Proof of Sun’s conjecture on the divisibility of certain binomial sums Victor J. W. Guo Department of Mathematics, East China Normal University, Shanghai 200062,People’s Republic of China [email protected], http://math.ecnu.edu.cn/~jwguo 3 1 0 2 Abstract. In this paper, we prove the following result conjectured by Z.-W. Sun: n a n J 3n 6k 3k 6(n k) 3(n k) (2n 1) (cid:12) − − 21 − (cid:18)n(cid:19)(cid:12)(cid:12)Xk=0(cid:18)3k(cid:19)(cid:18)k (cid:19)(cid:18)3(n−k)(cid:19)(cid:18) n−k (cid:19) (cid:12) by showing that the left-hand side(cid:12)divides each summand on the right-hand side. ] T N Keywords. congruences, binomial coefficients, super Catalan numbers, Stirling’s formula . h t a 1 Introduction m [ In [2], Z.-W. Sun proved some new series for 1/π as well as related congruences on sums 1 v of binomial coefficients, such as 7 7 ∞ n n 6k 3k 6(n k) 3(n k) 1 8 − − = , 4 864n (cid:18)3k(cid:19)(cid:18)k (cid:19)(cid:18)3(n k)(cid:19)(cid:18) n k (cid:19) π . Xn=0 Xk=0 − − 1 0 and, for any prime p > 3, 3 1 : p−1 n v n 6k 3k 6(n k) 3(n k) 2 i − − 0 (mod p ). X 864n (cid:18)3k(cid:19)(cid:18)k (cid:19)(cid:18)3(n k)(cid:19)(cid:18) n k (cid:19) ≡ Xn=0 Xk=0 − − r a Sun [2] also proposed many interesting related conjectures, one of which is Conjecture 1.1 [2, Conjecture 4.2]For n = 0,1,2,... define n 1 6k 3k 6(n k) 3(n k) s := − − . n (2n 1) 3n (cid:18)3k(cid:19)(cid:18)k (cid:19)(cid:18)3(n k)(cid:19)(cid:18) n k (cid:19) − n Xk=0 − − (cid:0) (cid:1) Then s Z for all n. Also, n ∈ lim √n s = 64. (1.1) n n→∞ 1 Sun himself has proved that sn 0 (mod 8) for n 1 and sp−1 (p 1)/6 (mod p) ≡ ≥ ≡ ⌊ − ⌋ for any prime p. In this paper, we shall prove that Conjecture 1.1 is true by establishing the following two theorems. Theorem 1.2 For 0 k n, there holds ≤ ≤ 1 6k 3k 6(n k) 3(n k) − − Z. (2n 1) 3n (cid:18)3k(cid:19)(cid:18)k (cid:19)(cid:18)3(n k)(cid:19)(cid:18) n k (cid:19) ∈ − n − − (cid:0) (cid:1) Note that, in [3,4], Sun proved many similar results on the divisibility of binomial coeffi- cients. Theorem 1.3 For n 2 and 0 k < n/2, there holds ≥ ≤ 6k 3k 6(n k) 3(n k) − − (cid:18)3k(cid:19)(cid:18)k (cid:19)(cid:18)3(n k)(cid:19)(cid:18) n k (cid:19) − − 6k +6 3k +3 6(n k 1) 3(n k 1) − − − − , ≥ (cid:18)3k +3(cid:19)(cid:18)k +1(cid:19)(cid:18)3(n k 1)(cid:19)(cid:18) n k 1 (cid:19) − − − − and so 2 6n n+1 6n s . (1.2) n 2n 1(cid:18)3n(cid:19) ≤ ≤ 2n 1(cid:18)3n(cid:19) − − It is easy to see that (1.1) follows from (1.2) and Stirling’s formula n n n! √2πn . ∼ e (cid:16) (cid:17) 2 Proof of Theorem 1.2 We need the following two lemmas. Lemma 2.1 Let m,n 1 and 0 k n. Then ≥ ≤ ≤ mn 2mk mk 2m(n k) m(n k) − − . (cid:18) n (cid:19)(cid:12)(cid:18)mk (cid:19)(cid:18) k (cid:19)(cid:18)m(n k)(cid:19)(cid:18) n k (cid:19) (cid:12) − − (cid:12) Proof. Observe that (cid:12) 2mk mk 2m(n k) m(n k) mn − − (cid:18)mk (cid:19)(cid:18) k (cid:19)(cid:18)m(n k)(cid:19)(cid:18) n k (cid:19)(cid:30)(cid:18) n (cid:19) − − (2mk)!(2mn 2mk)! (m 1)n n = − − . (2.1) (mk)!(mn mk)!(mn)!(cid:18)(m 1)k(cid:19)(cid:18)k(cid:19) − − The proof then follows from the fact that numbers of the form (2a)!(2b)! , a!b!(a+b)! called the super Catalan numbers, are integers (see [1,5]). 2 Lemma 2.2 Let 0 k n be integers. Then ≤ ≤ (6k)!(6n 6k)!(2n)! (2n 1) − . − (cid:12)(3k)!(3n 3k)!(3n)!(2k)!(2n 2k)! (cid:12) − − (cid:12) Or equivalently, (cid:12) (6k)!(6n 6k)!(2n)!(2n 2)! − − Z. (3k)!(3n 3k)!(3n)!(2k)!(2n 2k)!(2n 1)! ∈ − − − Corollary 2.3 Let n 1. Then (2n 1) divides 6n . ≥ − 3n (cid:0) (cid:1) The order in which a prime p enters n! can be written as ∞ n ord n! = , (2.2) p (cid:22)pi(cid:23) Xi=1 where x denotes the greatest integer less than or equal to x. In order to prove Lemma ⌊ ⌋ 2.2, we first establish the following result. Lemma 2.4 Let m 2 and 0 k n be integers. Then ≥ ≤ ≤ 6k 6n 6k 2n 2n 2 + − + + − (cid:22)m(cid:23) (cid:22) m (cid:23) (cid:22)m(cid:23) (cid:22) m (cid:23) 3k 3n 3k 3n 2k 2n 2k 2n 1 + − + + + − + − , (2.3) ≥ (cid:22)m(cid:23) (cid:22) m (cid:23) (cid:22)m(cid:23) (cid:22)m(cid:23) (cid:22) m (cid:23) (cid:22) m (cid:23) unless k 1 (mod 3), m = 3, and n 2 (mod 3). 6≡ ≡ Proof. For any real numbers x and y, it is well known that 2x + 2y x + y + x+y , ⌊ ⌋ ⌊ ⌋ ≥ ⌊ ⌋ ⌊ ⌋ ⌊ ⌋ x+y x + y . ⌊ ⌋ ≥ ⌊ ⌋ ⌊ ⌋ It follows that 6k 6n 6k 2n 3k 3n 3k 3n 2k 2n 2k + − + + − + + + − . (cid:22)m(cid:23) (cid:22) m (cid:23) (cid:22)m(cid:23) ≥ (cid:22)m(cid:23) (cid:22) m (cid:23) (cid:22)m(cid:23) (cid:22)m(cid:23) (cid:22) m (cid:23) Suppose that (2.3) does not hold. Then we must have 6k 6n 6k 3k 3n 3k 3n + − = + − + , (2.4) (cid:22)m(cid:23) (cid:22) m (cid:23) (cid:22)m(cid:23) (cid:22) m (cid:23) (cid:22)m(cid:23) 2n 2k 2n 2k = + − , (2.5) (cid:22)m(cid:23) (cid:22)m(cid:23) (cid:22) m (cid:23) 2n 2 2n 1 − < − , (2.6) (cid:22) m (cid:23) (cid:22) m (cid:23) 3 and so, by (2.6), m 2n 1, then by (2.5), m 2k or m 2n 2k. If m 2k, then m k | − | | − | | (since m 2n 1 means that m is odd), the identity (2.4) implies that | − 6n 3n = 2 . (2.7) (cid:22)m(cid:23) (cid:22)m(cid:23) Since m 2n 1, the identity (2.7) implies that | − 2n 1 3 n+1 − + = 2 . (2.8) m (cid:22)m(cid:23) (cid:22) m (cid:23) If m 4, then the left-hand side of (2.8) equals (2n 1)/m, while the right-hand side of ≥ − (2.8) belongs to 2n+2 2n 2n 2 , , − ,... , (cid:26) m m m (cid:27) a contradiction, and so m 3. Since m 2 is odd, we must have m = 3. Hence, n 2 ≤ ≥ ≡ (mod 3) and k 0 (mod 3). Similarly, if m 2n 2k, then we deduce that m = 3, n 2 ≡ | − ≡ (mod 3) and k 2 (mod 3). This proves the lemma. ≡ Proof of Lemma 2.2. For any prime p = 3, by (2.2) and (2.3), we have 6 ord (6k)!+ord (6n 6k)!+ord (2n)!+ord (2n 2)! p p p p − − ord (3k)!+ord (3n 3k)!+ord (3n)!+ord (2k)!+ord (2n 2k)!+ord (2n 1)!. p p p p p p ≥ − − − (2.9) For p = 3, since ord (3j)! = j +ord j!, the inequality (2.9) reduces to 3 3 ord (2n)!+ord (2n 2)! ord k!+ord (n k)!+ord n!+ord (2n 1)!. (2.10) 3 3 3 3 3 3 − ≥ − − Noticing that (2n)!(2n 2)! 1 2n n 2n 2 2n n − = = 4 − Z, k!(n k)!n!(2n 1)! 2n 1(cid:18)n(cid:19)(cid:18)k(cid:19) (cid:18) (cid:18)n 1(cid:19)−(cid:18)n(cid:19)(cid:19)(cid:18)k(cid:19) ∈ − − − − the inequality (2.10) holds. Namely, the inequality (2.9) is true for p = 3. This completes the proof. Proof of Theorem 1.2. By (2.1), one sees that 1 6k 3k 6(n k) 3(n k) − − (2n 1) 3n (cid:18)3k(cid:19)(cid:18)k (cid:19)(cid:18)3(n k)(cid:19)(cid:18) n k (cid:19) − n − − 1(cid:0) (cid:1) (6k)!(6n 6k)! 2n n = − , 2n 1(3k)!(3n 3k)!(3n)!(cid:18)2k(cid:19)(cid:18)k(cid:19) − − which is an integer divisible by n in view of Lemma 2.2. k (cid:0) (cid:1) 4 3 Proof of Theorem 1.3 Let 6k 3k 6(n k) 3(n k) A = − − . n,k (cid:18)3k(cid:19)(cid:18)k (cid:19)(cid:18)3(n k)(cid:19)(cid:18) n k (cid:19) − − Then, for n 2 and 0 k < n/2, we have ≥ ≤ A (36nk +31n 36k2 36k 5)(n 2k 1) n,k 1 = − − − − − 0, A − (6k +5)(6k +1)(n k)2 ≥ n,k+1 − i.e., An,k An,k+1. Since An,k = An,n−k, for n 2, we have ≥ ≥ n 6n 3n 6n 3n 2A = 2 A (n+1)A . = (n+1) n,0 n,k n,0 (cid:18)3n(cid:19)(cid:18)n(cid:19) ≤ ≤ (cid:18)3n(cid:19)(cid:18)n(cid:19) Xk=0 In other words, the inequality (1.2) holds. References [1] I. Gessel, Super ballot numbers. J. Symb. Comput. 14 (1992), 179–194. [2] Z.-W. Sun, Some new series for 1/π and related congruences, preprint, arXiv:1104.3856. [3] Z.-W. Sun, Products and sums divisible by central binomial coefficients, Electron. J. Com- bin. 20(1) (2013), #P9. [4] Z.-W. Sun, On divisibility of binomial coefficients, J. Austral. Math. Soc., in press. [5] S.O. Warnnar, A q-rious positivity, Aequat. Math. 81 (2011), 177–183. 5