nanomaterials Article Nanosilver–Silica Composite: Prolonged Antibacterial Effects and Bacterial Interaction Mechanisms for Wound Dressings DinaA.Mosselhy1,2,* ID,HenrikaGranbohm1 ID,UllaHynönen3 ID,YanlingGe1,AiriPalva3, KatrinaNordström4andSimo-PekkaHannula1 ID 1 DepartmentofChemistryandMaterialsScience,SchoolofChemicalEngineering,AaltoUniversity, 02150Espoo,Finland;henrika.granbohm@aalto.fi(H.G.);yanling.ge@aalto.fi(Y.G.); simo-pekka.hannula@aalto.fi(S.-P.H.) 2 MicrobiologicalUnit,FishDiseasesDepartment,AnimalHealthResearchInstitute,Dokki,Giza12618,Egypt 3 DepartmentofVeterinaryBiosciences,DivisionofVeterinaryMicrobiologyandEpidemiology, UniversityofHelsinki,P.O.Box66,00014Helsinki,Finland;ulla.hynonen@helsinki.fi(U.H.); airi.palva@helsinki.fi(A.P.) 4 DepartmentofBioproductsandBiosystems,SchoolofChemicalEngineering,AaltoUniversity, 02150Espoo,Finland;katrina.nordstrom@aalto.fi * Correspondence:dina.mosselhy@aalto.fi;Tel.:+358-50-408-3533 Received:24July2017;Accepted:3September2017;Published:6September2017 Abstract: Infectedsuperficialwoundsweretraditionallycontrolledbytopicalantibioticsuntilthe emergenceofantibiotic-resistantbacteria. Silver(Ag)isakernelforalternativeantibacterialagents to fight this resistance quandary. The present study demonstrates a method for immobilizing small-sized (~5 nm) silver nanoparticles on silica matrix to form a nanosilver–silica (Ag–SiO ) 2 compositeandshowstheprolongedantibacterialeffectsofthecompositeinvitro. Thecomposite exhibited a rapid initial Ag release after 24 h and a slower leaching after 48 and 72 h and was effectiveagainstbothmethicillin-resistantStaphylococcusaureus(MRSA)andEscherichiacoli(E.coli). Ultraviolet(UV)-irradiationwassuperiortofilter-sterilizationinretainingtheantibacterialeffects of the composite, through the higher remaining Ag concentration. A gauze, impregnated with the Ag–SiO composite, showed higher antibacterial effects against MRSA and E. coli than a 2 commercialAg-containingdressing,indicatingapotentialforthemanagementandinfectioncontrol of superficial wounds. Transmission and scanning transmission electron microscope analyses of thecomposite-treatedMRSArevealedaninteractionofthereleasedsilverionswiththebacterial cytoplasmicconstituents,causingultimatelythelossofbacterialmembranes. Thepresentresults indicatethattheAg–SiO composite,withprolongedantibacterialeffects,isapromisingcandidate 2 forwounddressingapplications. Keywords: silvernanoparticles; silica; composite; prolongedsilverleaching; antibacterialeffects; mechanismsofaction;wounddressings 1. Introduction Theskinisthelargestbodyorgan,formingaprotectivebarrieragainstharmfulbacteria. Skin damageallowsforbacterialpenetration,enablinglocalwoundinfectionsorsystemicsepticemia[1]. Healingofacutewoundsisanorderlyandtimelyregenerativeprocess. Therefore,themanagement ofacutewoundsessentiallymeanspreventingcomplications,suchaswoundinfections,whichcan halttheregenerationprocessoftissuesandconvertacutewoundstochronicwounds[2]. Asclassified intermsofthedepthoftheskininjury,superficialwoundscompriseinjuriesoftheepidermisand Nanomaterials2017,7,261;doi:10.3390/nano7090261 www.mdpi.com/journal/nanomaterials Nanomaterials2017,7,261 2of19 papillarydermisonlyandarehealedwithintendays,providedthatinfectionshavebeenprevented[1]. Wounddressingsvaryaccordingtothetypeofwound[3]andplayavitalpartinwoundhealing[4–7] by acting as physical barriers and by preventing wound contamination and infection [1]. Topical antibiotics are administered for the initial treatment of infected superficial wounds [8]. However, theunbridleduseofantibioticshasresultedintheemergenceofbacterialantibioticresistance[9–11]. Thereisagrowingconcernthatthesehighlyresistantbacterialpopulationsmaybeopeningupanera ofnon-treatableinfections[12]. Mostnotably,theincreaseofseriousinfectionscausedbyMRSAis alarming,conventionallyinhospitalenvironmentsandwoundcare[13,14],andmayleadtothedeath ofpatients[4]. Inaddition, MRSAisnowapredominantpathogeninthecommunityreservoiras well[15,16],alsocausingfatalinfections[17]. Thiswillincreasetheadministrationofvancomycin[15], aglycopeptideantibioticthatisconsideredasanultimatearsenalfortreatingMRSA[18],whichmay provoke the tenacity of antibiotic-resistant Gram-positive bacteria [15]. To further complicate the resistancequandary,vancomycinresistancehasalreadybeenidentifiedinMRSA[19]. Accordingly, the emergence of antibiotic-resistant bacteria calls for the rapid formulation of new therapeutic modalitiesthatarelesslikelytopromotethedevelopmentofbacterialresistance[10,14,20]. Silver (Ag) has received resurgent interest for use in medicine, particularly in wound management[4,21–23]. Notably,Aginwounddressingshasshownpromisingantibacterialeffects[24] and it has been shown that silver nanoparticles (Ag NPs) are highly antibacterial agents [25–27]. The weaker tendency of Ag to elicit bacterial resistance is due to the complex interference of Ag NPsandreleasedsilverions(Ag+)withbacterialcells[24]. Forinstance,theinteractionofAgNPs withthebacterialcellmembranesleadstotheformationof“pits”anddamagetothemembranes, whichincreasethepermeabilityofmembranes,resultinginbacterialdeath[28]. Moreover,AgNPs can form free radicals that cause damage to the membranes, leading to an antibacterial effect [29]. Furthermore, Ag+ can interact with phosphorus moieties in DNA, hindering bacterial replication, as well as interfere with sulfur-containing proteins in the bacterial cell walls and thiol groups of bacterialenzymes,resultingintheirdamageandinactivation[30]. Consequently,Ag-baseddressings aregenerallypreferredinthetopicalmanagementofwoundinfections,diabeticwounds[31,32],and particularlyintheprophylaxisandcontrolofinfectionscausedbyantibiotic-resistantbacteria[4,21,33]. Ontheotherhand,AgNPsaresusceptibletoaggregation,whichresultsinlossoftheirantibacterial properties[34,35]. Silica (SiO ) particles can be efficiently utilized as a stabilizing matrix for preventing the 2 aggregationofAgNPs[7,27,36–38].Moreover,SiO particleshavehighchemicalandthermalstabilities, 2 are inert and biocompatible, which propose them as an excellent system to deliver antibacterial agents[11]. ImmobilizationofAgNPscanalsoprovideprolongedantibacterialeffects,asAg+have beenshowntoexhibitsustainedreleasefromtheimmobilizedAgNPsonsubstrates[39].Oneapproach toimmobilizeAgNPsisbyutilizingthecore-shellsystems. Themainchallengesinthisapproachare theaggregationoftheAgcoreswhendecreasingthethicknessofSiO shellsandtheslowdissolution 2 rate of the Ag cores when increasing the shell thickness [40]. Such characteristics can prevent the fullutilizationofAgNPsinthecore-shellsystems. Therefore,inthisstudy,tomaximizethebenefits ofimmobilizationandtheprolongedreleaseofAgtosafeguardtheantibacterialeffectsinwound dressingapplications,wehavedevelopedacompositebyimmobilizingAgNPsonSiO matrix. 2 Previousstudieshavedescribedbroad-spectrumantibacterialeffectsforAg–SiO composites, 2 with more efficacy against Gram-negative bacteria [41–43]. The present study, in turn, aims to investigate the prolonged antibacterial performance of the composite against both Gram-positive andGram-negativebacteria(MRSAandE.coli,respectively). AsMRSAandE.coliarecommonwound pathogens[13,44],therefore,theexaminationoftheirsensitivitytothecompositeisofparticularinterest consideringtheproposedwounddressingapplications. WhilsttheadministrationofAg-containing dressingsisincreasing,debatecontinuesconcerningtheirefficacy[4]. Atpresent,thereisonlylittle publisheddataontheantibacterialefficacyofthedressingsthathaverecentlyreachedthemarket. IthasevenbeendemonstratedthatthereisnodirectrelationbetweentheAgcontent,Agreleaseand Nanomaterials2017,7,261 3of19 Nanomaterials 2017, 7, 261 3 of 20 theantibacterialeffectsoftheAg-containingdressings,andthatahighreleaserateofAgfromthe dresshinavges riescnenottlya rgeuacahraedn ttehee fmorartkheeti.r Ita nhtaisb aevcteenr ibaeleenf fidceamcoyn[s4tr5a]t.edT htheraet ftohreer,e wise nhoa dviereaclts orelcaotimonp ared between the Ag content, Ag release and the antibacterial effects of the Ag-containing dressings, and theantibacterialeffectsofacurrentlyavailablecommercialAg-containingdressing(CSD)withthe that a high release rate of Ag from the dressings is not a guarantee for their antibacterial efficacy Ag–SiO composite-impregnatedgauze(Ag–SiO -G)invitro. Thespecificobjectivesofthisstudyare 2 2 [45]. Therefore, we have also compared the antibacterial effects of a currently available commercial (i)thepreparationandcharacterizationofaAg–SiO composite;(ii)thedeterminationoftheleaching Ag-containing dressing (CSD) with the Ag–SiO2 2composite-impregnated gauze (Ag–SiO2-G) in profileandtheprolongedantibacterialeffectsofthecompositeagainstMRSAandE.coli,incomparison vitro. The specific objectives of this study are (i) the preparation and characterization of a Ag–SiO2 withacoCmSpDo,siwtei;t h(iit)h tehea idmetoefrmaciunatetiowno oufn tdhem laeancahgienmg epnrotfailned anindf etchtei opnrocloonntgreodl; aanntdib(aicitie)rtihale eifdfeecnttsi fiocf ation ofthethaen ctoibmapctoesritiea lamgaeinchsta MniRsmSAs oanfdth Ee. ccoolmi, pino scoitme.parison with a CSD, with the aim of acute wound management and infection control; and (iii) the identification of the antibacterial mechanisms of the 2. Recsoumltpsoasnitde. Discussion 2.1. C2h. aRreascutelrtsiz aantido nDoisfcAugss–iSoinO 2CompositeandSiO2Particles The prepared Ag–SiO composite and SiO particles were characterized utilizing a range of 2.1. Characterization of Ag–2SiO2 Composite and SiO22 Particles instrumental techniques, such as X-ray diffraction (XRD), scanning electron microscope (SEM), transmissTiohne perleepctarroend mAgic–rSoiOsc2 ocpoem(pToEsiMte )a,nhdig ShiO-r2e spoalrutitciloens wTEerMe c(hHarRaTctEerMiz)e,de nuetirligzyindg ias prearnsgiev eofX -ray instrumental techniques, such as X-ray diffraction (XRD), scanning electron microscope (SEM), spectroscopy(EDX)ofthescanningtransmissionelectronmicroscope(STEM),andZetasizer. TheXRD transmission electron microscope (TEM), high-resolution TEM (HRTEM), energy dispersive X-ray patternsoftheAg–SiO compositeandSiO particlesaredisplayedinFigureS1. Thehumpsaround spectroscopy (EDX)2 of the scanning trans2mission electron microscope (STEM), and Zetasizer. The 25◦ (2θ) in both patterns are attributed to the amorphous structure of the SiO . The XRD pattern XRD patterns of the Ag–SiO2 composite and SiO2 particles are displayed in Figure2 S1. The humps ofthearcooumndp o2s5i°t e(2dθo) eins nbootthr epvaettaelrndsi fafrrea cattitorinbupteeadk tso ftohre tahmeocrrpyhsotaulsl isnteruActgu.reT ohfe tahbe sSeinOc2e. Tohfed XifRfrDa ction peakspaftotrertnh eofA tgheN cPomscpaonsitbee daotetsr inboutt erdevteoalt hdeiffsrmacatilolns ipzeeakosf tfhore tAheg cNryPsstaollbintea iAnegd. Tahtet haebsleonwce hoefa ting tempdeirfafrtaucrteio(n3 0p0ea◦kCs )foorf tthhee Acogm NpPos sciaten. bTeh aitstriisbucotends itsot ethnet wsmitahll asipzer eovf itohues Arge sNeaPrsc hob[t4a6in]etdh aatt hthaes also reporltoewd htheaetianbgs etenmcepeorfadtuirfefr (a3c0t0io °nC)p oefa kthsef coormthpeosiimtem. Tohbisil iisz ecdonAsigsteonnt SwiOith aa tp4re0v0io◦uCs hreesaetatrrceha [t4m6]e ntin 2 airanthdadt ehtaesc atelsdo Aregpodritfefdr atchtei oanbspeneacek sofo dnilfyfrawcthioenn ptheaekms feoarn thseiz iemomfoAbiglizNePd sAign corne aSsiOed2 awt 4it0h0 °thCe hienactr ease treatment in air and detected Ag diffraction peaks only when the mean size of Ag NPs increased oftheheatingtemperature. Thisrelationshipbetweentheabsenceofdiffractionpeaksandthesmall with the increase of the heating temperature. This relationship between the absence of diffraction sizeofAgNPs,7to9nm[47],and2to3nm[48],hasfurtherbeenreportedintheliterature. peaks and the small size of Ag NPs, 7 to 9 nm [47], and 2 to 3 nm [48], has further been reported in TheSEMimagesshowthesurfacemorphologyofthesphericalpristineSiO particles(Figure1A) the literature. 2 withmedianandaveragesizesof673nmand674±22nm,respectively(Table1),andtheraspberry-like The SEM images show the surface morphology of the spherical pristine SiO2 particles (Figure Ag–S1iAO)2 wcoitmh pmoesdiitaenw aintdh athveerasguer fsaiczees-i mofm 67o3b inlimze adndA g67N4 P± s22e xnpmo,s eredsp(eFcitgivuerley 1(BTa).blTeh 1e), TaEnMd thime ages (Figurraesp2bAer,Bry)-lriekve eAagl–tShieO2s cpohmepriocsailt,e rweiltaht itvheel ysudrfaarcke-iAmgmoNbPilsizeimd mAgo bNiPlisz eedxpaolsledo v(Feirguthree 1SBi)O. T2hme atrix formTinEgMa irmaasgpebse (rFriyg-ulirkee 2cAo,Bm) proevseitael. tTheh espmheerdiciaaln, raenladtiavveleyr adgaerks iAzge sNoPfst himemAogbNiliPzesdo afltl hoevecro mthpe osite are5SniOm2 manadtri5x f±or2mninmg ,ar reassppebcetrirvye-lliyk,ew coitmhpaossiitzee. Tdhies tmriebduiatino annrda anvgeirnaggef rsoizmes 2oft oth2e 0Angm NP(Ts aobf ltehe1 and FigurceomS2p)o.sTithei sarsem 5a lnlmsi zaendo f5A ±g 2N nPms, hreasspaenctiivmelpyl,i cwaittiho na csoiznes iddisetrriinbguttiohne sraizneg-idnegp feronmde 2n ttoa n2t0i bnamct erial (Table 1 and Figure S2). This small size of Ag NPs has an implication considering the effectsofAgNPs:smallerAgNPs,preferablyintherangeof1to10nm,haveshownbetterantibacterial size-dependent antibacterial effects of Ag NPs: smaller Ag NPs, preferably in the range of 1 to 10 effectsthanlargerones[49,50]. Furthermore,theTEMimagesdisplaytheAgNPswithauniform nm, have shown better antibacterial effects than larger ones [49,50]. Furthermore, the TEM images distributionthroughouttheSiO matrixwithoutaggregation. Thisuniformdistributionisfavorable, display the Ag NPs with a un2iform distribution throughout the SiO2 matrix without aggregation. asaggregationreducestheactivesurfacesofAgNPs,andthusresultsinlossoftheirantibacterial This uniform distribution is favorable, as aggregation reduces the active surfaces of Ag NPs, and effecttshu[3s4 r,e4s2u]l.ts in loss of their antibacterial effects [34,42]. Figure1. SEMimagesshowing(A)thesphericalpristineSiO particles;and(B)theraspberry-like 2 Ag–SiO compositewithsurface-immobilizedAgNPs. 2 Nanomaterials 2017, 7, 261 4 of 20 Figure 1. SEM images showing (A) the spherical pristine SiO2 particles; and (B) the raspberry-like NanomAatge–riSalisO220 c1o7,m7,p2o6s1ite with surface-immobilized Ag NPs. 4of19 Table 1. The sizes of SiO2 particles and Ag NPs on the composite. The number of measured particles Table1.ThesizesofSiO particlesandAgNPsonthecomposite.Thenumberofmeasuredparticlesis is 50 at a minimum for e2ach sample. standard deviation (SD). 50ataminimumforeachsample.standarddeviation(SD). Ag Nanoparticles (NPs) of Materials SiO2 Particles the Composite Materials SiO Particles AgNanoparticles(NPs)oftheComposite 2 Median size (nm) 673 5 Mediansize(nm) 673 5 Mean size (nm) 674 5 Meansize(nm) 674 5 SD (nm) 22 2 SD(nm) 22 2 Minimum particle size (nm) 616 2 Minimumparticlesize(nm) 616 2 MaMximaxuimmupmar ptiacrleticsilze esi(znem ()nm) 724 724 20 20 The selected-area electron diffraction (SAED) pattern of the composite (Figure 2C) shows the Theselected-areaelectrondiffraction(SAED)patternofthecomposite(Figure2C)showsthering ring pattern with the d values calculated, corresponding to plane spacing of the {111}, {200}, {220}, patternwiththedvaluescalculated,correspondingtoplanespacingofthe{111},{200},{220},and{311} and {311} planes of the face-centered cubic (fcc) crystal structure of Ag reported in the international planesoftheface-centeredcubic(fcc)crystalstructureofAgreportedintheinternationalcentrefor centre for diffraction data (ICDD, reference code: 04-016-6676). The HRTEM images of the diffractiondata(ICDD,referencecode:04-016-6676).TheHRTEMimagesofthecompositedemonstrate composite demonstrate (i) single-crystal Ag NPs as indicated by the one-directional lattice fringes (i) single-crystal Ag NPs as indicated by the one-directional lattice fringes in Figure 2D showing in Figure 2D showing d-spacing of 0.241 nm, which matches the {111} plane spacing of the fcc Ag d-spacingof0.241nm,whichmatchesthe{111}planespacingofthefccAgcrystal;and(ii)twinned crystal; and (ii) twinned and multi-grain Ag NPs (Figure S3). The multi-grain Ag NPs may be andmulti-grainAgNPs(FigureS3). Themulti-grainAgNPsmaybeattributedtothegrowthofthe attributed to the growth of the small single Ag crystals into larger Ag NPs [51]. Together these smallsingleAgcrystalsintolargerAgNPs[51]. Togethertheseresultsprovideimportantinformation results provide important information on the crystalline structure of Ag NPs of the composite that onthecrystallinestructureofAgNPsofthecompositethathasnotbeenrevealedbyXRD.TheEDX has not been revealed by XRD. The EDX results (Figure 2E) show peaks of Ag, Si, and O, which results(Figure2E)showpeaksofAg,Si,andO,whichfurtherconfirmthepresenceofAgwithinthe further confirm the presence of Ag within the SiO2 matrix. The detected peaks of copper (Cu) are SiO matrix.Thedetectedpeaksofcopper(Cu)areoriginatingfromthecoppergrid.Thezetapotential orig2inating from the copper grid. The zeta potential values of the Ag–SiO2 composite and SiO2 valuesoftheAg–SiO compositeandSiO particlesare−68.3±1mVand−66.9±0.7mV,respectively, particles are −68.3 ± 21 mV and −66.9 ± 02.7 mV, respectively, indicating the negative surface charge indicatingthenegativesurfacechargeandtheelectrostaticstabilityofthepreparedmaterials. and the electrostatic stability of the prepared materials. Figure2.Cont. Nanomaterials2017,7,261 5of19 Nanomaterials 2017, 7, 261 5 of 20 Nanomaterials 2017, 7, 261 5 of 20 FFiigguurree2 2..( A(A,B,B))T TEEMMi mimaaggeesss shhoowwininggs spphheerricicaallA AggN NPPssi mimmmoobbiliilzizeeddt h thrroouugghhoouuttt htheeS SiOiO22 mmaattrriixx inin tthhee rraassppbbeerrrryy--lliikkee ccoommppoossiittee aatt ddiiffffeerreenntt mmaaggnniififcicaattiioonnss;; ((CC)) TThhee sseelelecctteedd--aarreeaa eeleleccttrroonn ddififfrfraaccttioionn Figure 2. (A,B) TEM images showing spherical Ag NPs immobilized throughout the SiO2 matrix in ((SSAAEEDD)) rriinngg ppaatttteerrnn ooff ththeec crryyssttaalllilninee AAgg NNPPss oofft htheec coommppoossitiete;; aanndd (D(D))t htheeh higighh-r-reessooluluttioionn TTEEMM the raspberry-like composite at different magnifications; (C) The selected-area electron diffraction ((HHRRTTE(SEMAME))D imi)m raiagngege opofaftt thtehrenel aolabf betehleleed dcrs ysusurtarffallacicneee--i miAmgmm NooPbbsiil lioizzfe etdhde A Acgogm NNpPoPs sishtheo;o wawniidnn gg(D tth)h eteh lela athtttiigicchee- rffrerisinonglgueetsiso (n(d d-T-ssEppMaac ciinngg)) aanndd tth(hHeeRc cTooErrrMrees)s pipmoonandgdeiin noggf ftfahasest tl FaFbooeuluerrdiie ersru trtrrfaaancness-fifomorrmmmo (b(FFilFiFzTTe)d) p pAaatgtt teNerrnPn (s(ihinnoswseetitn));g; ( (EtEh))e T Tlhahteeti eceenn eferrrigngygyed sdi si(sdpp-eseprrsasicivivneeg X)X --rraayy ssppeeccttraronosdscc otohppey yc( o(ErEDrDeXsXp))oe neledleminmgeen fntaatsalt laF anonuaalrylieysrsi sitsroa ofnfst hftoheremA A g(gF––FSSTiOi)O p22ac tcotoemmrnpp (ooinssisiteteet.).; (E) The energy dispersive X-ray spectroscopy (EDX) elemental analysis of the Ag–SiO2 composite. 22.2.2.. AAgg LLeeaacchhiinngg PPrroofifillee 2.2. Ag Leaching Profile IInndduuccttiviveelylyc ocouuppleldedp lpalsamsma-ao-potpictiaclaelm emissiisosniosnp sepctercotmroemteert(eIrC (PIC-OPE-OS)EwS)a swuatsi liuzteidlizteodi dteon itdifeyntthifey Inductively coupled plasma-optical emission spectrometer (ICP-OES) was utilized to identify pstntrhoooecnl ko-pfntnoihrgolfoetnee lA-dorpfeingrlAdot–ge lgSeorseidnrtOdoe g 2lceAesdktcago os cAoemkrfge fp rolAeorofea gmslAsi–eteaSgte sh–iefO(Ser1 io2fOA mrmoc2g omg –cm/toS hmmitpOehpo eL2o sA)isActigioetsg–em – 5S(S(7p1i1iO.O o 8mm2s2 ±itggcceo/o/1.mmmm0TL.pLph4)o) oe sµissiitgtsi oet 5/e.t 57am. T.7l8T.hLc 8eo±h ( ne±1t1 c o00ett10.ao4n0%l tt. a4μr)cla .go tμ/nTcimogcohenL/nenm coti(erLn1fan0 Atvt0i(ro%i1gatn0rt)i o0i.n oo%Tflnt ehh) aA.ee oc gTfhni nhioiAn nenvg g-itifit hpnrlioe rtn eov rfiitethlrdeoe olefaAcghliefnragoch mpinrtgoh fepilrfieo lftoielfer eAodfg AA fggr o–fmSroiO mth2 tech oefm ilftipletoreersedidt e AAagsg––tSShiieOOf22u ccnoocmmtipoponosisotieft eta isma steh teih sfeus hnfuoctwniocnnti oionnf Ftoiimgf uet irmies 3es. hiAosw tsnthh oienw snta ritn oFfigthuerFeei gx3up. reAer 3ti m.t Aheetn tstht(ea0 rstht ao)r,ft ttohhfe eth fieelx teprxaeptrieiomrinmeonefnt tt( h0(0e hhs))t,,o ttchhkee sffiuilltstrrpaatetionionsn ioo ofn ftsh tehh aestd osctroke csskuu lsstpueedsnpsieinonn7ssi.5 ohn±asd h1r.ea2sduµ lrtgee/sdum ilntL edA ign c7o.n5 c±e7 n.15t.r 2a± t μi1og.2n/ m,μwgL/ mhAiLcg h Acogren cpcorenencseternnattrtiasotin~o,1n w3, %whhicoichfh tr rheepeprrseetssoeecnnkttssA ~~1g133%c%o on ofc fteh tneht esrta osttciookc nAk.g A Acgofn tcecorenn2ct4reanhtit,ornaA.t igAofnwte. arA s2f4qt ehur,i c2k4 lhy, lAeagc hweAdags fwrqoaumsi cqktulhyiec klcleyoa mclehapecodhs eifdtre ofmrwom itthh teha ec cocoomnmcppeonosstiirtteae t iwwoniitthho afa 2cco2on.1ncec±nentr2tar.t3aiotµino gno/f mo2f2L .21(2 ~±.13 28±..32 2%μ.g3)./ mμTLgh /m(e~n3L,8 .a2(~%s3l)8o. .w2%er). sTuhsetaniT,n haee dnsl, loeawa scelhorw inseugrs stoaufisnAtaeigdn ewlde aalsecahdcihenitgne gco tfeo dfA ,Agag s wwtahasse ddceeottneecccteteenddt, r,a aast sito htneh sec oocnfocn2e7nce.t1rnatt±rioant2is.o4 nofµs 2go7/f. 1m2 7±L .12( .~4± 4 μ62g..9/4m% μL)g a/mndL 2(8~.446±.9(~%24.6)2 .9aµ%ngd)/ am2n8dL. 42( 8~±.44 92±..12 %2 μ.2)g wμ/mge/rLme L(d~ e(4~t94e.9c1.t1%e%d) ) awwfteeerrree 4dd8eeatteenccdtteed7d 2a afhtfe,trer er4 s84p 8ae ncadtni vd7e2 l 7yh2., Arhe,s pproeesscpstiivebceltleyiv.e exAlpy pl.a oAnssa iptbioloesn sifbolre explanation for the subsequent slower sustained release of Ag is the depletion of the immobilized tehxepsluanbasetiqoune fnotrs tlohwe esurbsusesqtauiennetd srleolweaesre soufsAtaginiesdt hreeldeaespel eotifo Ango fist htheeim dmepolebtiiloizne dofA tgheN iPmsmfroobmilitzheed sAurgf aNcAPegso NffrSPoismO fr 2tohpmea trshtuiecr lsfeuascr.fea coef oSfi OSi2O p2 apratritcilceless. . Figure3.InvitroleachingprofileofAgfromthefilteredaqueoussuspensionsoftheAg–SiO composite 2 (1mg/mL),shakenatregulartimeintervals,shownastheaveragevaluesoftriplicatemeasurements. T hebarsrepresentthestandarderrorsoftheaverages. Nanomaterials2017,7,261 6of19 Overall,thepresentresultshavethreeimportantimplications. First,theinitialquickleachingof Agisdesirable,asarapidantibacterialactionisapropertyofanidealwounddressing[52]. Secondly, thesustainedleachingofAgallowsforaprolongedantibacterialactionofAg. Thirdly,theremaining AgconcentrationoftheembeddedAgNPsthroughouttheSiO matrixshouldbeinterpretedwith 2 somecaution,asifsub-lethalconcentrationsofAgarereleased,Ag-resistancemightevolve[22,24]. Ag-resistancegeneshavepreviouslybeendocumentedinaplasmidofaSalmonellastrainisolated from a hospital burn unit [53], and homologs of these genes have also been identified in E. coli chromosomes[54]. WhiletheincidenceofAgresistanceremainsrare,cliniciansandscientistsshould, however, be aware of the Ag concentrations needed to be administered for achieving the desired antibacterialeffectsofAg,butsimultaneouslystrivetoavoidtheemergenceofresistance. Ithasbeen recommendedthatprolongeduseofAg-dressingsshouldbeavoidedifwoundsshownoresponseto Agafter3to5timesofchangingdressingswithin10to15days[32]. 2.3. AntibacterialEffectsofAg–SiO CompositeandDressings 2 ThesusceptibilityofMRSAandE.colitotheAg–SiO andSiO powderswastestedinthefirst 2 2 setofagardiffusionassays. Noinhibitionzones(IZs)aredetectedonplatesofMRSAandE.coliwith SiO particles(Figure4A,B,respectively),whichdemonstratesthattheSiO particleshavenorolein 2 2 theantibacterialeffectsofthecomposite. Incontrast,theAg–SiO compositeproducesIZsofboth 2 MRSAandE.coli. TheantibacterialeffectsoftheAg–SiO compositearemostlikelycontributedtothe 2 smallsize(5nm)oftheAgNPs. Thesesmallsized-AgNPspossesslargesurfaceareas,enablingthem tohavelargecontactareaswiththebacterialcells[26,50,55]andtoreleasehighamountsofAg+[27,56]. Moreover,theaerobicenvironmentsoftheantibacterialtestsallowforthepartialsurfaceoxidationof theAgNPs. PartiallyoxidizedAgNPspossessinghighlevelsofAg+mayfacilitatetheantibacterial effects, aspreviouslyreportedbyLoketal.[34]. Thepresentfindingsareconsistentwiththoseof Agnihotrietal.[57],whohavesuggestedthatthehighantibacterialefficacyoftheimmobilizedAg NPsispartlyattributedtotheirsmallsize,whichenhancesthefasterdissolutionandthemorerelease ofAg+. Furthermore,immobilizationallowsforthecontact-modeinteractionofAgNPswithalarge numberofbacterialcells,astheAgNPsdonotbecomesequesteredinsidethebacterialcells. TherewasnodifferencebetweenthegrowthinhibitionofMRSAandE.colibythecomposite in the agar diffusion assay (Figure 4C), which emphasizes two major aspects. First, the present compositeexertsantibacterialeffectsagainstbothGram-positiveandGram-negativebacterialspecies tested,whichiscrucialinthecontextofwounddressingapplications. Secondly,thecompositeshows antibacterialeffectsagainstthebacterialspeciesmostofteninvolvedinwoundinfections,especially theantibiotic-resistantbacterium,MRSA,posingaseverethreattowoundmanagement[14,33]. Ithas beensuggestedbyCuttingetal.[32]thatAgdressingsdonotleadtoacureofinfections,butrather theycanefficientlyinhibitbacterialpenetrationintowounds,duetotheirbroad-spectrumofaction. Accordingly,thepresentresultssuggestthattheAg–SiO compositecanbeusedinwounddressing 2 applicationsfortheprophylaxisandcontrolofantibiotic-resistantbacterialinfections. Themostsuitabledecontaminationmethodthatretainstheantibacterialeffectsofthecomposite wasassessedbytheparallelagardiffusionassaysofthefilter-sterilizedAg–SiO composite. Figure4 2 showsthattheUV-treatedAg–SiO compositeproduceslargerIZs(11.5±0.7mm)ofbothstrains 2 testedthanthefilter-sterilizedcomposite(8±1.4mmand10±1.4mmagainstMRSAandE.coli, respectively). ThisisclearlyduetothehigherAgconcentrationoftheUV-treatedcompositecompared to that of the filter-sterilized composite, as detected by ICP-OES. According to the present data, UV-irradiationisarobustmethodfordecontaminatingthecompositeandcanbeusedtoavoidthe problemofcloggingoftenobservedwhenmembranefiltersareused. Nanomaterials 2017, 7, 261 7 of 20 Nthaen opmraetesreianlst2 d01a7t,a7,, 2U61V-irradiation is a robust method for decontaminating the composite and ca7no fb1e9 used to avoid the problem of clogging often observed when membrane filters are used. FFiigguurree 44.. AAnnttiibbaacctteerriiaall eeffffeeccttss ooff UUVV--ttrreeaatteedd aanndd fifilltteerr--sstteerriilliizzeedd AAgg––SSiiOO22 ccoommppoossiitteess ddeetteecctteedd bbyy tthhee ddiiaammeetteerrss ooff iinnhhiibbiittiioonn zzoonneess( I(ZIZs)s)o nonp lpaltaetsesw withith(A ()AM) RMSRASAan dan(dB )(BE). cEo.l i.co(lCi.) (TCh)e Tdhiea mdeiatmerestoefrsI Zosf. TIZhse. aTvheer aagveesraagneds satnadn dsatarnddearrrdor esrorofrtsw oof itnwdoe pinednedpeenntdaegnatr adgifafru dsiioffnuasisosnay assasareyss haorew snh.own. TThhee eefffificcaaccyy ooff tthhee ccoommppoossiittee iinn wwoouunndd ddrreessssiinngg aapppplliiccaattiioonnss wwaass iiddeennttiiffiieedd iinn tthhee sseeccoonndd sseett ooff aaggaarr ddiiffffuussiioonn aassssaayyss.. TThhee AAgg––SSiiOO2--GG iiss eeffffeeccttiivvee aaggaaiinnsstt bbootthh MMRRSSAA aanndd EE.. ccoollii,, aass cclleeaarr IIZZss 2 ((FFiigguurree 55AA,,BB,, rreessppeecctitviveelyly))a arereo bosbesrevrevdeda fateftretrh tehgea guazuezhea hsabse ebneesno askoeadkeind ainq uaeqouuesosuuss psuesnpsieonnssioonfst hoef cthoem pcoomsitpeofsoitreo nfolyr 1o5nlmy in1,5h mighinli, ghhitginhgligthhetirnagp itdhea nrdapeifdfe catnivde aefnfteicbtaivctee raianltiabcatciotenrioafl thaceticoonm pofo stihtee. Icnosmtepaods,inteo. IIZnsitseaodb,s enrov eIZd iws iothbstehrevpedri swtiinthe cthoen tprorilsgtianuez ceo(nFtirgoul rgea5uAz)e, (inFidgiucartei n5gAt)h, iantdthiceaatinntgib tahcatte rtihael eafnfteicbtascotefrtihael eAffge–cStsiO of- Gthea rAego–nSlyiOa2t-tGri baurete odntloy tahtetrciboumtpedo stiote t.hTeh ceoCmSpDoswitaes. Thhyde rCaSteDd wbeafso rheytdersatitnedg 2 tboefmorime tiecstthinegm tooi smtiwmoiuc nthdee nmvoiirsotn wmoeunntda nednvwiraosnpmlaecnetd awndit hwiatss gprlaaycemd ewshitshi dites ignrcaoyn mtaecsthw siitdhet hine icnoonctualcatt weditphl athtees itnooaclulolawtetdh eprlealteeass teoo aflAlogw+ tinhteo rtehleeaasgea orfp Alagte+ si.nHtoo twheev aegr,atrh pelCatSeDs. dHooewsnevoetrin, thhibe iCttShDe gdrooews tnhoot fiMnhRibSiAt t(hFeig gurroew5Ath) aonf dMoRnSlyAs l(iFgihgtulyrei n5hAib) iatsntdh eongrlyo wsltihghotflyE .icnohliib(Fitisg uthree 5gBr)o;wthteh porfo dEu. cceodli I(ZFigisufraer 5sBm);a tllheer pthraonduthceadt pIrZo disu fcaerd sbmyatllheer Athga–nS itOhat- Gp.roFdiguucreed5 bCys thhoew Asgt–hSeiOre2m-Ga.r kFaigbulered 5ifCfe rsehnocwess 2 btheetw reemenarthkeabcloer rdeicffteerdenincheisb biteiotwnezeonn ethse( CcoIZrrse)cotfedth ienAhigb–itSiioOn z-Gon(e4s.5 (CanIZds4) .2o5f tmhem Aagg–aSiniOst2-MGR (S4.A5 aanndd 2 E4..2c5o lmi,mre sapgeacitnisvte lMy)RaSnAd aCnSdD E(. 1comli,m reosnpleyctaivgealiyn)s tanEd. cColSi)D. I(t1 hmasmb eoennlys uaggagiensstte dE. tchoalti).h Iytd hraasti obneeins rseuqgugiersetdedf otrhaatn heyffidcraietniotnl eias crheiqnugiroefdA fogr+ afnro emffiAcige-ncto lnetaacihniinngg odfr eAsgsi+n fgrsomto Aacgh-cieovnetaainninang tdibraecstseinrigasl to achieve an antibacterial effect [44,52]. Liang et al. [58] have shown that Ag NPs on the effect[44,52]. Liangetal.[58]haveshownthatAgNPsonthehydrophilicsurfaceofanasymmetric hydrophilic surface of an asymmetric wettable AgNPs/chitosan composite dressing inhibit bacterial wettable AgNPs/chitosan composite dressing inhibit bacterial growth. In the present study, such growth. In the present study, such favorable hydration conditions were maintained by soaking the favorablehydrationconditionsweremaintainedbysoakingthegauzeinanaqueoussuspensionof t hecompositewithknownconcentration(1mg/mL)for15min. However,theexactAgconcentration Nanomaterials 2017, 7, 261 8 of 20 Nanomaterials2017,7,261 8of19 gauze in an aqueous suspension of the composite with known concentration (1 mg/mL) for 15 min. However, the exact Ag concentration within the gauze after impregnation has not been determined. withinthegauzeafterimpregnationhasnotbeendetermined. Moreover, theconcentrationofAg Moreover, the concentration of Ag within the CSD has not been elucidated. Therefore, further withintheCSDhasnotbeenelucidated. Therefore,furtherstudiesarenecessarytodeterminethe studies are necessary to determine the concentrations of Ag–SiO2 composites that are needed to concentrationsofAg–SiO compositesthatareneededtoimpregnatethedressingsinamannerthat 2 impregnate the dressings in a manner that allows a sustained release and an effective antibacterial allowsasustainedreleaseandaneffectiveantibacterialactionofAg.Collectively,thefollowingaspects action of Ag. Collectively, the following aspects of our results are of importance: first, antibacterial ofourresultsareofimportance: first,antibacterialeffectsareobservedagainstboththeGram-positive effects are observed against both the Gram-positive MRSA and the Gram-negative E. coli. Secondly, MRSAandtheGram-negativeE.coli. Secondly,theantimicrobialagarsusceptibilitytestresemblesthe the antimicrobial agar susceptibility test resembles the administration of dressings in the clinical administrationofdressingsintheclinicalsettingsandsuggeststhatthisbacterialgrowthinhibition settings and suggests that this bacterial growth inhibition can also occur at the wound-dressing canalsooccuratthewound-dressinginterface. Thirdly,thehydrationconditionsthatpermittedthe interface. Thirdly, the hydration conditions that permitted the leaching of Ag+ can provide a basis leachingofAg+canprovideabasisfortheuseofAg–SiO -Gasatopicalwounddressing. for the use of Ag–SiO2-G as a topical wound dressing. 2 FFigiguurere5 .5.( A(A,B,B))A Anntitbibaaccteterriaialle efffefecctstso offA Agg––SSiOiO22 ccoommppoossiittee--iimmpprreeggnnaatteedd ggaauuzzee ((AAgg––SSiiOO22--GG) )aaggaaininsst t MMRRSSAA( A(A))a annddE E..c coolili( B(B)) inin ththee aaggaarr ddiiffffuussiioonn aassssaayy.. TThhee bbllaacckk aanndd wwhhiittee nnuummbbeerrss rreepprreesseennt tththee siszizeesso offt htheed drreessssininggssa annddt thhee pprroodduucceedd IIZZss iinn mmmm,, rreessppeeccttiivveellyy.. TThhee wwhhiittee aarrrrooww ppooiinnttss ttoo tthhee ssmmaalll l IZIZp prorodduucceeddb byyt htheec coommmmeerrcciaiall AAgg--ccoonnttaaiinniinngg ddrreessssiinngg ((CCSSDD)) ((HHaannssaappllaasstt)) aaggaaiinnsstt EE. .ccoollii. .(C(C) )TThhee cocorrrercetceteddi ninhhibibitiitoionnz zoonneess( C(CIIZZss))o offA Agg––SSiiOO22--GG aanndd CCSSDD.. TThhee mmiinniimmuumm iinnhhiibbiittoorryy ccoonncceenntrtartaitoionns s(M(MICIsC) so)f othfet hAeg–ASgiO–S2 icOomcpoomsipteo asigtaeinasgt aMinRstSAM aRnSdA 2 aEn.d coEl.i acoreli daerteerdmetienremd,i naes d2,50a san2d50 50a0n dμg5/0m0Lµ, gre/smpeLc,tirveeslpye. cFtuivrethlye.rmFourreth, tehrem SoirOe2, pthaertiScilOes sphaorwti cnloes 2 sh ownoinhibitionofbacterialgrowthevenatthehighestconcentration(1mg/mL)tested,which Nanomaterials2017,7,261 9of19 further indicates that only the Ag in the Ag–SiO composite inhibits the bacterial growth. The 2 present results advocate previous findings that SiO particles have no antibacterial effect [37,59]. 2 ThecorrelationbetweentheMICsandtheinvitroleachingprofileofAgfromthecompositeshows promisingantibacterialeffectsfor thecompositebecauseaconcentrationof1mg/mLofAg–SiO 2 suspension has released 22.1 ± 2.4 µg/mL Ag after 24 h. It is evident that the MICs of 250 and 500µg/mLofAg–SiO compositehavereleased~5.5and11.1µg/mLAg,respectively,afterovernight 2 incubationinthebrothmicrodilutiontest. Hence,itcanbearguedthat~5.5and11.1µg/mLarethe elementalAgconcentrationsthatshouldbeleachedfromtheAg–SiO compositeattheirprolonged 2 antibacterialadministrationinwounddressingstoinhibitthegrowthofMRSAandE.coli,respectively. The present MICs are encouraging, as based on their elemental Ag concentrations, they are less than the previously reported MICs of Ag–SiO composites with pure Ag concentration of 50 and 2 12.5µg/mLagainstS.aureusandE.coli,respectively[43],and6.72to13.44µg/mLagainstS.aureus[27]. ContrarytoexpectationsthatGram-positivebacteriaarelesssusceptibletoAg–SiO compositesthan 2 Gram-negative bacteria [35,41,42], owing to the thicker cell wall of Gram-positive bacteria [27,43]. ThepresentstudydidnotfindremarkabledifferencesinthesusceptibilityofMRSAandE.colitothe compositeintheagardiffusionassays. Moreover,basedontheMICs,theGram-positiveMRSAis evenmoresusceptibletothecompositethantheGram-negativeE.coli. Alloftheresultsdescribed sofarinthepresentstudyindicatethattheAg–SiO compositedisplayseminentantibacterialeffects 2 against representatives of both Gram-positive and Gram-negative bacteria. Dong et al. [7] have demonstrated that Ag–SiO /poly-ε-caprolactone nanofibrous membranes promote good and fast 2 woundhealing,withlessinflammationandepithelialshrinkageofwoundsinducedinWistarrats, whichwasattributedtotheantibacterialeffectsofthereleasedAg–SiO . Theaforementionedstudy 2 utilizedapreviouslysynthesizedAg–SiO compositewithsmall-sizedAgNPs(2to10nm)andaMIC 2 of6.72to13.44µg/mLelementalAgagainstS.aureus[27]. Thecompositesynthesizedinourstudy iscomposedofsmall-sizedAgNPs(5nm)andhasalowMICof~5.5µg/mLelementalAgagainst MRSA.InlightofthefindingsofDongetal.[7],arolefortheAg–SiO compositeinwoundhealing 2 invivoseemsplausibleandfurtherstudiesarewarranted. TheprolongedantibacterialeffectsofAg–SiO -Gareshownintheturbidityassays(Figure6); 2 the quantitative results are shown in Figure 7 and Table S1. When comparing the growth of the bacterial cultures containing different dressings to that of the positive controls, it is clear that the Ag–SiO -GinhibitsthegrowthofMRSAandE.coliafter24h,andpowerfullyreducestheirproliferation 2 after48h,indicatingprolongedantibacterialeffectsoftheAg–SiO -G.Thisprolongedantibacterial 2 effectisrequiredinpracticalapplications[35]anddesiredfeatureinAg-containingdressings[44], decreasingthefrequencyofdressingchanges[60]. TheCSDonlyslightlydelayedthebacterialgrowth after24and48h,indicatingafarlesslastingantibacterialeffectwhencomparedtotheAg–SiO -G. 2 Thelackofanyantibacterialeffectofthepristinegauzewasfurtherconfirmedbythatthebacterial cultures containing pristine gauze reached almost the same turbidity and bacterial growth as the positivecontrols. ThepresentfindingspointtotheprolongedantibacterialeffectsoftheAg–SiO -G 2 against both the Gram-positive MRSA and Gram-negative E. coli that are promising for wound dressingapplications. Nanomaterials2017,7,261 10of19 Nanomaterials 2017, 7, 261 10 of 20 Nanomaterials 2017, 7, 261 10 of 20 FFFiiggiguuurreere 66 .6. .TT Thhheee pp prroorolloolonnngggeeeddd aa annnttiitbbibaaaccctteeterriiraaiall lee efffffeefecccttsst soo off fAA Aggg–––SSSiiOOiO22-2-G-GG a aagggaaaiininnsstst t( (A(AA)) )MM MRRRSSSAAA aa annnddd (( BB(B)) )EE E.. .cc oocloliil iii nnin tt hhtheee MMuuelellelre–rH–Hinitnotnonb rborthot(hM (HMBH)Btu)r btuidrbitiydaitsys aaysssaoybss eorvbesderavfetder a2f4t,e4r8 2,4a,n d487,2 ahndof 7in2c uhb aotfi oinn.cuGb,aptrioisnti.n Ge, Mueller–Hinton broth (MHB) turbidity assays observed after 24, 48, and 72 h of incubation. G, gpaurizseti.n+eC g,abuazcet.e +riCa,l bsuacspteerniasli osnusspweinthsioountsd wreitshsoinugts d.r–eCs,siMngHsB. –wCi, tMhoHuBtb wacittheoriuat. bacteria. pristine gauze. +C, bacterial suspensions without dressings. –C, MHB without bacteria. Figure7.Cont.
Description: