ebook img

Prompt D production in proton-proton and lead-lead collisions, measured with the ALICE ... PDF

150 Pages·2013·27.95 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Prompt D production in proton-proton and lead-lead collisions, measured with the ALICE ...

Prompt D∗+ production in proton-proton and lead-lead collisions, measured with the ALICE experiment at the CERN Large Hadron Collider DirecteD∗+ productieinproton-proton enlood-loodbotsingen,gemetenmethetALICEexperiment aandeCERNLargeHadronCollider (meteensamenvattinginhetNederlands) Proefschrift terverkrijgingvandegraadvandoctoraandeUniversiteitUtrechtopgezagvanderector magnificus,G.J.vanderZwaan,ingevolgehetbesluitvanhetcollegevoorpromotiesin hetopenbaarteverdedigenopdinsdag14mei2013om18.00uur door RaoulStefandeRooij geborenop16januari1981 teUtrecht Promotores: Prof. dr.R.J.M.Snellings Prof. dr. R.Kamermans (cid:134) Co-promotores: Dr. A.Mischke Dr. A.Grelli Dit proefschrift werd (mede) mogelijk gemaakt met financile steun van de Neder- landseOrganisatievoorWetenschappelijkOnderzoek(NWO). Iffirstyoudon’tsucceed,useabiggergun. Outline Inthisthesistheresultsarepresentedoftheworld’sfirstmeasurementsoftheD∗+me- sonnuclearmodificationfactorR inheavyioncollisionsattheLargeHadronCol- AA lider(LHC)usingtheALICE(ALargeIonColliderExperiment)detectoratCERN, usingdataaccumulatedover2010and2011forbothlead-leadandproton-protoncol- lisions. Chapter1givesanqualitativeoverviewofthehistoryandtheoreticalbackground relevanttothisthesis,aswellastheresultsfrompreviousexperiments.Italsocontains asummaryofvarioustheoreticalmodelsusedtodescribethedata.Thesecondchapter focusses on the design and construction of the ALICE detector, and also includes a description of the analysis framework used for data analysis. The analysis strategy used for D∗+ reconstruction via the D∗+ →D0p+ →K−p+p+ decay channel is soft soft discussed in detail in chapter three. Here an important aspect is the application of selectioncutsandtheiroptimisationtoimprovesignalsignificance.Theimportanceof theproton-protonresultsasareferenceisfurtherhighlighted. Inchapterfourthe p - T differentialinclusiv√eproductioncrosssectionofpromptD∗+ mesons,intherapidity range|y|<0:5,in s=7TeVproton-protoncollisionsispresented. Inchapterfive the p -differential inclusive production yield of prompt D∗+ mesons, in the rapidity T √ range|y|<0:5andthep range2-36GeV/c,in s =2:76TeVlead-leadcollisions T NN isshown. Thenuclearmodificationfactor,withrespecttotheproton-protonreference obtainedandscaleddowntoacentre-of-massenergyof2.76TeV,isthendetermined and compared with several model based theoretical predictions. The conclusions of thisworkwillbediscussedinchaptersix. The results have been published in various papers [72, 73, 74] and presented at international conferences (e.g. [115]). A colour version of this thesis will become availableonline. Contents 1 Heavyionphysics 7 1.1 Abriefhistory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 QCDandtheStandardModel. . . . . . . . . . . . . . . . . . . . . . 13 1.3 HeavyioncollisionsandtheQGP . . . . . . . . . . . . . . . . . . . 17 1.4 SignaturesoftheQGP . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.5 Heavyflavourproduction . . . . . . . . . . . . . . . . . . . . . . . . 26 1.6 Opencharmproduction . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.7 Theoreticalmodels . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2 TheALICEdetector 39 2.1 Generaloverview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.1.1 InnerTrackingSystem . . . . . . . . . . . . . . . . . . . . . 41 2.1.2 TimeProjectionChamber . . . . . . . . . . . . . . . . . . . 44 2.1.3 Time-Of-Flight . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.1.4 Triggering. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.2 Theanalysisframework . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.3 Trackingandvertexing . . . . . . . . . . . . . . . . . . . . . . . . . 50 3 D∗+analysis 53 3.1 D∗+reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.1.1 D0reconstruction . . . . . . . . . . . . . . . . . . . . . . . . 54 3.2 Selectioncuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.2.1 Eventselection . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.2.2 Trackselection . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.2.3 Topologicalcuts . . . . . . . . . . . . . . . . . . . . . . . . 57 3.2.4 Particleidentification . . . . . . . . . . . . . . . . . . . . . . 60 3.3 Cutoptimisation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.3.1 Themultidimensionalmethod . . . . . . . . . . . . . . . . . 61 3.4 D∗+yieldextraction . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.4.1 Invariantmassanalysis . . . . . . . . . . . . . . . . . . . . . 63 3.4.2 Signalextraction . . . . . . . . . . . . . . . . . . . . . . . . 64 3.5 Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.6 Proton-protonreference . . . . . . . . . . . . . . . . . . . . . . . . . 67 5 CONTENTS CONTENTS 4 Proton-protonanalysis 69 4.1 D∗+rawyield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.2 D∗+reconstructionefficiency . . . . . . . . . . . . . . . . . . . . . . 75 4.3 Systematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.4 D∗+productioninproton-proton . . . . . . . . . . . . . . . . . . . . 80 4.5 Comparison7and2.76TeVdata . . . . . . . . . . . . . . . . . . . . 82 5 Pb-Pbanalysis 87 5.1 D∗+analysisusing2010datasample . . . . . . . . . . . . . . . . . . 87 5.1.1 Rawyieldextraction . . . . . . . . . . . . . . . . . . . . . . 89 5.1.2 Efficiencies . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.1.3 Systematicuncertainties . . . . . . . . . . . . . . . . . . . . 91 5.1.4 PromptD∗+yielddistribution . . . . . . . . . . . . . . . . . 93 5.1.5 Nuclearmodificationfactor . . . . . . . . . . . . . . . . . . 94 5.2 D∗+analysisusing2011datasample . . . . . . . . . . . . . . . . . . 95 5.2.1 Topologicalcuts . . . . . . . . . . . . . . . . . . . . . . . . 95 5.2.2 Rawyieldextraction . . . . . . . . . . . . . . . . . . . . . . 97 5.2.3 Efficiencies . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.2.4 Systematicuncertainties . . . . . . . . . . . . . . . . . . . . 100 5.2.5 Nuclearmodificationfactor . . . . . . . . . . . . . . . . . . 104 6 Conclusions 109 6.1 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 A Backgroundreconstruction 113 A.0.1 Datasetandanalysisprocedure . . . . . . . . . . . . . . . . . 114 A.1 D0reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 A.2 Like-signpairmethod . . . . . . . . . . . . . . . . . . . . . . . . . . 115 A.2.1 Resultsfromthelike-signpairmethod . . . . . . . . . . . . . 116 A.2.2 Resultsfromthelike-signpairmethodusingD0selectioncuts 117 A.3 Multiple-rotationsmethod . . . . . . . . . . . . . . . . . . . . . . . 121 A.3.1 Descriptionofthemethod . . . . . . . . . . . . . . . . . . . 121 A.3.2 Detectorinefficienciesandeventtopologybias . . . . . . . . 122 A.3.3 Consideringdetectorinefficienciesformultiple-rotationsback- ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 A.3.4 Resultsfromthemultiple-rotationsmethod . . . . . . . . . . 125 A.3.5 Results from the multiple-rotations method after D0 recon- structioncuts . . . . . . . . . . . . . . . . . . . . . . . . . . 127 A.3.6 Comparisonbetweenmultiple-rotationsandlike-signpairmeth- ods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 A.3.7 Resultsfordifferentrotationparameters . . . . . . . . . . . . 131 A.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6 Chapter 1 Heavy ion physics An important aspect of man’s culture and history has been his need to contemplate his place in the universe. One of those many enigmas that has interested mankind is the question of ’what is matter’? Throughout the ages many great thinkers have ponderedthisquestion. Asatributetotheeffortsofthesemenandwomen, thefirst sectionofthischaptercontainsabriefsummaryofhumanity’svoyageofdiscoveryto understandthefundamentalsofmatter,uptothepresentday. ThenexttwosectionsdescribeQuantumChromodynamicsanditsroleintheStan- dard Model. Then the principle of heavy ion collisions is discussed as well as the Quark Gluon Plasma (QGP). The signatures for the existence of the QGP are de- tailed, as well as the actual measurements performed by the Relativistic Heavy Ion Collider at Brookhaven National Laboratory (USA). The physical properties of az- imuthalanisotrophyandjetquenchingintheQGParediscussed. Finally, aspectsof the main topic of this work will be introduced; the study of D meson production in proton-proton and lead-lead collisions, which can be used to probe the properties in theQuarkGluonPlasma. 1.1 Towards Elementary Particle Physics, a brief his- tory For centuries mankind has wondered about the nature of matter. This has led to in- spired,yetflawedinterpretationsliketheclassicalelementsoffire,water,earthandair duringtheGreekclassicalperiod,thatstayedpopularwellintotheRenaissance. Yet evenintheClassicalperiodthephilosophersLeucippus,DemocritusandEpicurusar- guedthatthepropertiesofamaterialcouldbetracedbacktotheirsmallestundividable components. Thelackofempiricalevidenceonewayortheotherensuredthatfortwomillennia thequestionofthestructureofmatterwaspurelyphilosophical.1 Eventheworksof Descartes, Gassendi, andNewtoninthethe17thcenturyfocussedontheinterpreta- tion of the resurgent theory of small indivisible components, or atoms. Fortunately, 1Ofcourse,upuntilthenineteenthcenturyallscientificthinkingwasconsideredtobephilosophy.The currentsegregationofscienceandphilosophyisarathermoderndevelopment. 7 1.1.Abriefhistory CHAPTER1.Heavyionphysics mankindbecameinterestedandexperiencedinchemistryinthe18thcentury. Using measurements and experiments those early chemists catalogued the properties of a greatmanymaterialsandprocesses,pavingthewayfortheworksofDaltonandAvo- gadrowhowouldstartofhumanity’scurrentunderstandingofatomsandmolecules. As the knowledge of atoms and molecules grew, so too grew the realisation that atoms are not the smallest possible components and even smaller elements existed. Thestudyofthese’elementaryparticles’beganwhenThomsondiscoveredtheelec- tronin1897withitsnegativeelectricchargeanditsextremelysmallmass,forwhich he correctly surmised that these particles were part of the atom. Though Thomson was proven incorrect about the origin of the positive charge to compensate for the electrons’negativemassintheneutralatom,Rutherfordproveddecisivelythatatoms haveinternalstructurewithhisfamousscatteringexperimentwherehediscoveredthe presence of the atomic nucleus. This led to the discovery of the positively charged and heavy proton and the heavy but neutral neutron. With these three particles in place and a satisfactory model to describe them the period sometimes known as the ’classicalperiod’ofelementaryparticlephysicswasconcluded[1]. However, startingwiththe1930sthe’middleperiod’began, drawingknowledge not only from the discoveries of the ’classical period’ of particle physics, but also on the revolutionary changes wrought by the discoveries of quantum mechanics and general relativity. The discovery of the photoelectric effect brought turmoil to the age-old question whether light was a wave or particle phenomena, introducing the photonandtheconceptofenergyquanta. Thestudyofblack-bodyradiationshowed conclusively that the ’classical’ picture of electrons orbiting nuclei was flawed and quantisationofclassicalsystemswasrequired. Naturally,therealisationthatanatomicnucleusconsistlargelyofpositiveparticles gave rise to the question what ’strong force’ was keeping the nuclei together, which apparently only interacted at very short distances. It was Yukawa who linked this ’strongforce’withamediatingparticlewhichhecalledthemeson,whichwasmore- or-lessconfirmedbyPowelletal. in1947whenhiscollaborationdiscoveredboththe pionandmuonparticles[2,3,4,5]. Theoriginalversionofquantummechanicswasbasedonaformalismofclassical timeandspace,butevolvingitintoarelativisticversiongaverisetosomefar-reaching realisations.ThisstartedwhenDiracdiscoveredtheexistenceofnegativeenergystates andhis’fix’ofproposingtheDiracsea,whereeverynegativeenergystateisalready filledbyaparticle.Thisofcourseledtotheideathatanelectroncouldbeexcitedfrom this’sea’creatinga’hole’withsimilarpropertiesbutoppositechargeoftheelectron. ThisideainturnwasmigatedbytheinterpretationofFeynmanandStuckelbergofthe existenceofanactualantiparticle. Atanyrate,thediscoveryofthepositronin1931 canberegardedasatriumphofelementaryparticlephysics. Thethirdpillarthatdefinedthe’middleperiodofelementaryparticlephysics’is the realisation (and discovery) of the existence of another particle, which would ac- countforthemissingkinematicenergyoftheelectroninbetadecays. Fermiincorpo- ratedthisparticleproposedbyPauliandnamedittheneutrino.Thisverylightparticle couldalsobeusedtoexplaintheawkward’kink’visibleinthebubblechamberswhen a pion or muon decayed. Despite this indirect evidence, one had to wait until the mid-1950swhenCowanandReinesconfirmedtheneutrino’sexistence. Thisdidnot answer yet whether the neutrino and its anti-neutrino were different particles or one 8

Description:
The nuclear modification factor, with respect to the proton-proton reference . current segregation of science and philosophy is a rather modern development. 7 evolution of the system in many particle collisions (like in heavy ion
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.