3]. Incontrast,Hardyshowedthatnumerousnon-trivialzerosofthezetafunctionexistalongthelinewith − − ···· the realpartequalto 1/2[10]; however,notall the realpartsof the non-trivialzerosare known. Thecomputational approach[11]stronglysuggeststhattherealpartofzerosofthezetafunctionis1/2. Ontheotherhand,lettingz,w C,forthecompletedzetafunctiondefinedby ∈ zˆ(z):=p −2zG (z)z (z), (4) 2 integralformofthe(completed)zetafunctionisexpressedas[12] p −1−2zG (1−z)z (1 z) 2 − =p −1−2zG (1−2 z) 0 1dwexpw(pz−i1we)xp(e−xpp(iw2p)iw) Z ց − − +p −2zG (2z) 0 1dwexp(wp −iwz)expe(pxpiw(2)p iw). (5) Z ւ − − The above integralis performedalong the integral lines 0 1 and 0 1 with the slopes 1 and +1, respectively, ց ւ − whichpassthroughanarbitrarypointintheregionbetween0and1oftherealaxis. Sincetheresiduetheoremexhibits theaboveequation,theintegralformisindependentoftheshiftofthisintersectionpointbetween0and1.Furthermore, intheoriginalform[12]oftheaboveequation,thefunctionG (z/2)inthesecondtermontherightisproportionalto theregularfunctionforRe(z)<1. ThefunctionG ((1 z)/2)ontheleftisregularintheregionRe(z)<1,whilethe rightside is also regularbecause ofthe existenceof th−e derivative[13, 14], andthe functionz (1 z) is analytically continuateduniquely[13]intotheregion0<Re(z)<1(therealpartofzerosofz (z)existsonlyin−thisregion). This papertakesintoaccounttheformmentionedabove. Sincethegammafunctionisregular,thenon-trivialzerosofthecompletedzetafunctionzˆ(z),whichistheproduct betweenthegammafunctionG (z)andzetafunctionz (z), coincidewiththoseofthezetafunctionz (z) intheregion being considered with the real part between 0 and 1. As is described in this paper, each of the two line integrals expressingthe completedzeta functionhas a singularitywhen the integrallines approachthe axis origin. However, thecompletedzetafunctionzˆ(z)doesnotdependonaspecificpointoftheintersectionpoint(shiftedbetween0and 1alongtherealaxis)betweentheaboveintegrallineandtherealaxisduetotheresiduetheorem,andzˆ(z)isregular intheconsideringregion. Then,thesesingularitiesmustexactlycanceleachotherforzˆ(z)=0,whichisexpectedto leadtothedeterminationoftherealpartofthezerosofthezetafunctionz (z). Consideringthestatusmentionedabove,thispaperisaimedatprovingtheRiemannhypothesis.Wefirsttransform (convert)theintegral(intheintegralformofthecompletedzetafunction)alongtheintegrallinerotatedfromthereal axis to the integralalong the line parallelto the coordinate(real/imaginary)axis, for conveniencein the subsequent analysisofthesingularityoftheintegralinacomplexplane.Bythisconversionoftheintegral,thesingularityanalysis canbeconcentratedonthecomponentoftheintegralalongthelineparalleltotherealaxis(ortheequivalentintegral component),droppingthecomponentoftheintegralinthedirectionoftheimaginaryaxis. Thisresearchthenaddressesthesingularitiesthatappearinthetwointegrallinesoftheintegralformofthecom- pletedzetafunction. Thesingularitiesoftheintegrandsforthecompositeelementsneartheoriginoftherealaxisare causedby polynomials, only in the case whenthe contour-origindistance approacheszero. These singularitiesade- quatelycanceleachotheryieldingafinitevalueindependentoftheintegralcontourasawhole. Incontrast,fromthe equationzˆ(z)=0forcompletedzetafunctionzˆ(z),therealpartofthezerosofzˆ(z)isdeterminedbyrequiringthese singularitiesto be an identical order power of the integral variable in the integrandsleading to the exact singularity cancellation(givenbyTheorem2). Thisrequirementresultsinavalueof1/2fortherealpartofzerosofthecompleted zetafunctionzˆ(z)(andtheoriginalzetafunctionz (z))duetothesymmetrywithrespecttothe1/2realpart,whichis the originalityof the presentstudy andprovesthe Riemann hypothesis. TheRiemann hypothesisis oneof the most 2 important unproved problems in mathematics, and has its equivalent and advanced (extended) conjectures in other relatedfields. ThepositiveproofoftheRiemannhypothesisadvancesmathematicsinotherrelatedfields[15,16]. Thecontentsofthispaperareasfollows. Section2providesthetransformationoftheintegralintheintegralform ofthecompletedzetafunctiontothelineparalleltotherealaxisforconvenienceinthesubsequentsingularityanalysis oftheintegral.Section3presentstheproofthattherealpartofallnon-trivialzerosofthezetafunctionisequalto1/2, aswasconjecturedbyRiemann,followedbytheconclusion. 2 Transformation of the integral to that along the line parallel to a coordi- nate axis for the singularity analysis in a complex plane Thissectionprovidesthetransformation(conversion)oftheintegral(intheintegralformofthecompletedzetafunc- tion)alongtheline rotatedfromthe realaxisto theintegralalongthe line parallelto the realaxis(orthe equivalent integral component)for conveniencein the subsequent analysis (in Section 3) of the singularity of the integral in a complexplane. Bythistransformation,theanalysisoftheintegralinacomplexplanebecomesindependentfromthe integralcomponentinthedirectionoftheimaginaryaxis. Notationsusedinthispaperareasfollows. Letz Cand x,y Randletibetheimaginaryunit,then ∈ ∈ (x,y):=z=x+iy. (6) Wedenotetherealandimaginarycomponentsas z :=Re(z)=x, (7) R z :=Im(z)=y. (8) I We first define the integrands, the main points in the complex plane, and integrals with contours for use in the subsequentlemmainthissection. Definition1. Letw,z C,thentheintegrandsI andI inw-planearedefinedby N P ∈ IN:=p −1−2zG (1−2 z)expw(pz−i1we)xp(e−xpp(iw2p)iw), (9) − − IP:=p −2zG (2z)exp(wp −iwz)expe(pxpiw(2)p iw). (10) − − Definition2. Leta ,a ,a Rbepositivefinitenumbersbetween0and1,witha =a forI inEq.(9)anda =a 0 0l 0r 0 0l N 0 0r forI inEq. (10),respective∈ly. Letb Rwithb >0beasmallnumber. Thenwedefinethepointsw ,w Cin P 0 0 lU lL ∈ ∈ thecomplexplane,indicatedinFig. 1,as w :=(a ,b ), (11) lU 0 0 w :=(a , b ). (12) lL 0 0 − Lete¯ Cbedefinedby 3 ∈ 3 e¯ :=exp( p i), (13) 3 4 andletr Rwithr >0betheradiusofarcscenteredatw andw ,thenwedefinethefollowingw ,w ,w ,w 2 2 lU lL 11 12 21 22 CinFig.∈1 ∈ 3 3 w :=r e¯ +w =(r cos( p )+a ,r sin( p )+b ), (14) 11 2 3 lU 2 0 2 0 4 4 3 ✻ w C Im 11 1 ❅❅ ց ❅ ❅ I1f I ❅ 1 ց❅ I w12↑ 1← ❅wlU R✲e ← O w w lL❅ I ← 22 2 ❅ ← ↑ ❅❅I2 I2f ց ❅ ❅❅ ց w C 21 2 w : (a ,b ) lU 0 0 w : ( √2r +a ,√2r +b ) 11 − 2 2 0 2 2 0 w : ( r +a ,b ) 12 2 0 0 − w : (a , b ) lL 0 0 − w : (√2r +a , √2r b ) 21 2 2 0 − 2 2− 0 w : (r +a , b ) 22 2 0 0 − r :radiusofarcscenteredatw andw 2 lU lL a =a (between0and1)andr >0 0 0l 2 Note:b >0 0 Figure1: Locationofcomplexnumbers(indicatedatthebottomofthefigure)andcontoursinthecomplexw-plane. ContourC passes throughw , w and w as in the integraldirections , and , in order. ContourC passes 1 11 lU 12 2 ց ← ↑ throughwlL,w21 andw22 asinthedirections , and ,inorder. SymbolsI1 ,I1 andI1f (givenbyEq. (26))are integralsofIN (ofEq. (9))alongC1,whileI2ց,I↑2f and←I2 (givenbyEq. (31)ց)are←integralsofIP alongC2. (I1f and I2f areangularintegralsaroundwlU andwlL,rցespectively.)← w :=r ( 1,0)+w =( r +a ,b ), (15) 12 2 lU 2 0 0 − − 1 1 w := r e¯ +w =(r cos( p )+a ,r sin( p ) b ), (16) 21 2 3 lL 2 0 2 0 − −4 −4 − w :=r (1,0)+w =(r +a , b ). (17) 22 2 lL 2 0 0 − Inasimilarway,usinga (a =a forI inEq. (10))andb (withb >0)definedinthesentenceaboveEq. (11) 0 0 0r P 0 0 andlettingw ,w C,thenwedefinethepointsinFig.2as rU rL ∈ w :=(a ,b ), (18) rU 0 0 w :=(a , b ). (19) rL 0 0 − Additionally,lete¯ Cbedefinedby ∈ 1 e¯ :=exp( p i), (20) 4 4 Im ✻ C3 w31 (cid:0)(cid:0) (cid:0)ւ (cid:0) (cid:0) I3ւ I3f (cid:0) I OwrU(cid:0) 3→ ↑w32✲ w42 → I (cid:0)wrL → Re 4 ↑ → (cid:0) I4f I4 (cid:0) ւ(cid:0) (cid:0) (cid:0)(cid:0)ւ w 41 C 4 w : (a ,b ) rU 0 0 w : (√2r +a ,√2r +b ) 31 2 2 0 2 2 0 w : (r +a ,b ) 32 2 0 0 w : (a , b ) rL 0 0 − w : ( √2r +a , √2r b ) 41 − 2 2 0 − 2 2− 0 w : ( r +a , b ) 42 2 0 0 − − r :radiusofarcscenteredatw andw 2 rU rL a =a (between0and1)andr >0 0 0r 2 Note: b >0 0 Figure2: Locationofcomplexnumbers(indicatedatthebottomofthefigure)andcontoursinthecomplexw-plane. ContourC passes throughw , w andw as in the integraldirections , and , in order. ContourC passes 3 31 rU 32 4 ւ → ↑ throughwrL,w41 andw42 asinthedirections , and ,inorder. SymbolsI3 ,I3 andI3f (givenbyEq. (33))are integralsofIP(ofEq. (10))alongC3,whileI4ւ,I↑4f and→I4 (givenbyEq. (35)ւ)are→integralsofIPalongC4. (I3f and I4f areangularintegralsaroundwrU andwrL,rւespectively.)→ and let r R with r > 0 be the radius of arcs centered at w and w , then we further define the following 2 2 rU rL w ,w ,w∈,w CinFig. 2 31 32 41 42 ∈ 1 1 w :=r e¯+w =(r cos( p )+a ,r sin( p )+b ), (21) 31 2 rU 2 0 2 0 4 4 w :=r (1,0)+w =(r +a ,b ), (22) 32 2 rU 2 0 0 3 3 w := r e¯+w =(r cos( p )+a ,r sin( p ) b ), (23) 41 2 rL 2 0 2 0 − −4 −4 − w :=r ( 1,0)+w =( r +a , b ). (24) 42 2 lL 2 0 0 − − − Definition3. UsingthedefinitionsofI ,w ,w andw inEqs. (9),(11),(14)and(15),respectively,andwiththe N lU 11 12 helpofFig.1,wedefinetheintegralsandcontoursas dwIN:=I1 +I1 +I1f , (25) IC1 ց ← 5 wherecontourC passesthroughw ,w andw asintheintegraldirections , and ,inorderinFig. 1,and 1 11 lU 12 ց ← ↑ wlU w12 w11 I1 := dwIN, I1 := dwIN, I1f := dwIN. (26) ց Zw11 ← ZwlU Zw12 In the last integral above, let f R be an angle of circular coordinates(centered at w ) of the integral variable, 1 lU ∈ wheretheangleismeasuredcounterclockwisefromtheaxisparalleltotherealaxis,denotedas w=r exp(if )+w =(r cos(f ),r sin(f ))+(a ,b ), (27) 2 1 lU 2 1 2 1 0 0 withitsderivative dw =ir exp(if ). (28) df 2 1 1 ThenthelastintegralinEq.(26)isdefinedby I1f =Zww1211dwIN:=Zp 34p df 1ddfw1IN. (29) In a similar way, let f ,f ,f R be anglesof circular coordinatescentered at w , w and w , respectively. 2 3 4 lL rU rL ∈ Using I , I (Eqs. (9), (10)), w , w (Eqs. (11), (12)), w , w (Eqs. (16), (17)), w , w (Eqs. (18), (19)) and N P lU lL 21 22 rU rL w -w (Eqs. (21)-(24)),andwiththehelpofFigs. 1-2,theotherintegralsandcontoursaredefinedby 31 42 dwIN:=I2 +I2f +I2 , (30) IC2 ց ← contourC passesthroughw ,w andw asinthedirections , and ,inorderinFig. 1,and 2 lL 21 22 ց ↑ ← , I2ց:= wwlL21dwIN, I2f := ww2212dwIN:= −041p df 2ddfw2INwithw=r2exp(if 2)+wlL, I2←:= ww2l2LdwIN (31)  R R R R  dwIP:=I3 +I3 +I3f , (32) IC3 ւ → contourC passesthroughw ,w andw asinthedirections , and ,inorderinFig. 2,and 3 31 rU 32 ւ → ↑ 1p , I3ւ:= ww3r1UdwIP, I3→:= wwr3U2dwIP, I3f := ww3321dwIP:= 04 df 3ddfw3IPwithw=r2exp(if 3)+wrU! (33) R R R R dwIP:=I4 +I4f +I4 , (34) IC4 ւ → contourC passesthroughw ,w andw asinthedirections , and ,inorderinFig. 2,and 4 rL 41 42 ւ ↑ → . I4ւ:= wwr4L1dwIP, I4f := ww4412dwIP:= −−34pp df 4ddfw4IPwithw=r2exp(if 4)+wrL, I4→:= ww4r2LdwIP (35)  R R R R  Wethenpresentthelemmaconcerningthetransformationmentionedatthebeginningofthissection. Lemma 1. Leta andb be numbersthatspecify thex andy coordinatesofw , w , w andw asexpressed in 0 0 lL lU rU rL Eqs. (11)-(12)and(18)-(19)with thehelpofFigs. 1-2. Letr betheradiusofthecontourforthecircularintegrals 2 indicatedinEqs. (27), (31), (33)and(35). UsingtheintegralsI , I ,I , I , I , I , I andI definedin 1 2 3 4 1 2 3 4 Eqs. (26),(31),(33)and(35)withthehelpofFigs. 1-2,wederiveց ց ւ ւ ← ← → → (I +I +I +I )= (I +I +I +I ) 1 2 3 4 1 2 3 4 ← ← → → − ց ց ւ ւ forapositivefinitevalueofa inthelimitb 0whichfollowsr ¥ (withtherelationsuchasb >2/r ). (36) 0 0 2 0 2 → → 6 Theaboveequationimpliesinthee d notationthat − ( e >0)( d >0, d >0)( b , r R) 0 0 2 ∀ ∃ ∃ ∀ ∀ ∈ 2 ( <d <b <d (I +I +I +I )+(I +I +I +I ) <e ). (37) 0 0 1 2 3 4 1 2 3 4 r2 ⇒| ← ← → → ց ց ւ ւ | The sumson theleft andrightofthe aboveequationtake a definitefinitevalue, statingthatthe sum ofthe integrals inthe e¯¥ direction(indicatedby )andinthe e¯¥ direction(indicatedby )aretransformed(converted)tothe 3 − ց − ւ sumoftheintegralsalongthelineparalleltotherealaxis(indicatedby and ). Theaboverelationholdsforthe ← → exchangez 1 z. ↔ − Proof. UsingEqs. (25),(26)and(30)-(35),eachclosedcontourofthefollowingintegralsdoesnotenclosethesingu- larityat the coordinatesoriginin the complexplane whena and b (indicatedin Eqs. (11)-(12) and(18)-(19) with 0 0 thehelpofFigs. 1-2)arepositiveandfinite. Then,theassociatedintegralsalongtheclosedcontourvanish,duetothe residuetheorem,asexpressedby dwI = dwI = dwI = dwI =0 forb >0 (seealsonext6lines). (38) N N P P 0 IC1 IC2 IC3 IC4 (Wenoteinadvancethatbecauseofb >0theaboveequationholdsforapositivefinitevalueofa inthelimitb 0 0 0 0 thatfollowsr ¥ withtherelationsuchasb >2/r ,whichimpliesthat → 2 0 2 → ( e >0)( d >0, d >0)( b , r R) 0 0 2 ∀ ∃ ∃ ∀ ∀ ∈ 2 ( <d <b <d dwI <e , dwI <e , dwI <e , dwI <e ). (39) 0 0 N N P P r2 ⇒ |IC1 | |IC2 | |IC3 | |IC4 | Namely,becauseofb >0,nopolesexistwithintheregionsenclosedbytheintegralcontoursC ,C ,C ,C including 0 1 2 3 4 contours,andtheresiduetheoremworks.) Accordingly,withtheuseofEqs. (25),(30),(32)and(34),wehave I = dwI + dwI + dwI + dwI S N N P P IC1 IC2 IC3 IC4 =(I1 +I1 +I1f )+(I2 +I2f +I2 )+(I3 +I3 +I3f )+(I4 +I4f +I4 )=0. (40) ց ← ց ← ւ → ւ → Eachoftheaboveintegralterms(suchasI1 ,I1 andI1f inEqs. (26),(31),(33)and(35))hasadefinitefinitevalue withinafiniteregionthatdoesnotcontainanցysin←gularitiesoftheintegrandwhena andb (suchasthoseinEq.(11)) 0 0 arepositiveandfinite,andtheorderinthesumischangedtoproduce (I1 +I2 +I3 +I4 )+(I1 +I2 +I3 +I4 )+(I1f +I2f +I3f +I4f )=0. (41) ց ց ւ ւ ← ← → → For each of the last four terms I1f , I2f , I3f and I4f above, the real part of term p iw2 in the leading function exp( p iw2) (in the integrand IN given by Eq. (9) for I1f and I2f , such as that in∓(28)-(29), and the integrand IP given∓byEq. (10)forI3f andI4f )yields 2p Re(w) Im(w) inthelimitofr2 ¥ (thatis,forthelarge w)andthe functionexp( p iw2)vanishesforthelarg−e w|. Then|,|weder|ive → | | ∓ | | I1f =I2f =I3f =I4f =0 inthelimitofr2 ¥ (thatis,forthelarge w)forb0>0. (42) → | | Thisimpliesthatlettingb >0 0 (∀e >0)(∃d >0)(∀r2∈R)(r22 <d ⇒ |I1f |<e , |I2f |<e , |I3f |<e , |I4f |<e ).! (43) In contrast, with the use of Eqs. (4) and (5), the sum of the first four terms I , I , I and I in Eq. (41) 1 2 3 4 amountsto ց ց ւ ւ (I +I +I +I )=zˆ(1 z) 1 2 3 4 ց ց ւ ւ − forapositivefinitevalueofa inthelimitb 0whichfollowsr ¥ (suchasb >2/r ). (44) 0 0 2 0 2 → → 7 Thisimpliesthat (∀e >0)(∃d >0,∃d 0>0)(∀b0,∀r2∈R)(r22 <d <b0<d 0 ⇒ |(I1ց+I2ց+I3ւ+I4ւ)−zˆ(1−z)|<e ).!(45) Thus,Eqs. (41)-(44)leadto (I +I +I +I )= (I +I +I +I )= zˆ(1 z) 1 2 3 4 1 2 3 4 ← ← → → − ց ց ւ ւ − − forapositivefinitevalueofa inthelimitb 0whichfollowsr ¥ (suchasb >2/r ). (46) 0 0 2 0 2 → → Thismeansthat ( e >0)( d >0, d >0)( b , r R) (2 <d <b <d∀ (I ∃+I +∃I0 +I∀)0+∀(I2∈+I +I +I )  r2 0 0⇒|=1(←I1 +2←I2 +3→I3 +4→I4 )+1zցˆ(1 2ցz) <3eւ). 4ւ | (47)  | ← ← → → − |    The above equation implies that the sum of the integrals in the e¯¥ direction (indicated by ) and in the e¯¥ 3 − ց − direction(indicatedby )istransformed(converted)tothesumoftheintegralsalongthelineparalleltotherealaxis ւ (indicatedby and ),owingtothatthecompletedzetafunctionisregular. Namely,theintegralofthecompleted ← → zetafunctionalongthelinerotatedfromtherealaxiscanbetransformedtotheintegralalongthelineparalleltothe realaxisasawholeforconvenience.Wenotethattheaboverelationshipsholdfortheexchangez 1 z,keepingthe ↔ − region0<Re(z)<1underthisexchange. 3 ProofoftheRiemann’sconjecturethattherealpartofallnon-trivialzeros of the zeta function is 1/2 ThissectionfirstconvertstheintegralformofthecompletedzetafunctionexpressedbyEq. (5)totheusualformto giveTheorem1. Then,inTheorem2, weprovethattherealpartofallnon-trivialzerosofthezetafunctionmustbe 1/2.Asitisknownthatallnon-trivialzerosofthezetafunctionexistintheregion0<Re(z)<1inliterature[17,18], weconcentrateonthisregion.Furthermore,itisalsoknownthatthenumberofzeros(ofthezetafunction)withareal partof1/2isinfinite[10]. Theusualintegralformofthezetafunctionisasfollows. Theorem1. (the(third)integralform ofthe(completed)zetafunction)Letz,w C. Letzˆ(z)bethecompletedzeta ∈ functiondefinedbyEq. (4). Let zˆl(z):=p −2zG (2z) 0 1dwexpw(p−izwe)xp(e−xpp(iw2p)iw), (48) Z ց − − andlet zˆr(z):=p −1−2zG (1−2 z) 0 1dwexp(wpzi−w1)expe(xppi(w2p)iw), (49) Z ւ − − intermsofthegammafunctionG (z). Thenzˆ(z)isexpressedby zˆ(z)=zˆ(z)+zˆ(z), (50) l r whichiscalledthe(third)integralformofthe(completed)zetafunction. Proof. FromEq. (5),theabovecompletedzetafunctionzˆ(z)isobtainedbytheexchangez 1 z,wheretheregion ↔ − 0<Re(z)<1iskeptunderthisexchange.Theaboveregion0<Re(z)<1isconsistentwiththeregion0<Re(z)<1 weareconsideringinthispaper. 8 ✻ Im C1c w14 ← C C w16❤❤❤1n❤w❤15 ✭w1✭3 ✭1✭p✭wlU ← ↓ ↑ ← R✲e O w : (a ,b ) lU 0 0 w : (a /2,b /2) w : (0,r ) 13 0 0 14 1 w : ( a /2,b /2) w : ( a ,b ) 15 0 0 16 0 0 − − C : contourfromw tow 1p lU 13 C :arcfromw tow withradiusr centeredat(0,0) 1c 13 15 1 C : contourfromw tow 1n 15 16 a =a (between0and1)andr =[(a /2)2+(b /2)2]1/2 0 0l 1 0 0 Note:0<b <<a 0 0 Figure 3: A part of the componentparallel to the real axis in the contour C in Fig. 1, deformedinto the contour 1 composedofC ,C andC (withoutdisconnectionsfromotherparts)tobypasstheoriginofthecomplexw-plane. 1p 1c 1n Locationsofcomplexnumbersinthecomplexplaneareindicatedatthebottomofthefigure. Theanglef ofcircular c coordinatescenteredattheorigin(0,0)ismeasuredcounterclockwisefromtherealaxiswiththepositivesign. In addition, the completed zeta function satisfies the following known symmetry relation [1, 16, 15] for the ex- changez 1 z ↔ − zˆ(z)=zˆ(1 z). (51) − To derive the real part of non-trivial zeros of the zeta function, the present approach uses (in addition to the above symmetrygivenbyEq.(51))theproperty(withmerits)thataquantityinoneterminahighly(attainable)symmetrized integralformgeneratesacorresponding(paired)quantityinanotherterm. Here, for the Riemann-Siegelintegralform, each partof the contour(for the integralvariablew C) parallelto ∈ therealaxisin thecontoursC andC in Figs. 1-2 isfurtherdeformedto bypasstheorigininthe complexw-plane 1 4 as in Figs. 3-4 according to Definition 4 below. Each contour part deformedas in Figs. 3-4 is connected (without disconnections)withtheotherremainingcontoursinFigs1-2. Theintegrandshavepolynomialsofwwiththepower of z C, and the absolute value of the integrandis expressed using w and the argument(angle) arg(w) in circular ∈ | | coordinates. Then, bymakingarg(w) independentof w near the originof the w-plane, singularityanalysisbecomes simple. In Figs. 3-4, each linear contour employed has a constant arg(w), while arg(w) along each arc (of circle) contourisintegratedtothecircularintegral. Therefore,singularityanalysisfocusesonthepowerforthepolynomials of w. (Wenotethatnopoleexistsaroundthepolelocatedattheoriginofthecomplexw-plane,whentheconcerned | | regionissmall.) 9 ✻ Im O R✲e w43✭✭C→✭4n✭w✭44 ↓ ↑ ❤w4❤6 C❤→4❤p❤wrL C→4c w45 w :(a , b ) rL 0 0 − w : ( a , b ) w : ( a /2, b /2) 43 0 0 44 0 0 − − − − w : (0, r ) w : (a /2, b /2) 45 1 46 0 0 − − C : contourfromw tow 4n 43 44 C :arcfromw tow withradiusr centeredat(0,0) 4c 44 46 1 C : contourfromw tow 4p 46 rL a =a (between0and1)andr =[(a /2)2+(b /2)2]1/2 0 0r 1 0 0 Note:0<b <<a 0 0 Figure 4: A part of the componentparallel to the real axis in the contour C in Fig. 2, deformedinto the contour 4 composedofC ,C andC (withoutdisconnectionsfromotherparts)tobypasstheoriginofthecomplexw-plane. 4n 4c 4p Locationsofcomplexnumbersinthecomplexplaneareindicatedatthebottomofthefigure. Theanglef ofcircular c coordinatescenteredattheorigin(0,0)ismeasuredcounterclockwisefromtherealaxiswiththepositivesign. Definition4. Letb ,a Rwithb anda beingsmall(b >0asindicatedsucasinEq.(45);b <<a asdescribed 0 0 0 0 0 0 0 inNote belowEq. (65))∈. Letw C asdefinedin Definition2 with Figs. 1-2. Letting f R, we definethe angle lU c f ofcircularcoordinatescentered∈attheorigin(0,0)ofthecomplexw-plane,thatismeasure∈dcounterclockwisefrom c therealaxiswiththepositivesign. Letr R(radiusofthearc(ofcircle)contoursdefinedbelowandinFigs. 3-4) 1 suchthatr =a /2. Letw ,w ,w ,w ∈ C, then,asindicatedinFig. 3, wedefinethesenumbersinthecomplex 1 0 13 14 15 16 ∈ w-planeby a b 0 0 w :=( , ), w :=(0,r ), 13 14 1 2 2 a b 0 0 w :=( , ), w :=( a ,b ), (52) 15 16 0 0 − 2 2 − where a 2 b 2 1/2 0 0 r := + . (53) 1 2 2 "(cid:16) (cid:17) (cid:18) (cid:19) # UsingthequantitiesgiveninFig. 1,apartofthecomponent,paralleltotherealaxis,ofthecontourC inFig. 1is 1 deformedintothecontourcomposedofC ,C andC tobypassthecoordinateoriginasinFig. 3. Thecontoursin 1p 1c 1n Fig.3aredefinedasfollows. 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.