Applied Mathematical Sciences Andrei Osipov Vladimir Rokhlin Hong Xiao Prolate Spheroidal Wave Functions of Order Zero Mathematical Tools for Bandlimited Approximation Applied Mathematical Sciences Volume 187 FoundingEditors FritzJohn,JosephLaselleandLawrenceSirovich Editors S.S.Antman [email protected] P.J.Holmes [email protected] K.R.Sreenivasan [email protected] Advisors L.Greengard J.Keener R.V.Kohn B.Matkowsky R.Pego C.Peskin A.Singer A.Stevens A.Stuart Forfurthervolumes: http://www.springer.com/series/34 Andrei Osipov • Vladimir Rokhlin • Hong Xiao Prolate Spheroidal Wave Functions of Order Zero Mathematical Tools for Bandlimited Approximation 123 AndreiOsipov VladimirRokhlin DepartmentofMathematics DepartmentofComputerScience YaleUniversity YaleUniversity NewHaven,CT,USA NewHaven,CT,USA HongXiao DepartmentofComputerScience UniversityofCalifornia Davis, CA,USA ISSN0066-5452 ISBN978-1-4614-8258-1 ISBN978-1-4614-8259-8(eBook) DOI10.1007/978-1-4614-8259-8 SpringerNewYorkHeidelbergDordrechtLondon LibraryofCongressControlNumber:2013945079 MathematicsSubjectClassification(2010): 33E10,34L15,35S30,42C10,45C05,54P05,65D05,65D15, 65D30,65D32 ©SpringerScience+BusinessMediaNewYork2013 Thisworkissubjecttocopyright. AllrightsarereservedbythePublisher, whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation, reprinting,reuseofillustrations, recitation, broadcasting, reproduction onmicrofilms orin any other physical way, and transmission orinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodologynow knownorhereafterdeveloped. Exemptedfromthislegalreservationarebriefexcerptsinconnectionwith reviewsorscholarlyanalysisormaterialsuppliedspecificallyforthepurposeofbeingenteredandexecuted onacomputersystem,forexclusiveusebythepurchaserofthework. Duplication ofthispublication or partsthereofispermittedonlyundertheprovisionsoftheCopyrightLawofthePublisher’slocation,inits currentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Permissionsforusemaybe obtainedthroughRightsLinkattheCopyrightClearanceCenter. Violationsareliabletoprosecutionunder therespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc. inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpublication, neither theauthors northeeditors northepublisher canaccept anylegal responsibility foranyerrors or omissions that maybemade. Thepublisher makes nowarranty, express orimplied, withrespect tothe materialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Historically,specialfunctionshaveplayedacentralroleinclassicalanalysisand mathematicalphysics. Theseusuallyarisewhenthepartialdifferentialequation describingacertainphysicalphenomenonissolvedviaseparationofvariablesin the appropriategeometry. Inter alia, special functions providea tool for under- standingthequalitativebehaviorofsolutionsofthecorrespondingequations;as such, they have been a subject of extensive study. Famous examples of special functions include trigonometric and hyperbolic functions, Bessel and Hankel functions, Airy functions, Mathieu functions, various orthogonal polynomials, spherical harmonics—to mention just a few. Prolate spheroidal wave functions are yet another class of special functions. They are encountered in solving the Helmholtz equation in prolate spheroidal coordinates via separation of variables. In particular, they are the eigenfunc- tions of the differential operator defined in (1.1) below. However, they are also the eigenfunctions of the truncated Fourier transform (see (1.2) below), and as such,constituteanaturalbasisinthespaceofband-limitedfunctions(i.e.,func- tionswhoseFouriertransformiscompactlysupported). Inthiscapacity,prolate spheroidal wave functions naturally occur in signal processing, fluid dynamics, etc. In other words, they are the eigenfunctions of both a differential opera- tor and a seemingly unrelated integral operator, corresponding to two distinct classes of physical phenomena. Thisremarkablepropertyclearlydistinguishesprolatespheroidalwavefunc- tions from other classes of special functions. Despite this fact, since the ap- pearance of the justly famous sequence of papers by Slepian et al. in the 1960s, prolate spheroidal wave functions have receivedrelatively little attention (com- pared to other classes of special functions). This seems to be related to the fact that the classical (“Bouwkamp”) algorithm for their evaluation encounters numericaldifficultiesinpracticalcomputations. Moreover,anattempttodiago- nalize the integral operator (1.2) numerically via straightforwarddiscretization meets with numerical difficulties as well. More specifically, the first several eigenvalues have essentially the same magnitude, and most of the remaining ones are below machine accuracy (see Sect.2.4). Thus only a small number of eigenvectors in the narrow “transition region” can be accurately computed via such procedures. These flaws overshadow the fact that this approach is also computationally expensive. V VI PREFACE While the need for a somewhat nontrivial numerical treatment might have crippled the use of prolate spheroidal wave functions in applications and, to some degree, contributed to their slightly mysterious reputation, there is prob- ably an additional reason why they have been inadequately studied. Many of thepropertiesofprolatespheroidalwavefunctionsarebestunderstoodthrough a simultaneous analysis of both the differential operator (1.1) and the integral operator (1.2); moreover, it is the interplay between these two types of anal- ysis that leads to nontrivial numerical algorithms. While Slepian et al. took exactly that approach, much of the subsequent research tends to treat the op- erators (1.1) and (1.2) in isolation from each other. Over the last 20 years, an extensive study of prolate spheroidal wave func- tions via a combination of theoretical analysis and design of numerical algo- rithms has led to a number of developments. However, this combination has had an inevitable side effect: at some point, we realized that our papers on the subjectwerebecomingtoointerconnectedtobepublishedseparately. Whenone discovers that one’s own papers almost entirely consist of preliminaries, back- grounds, and connections to previous papers, it is time to write a book. We present the natural consequence of this observation for the reader’s judgment. This book is meant to be in the spirit of classical texts such as A Treatise on the Theory of Bessel Functions, by G.N. Watson, and The Theory of Spher- ical and Ellipsoidal Harmonics, by E.W. Hobson. Thus, we have touched only briefly on the wide-ranging applications of prolate spheroidal wave functions, and insteadconcentratedon their theoretical andcomputational aspects. Also, we have restricted ourselves to the one-dimensional case. While many of the resultsinthisbookgeneralizetothe multidimensionalcaseinastraightforward manner,theanalysisissomewhatlongandinvolved,andisasubjectofongoing research. It will be published, separately, at a later date. Acknowledgments The authors would like to thank Professor Leslie Greengard for his encourage- ment and support. Also, the authors would like to thank Professors Raphy Coifman, Peter W. Jones, Yoel Shkolnisky, Amit Singer, and Mark Tygert for numerous useful discussions. New Haven, CT Andrei Osipov New Haven, CT Vladimir Rokhlin Davis, CA Hong Xiao Contents Preface V 1 Introduction 1 2 Mathematical and Numerical Preliminaries 5 2.1 Chebyshev Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Generalized Gaussian Quadratures . . . . . . . . . . . . . . . . . 6 2.3 Convolutional Volterra Equations . . . . . . . . . . . . . . . . . . 7 2.4 Prolate Spheroidal Wave Functions . . . . . . . . . . . . . . . . . 7 2.5 The Dual Nature of PSWFs . . . . . . . . . . . . . . . . . . . . . 10 2.6 Legendre Polynomials and PSWFs . . . . . . . . . . . . . . . . . 13 2.7 Hermite Polynomials and Hermite Functions . . . . . . . . . . . 18 2.7.1 Recurrence Relations . . . . . . . . . . . . . . . . . . . . 19 2.7.2 Hermite Functions . . . . . . . . . . . . . . . . . . . . . . 20 2.8 Perturbation of Linear Operators . . . . . . . . . . . . . . . . . 21 2.9 Elliptic Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.10 Oscillation Properties of Second-Order ODEs . . . . . . . . . . . 23 2.11 Growth Properties of Second-Order ODEs . . . . . . . . . . . . . 25 2.12 Pru¨fer Transformations . . . . . . . . . . . . . . . . . . . . . . . 26 2.13 Numerical Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.13.1 Newton’s Method. . . . . . . . . . . . . . . . . . . . . . . 28 2.13.2 The Taylor Series Method for the Solution of ODEs . . . 28 2.13.3 A Second-Order Runge–Kutta Method . . . . . . . . . . . 28 2.13.4 Shifted Inverse Power Method. . . . . . . . . . . . . . . . 29 2.13.5 Sturm Bisection . . . . . . . . . . . . . . . . . . . . . . . 29 2.14 Miscellaneous Tools . . . . . . . . . . . . . . . . . . . . . . . . . 30 3 Overview 33 3.1 Relation Between c, n, and χn(c) . . . . . . . . . . . . . . . . . . 33 3.1.1 Basic Facts . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.1.2 Sharper Inequalities Involving χn . . . . . . . . . . . . . . 34 3.1.3 The Difference χm(c)−χn(c) . . . . . . . . . . . . . . . . 37 3.1.4 Approximate Formulas for χn(c) . . . . . . . . . . . . . . 40 VII VIII CONTENTS 3.2 Relation Between c, n, and λn(c) . . . . . . . . . . . . . . . . . . 41 3.2.1 Basic Facts . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2.2 Explicit Upper Bounds on |λn(c)| . . . . . . . . . . . . . . 43 3.2.3 Approximate Formulas for λn(c) . . . . . . . . . . . . . . 46 3.2.4 Additional Properties of λn(c) . . . . . . . . . . . . . . . 49 3.3 Properties of PSWFs . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.3.1 Basic Facts . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.3.2 Oscillation Properties of PSWFs . . . . . . . . . . . . . . 52 3.3.3 Growth Properties of PSWFs . . . . . . . . . . . . . . . . 56 3.3.4 Approximate Formulas for PSWFs . . . . . . . . . . . . . 58 3.3.5 PSWFs and the Fourier Transform . . . . . . . . . . . . . 62 3.3.6 PSWFs and the Band-limited Functions . . . . . . . . . . 64 3.4 PSWF-Based Quadrature Rules . . . . . . . . . . . . . . . . . . . 66 3.4.1 Generalized Gaussian Quadrature Rules . . . . . . . . . . 67 3.4.2 Quadrature Rules Based on the Euclidean Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.4.3 Quadrature Rules Based on Partial Fraction Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.4.4 Comparison of Various PSWF-Based Quadrature Rules . . . . . . . . . . . . . . . . . . . . . . 69 3.4.5 Additional Properties of PSWF-Based Quadrature Rules . . . . . . . . . . . . . . . . . . . . . . 71 4 Analysis of a Differential Operator 73 4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.2 Oscillation Properties of PSWFs . . . . . . . . . . . . . . . . . . 78 4.2.1 Special Points of ψ . . . . . . . . . . . . . . . . . . . . . 78 n 4.2.2 A Sharper Inequality for χ . . . . . . . . . . . . . . . . . 80 n 4.2.3 A Certain Transformation of a Prolate ODE . . . . . . . 95 4.2.4 Further Improvements . . . . . . . . . . . . . . . . . . . . 106 4.3 Growth Properties of PSWFs . . . . . . . . . . . . . . . . . . . . 119 4.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5 Analysis of the Integral Operator 135 5.1 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . 135 5.1.1 Summary of Analysis . . . . . . . . . . . . . . . . . . . . 135 5.1.2 Accuracy of Upper Bounds on |λn| . . . . . . . . . . . . . 137 5.2 Analytical Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 5.2.1 Legendre Expansion . . . . . . . . . . . . . . . . . . . . . 139 5.2.2 Principal Result: An Upper Bound on |λn| . . . . . . . . 151 5.2.3 Weaker but Simpler Bounds . . . . . . . . . . . . . . . . . 156 5.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . 162 5.3.1 Experiment 5.3.1 . . . . . . . . . . . . . . . . . . . . . . . 162 5.3.2 Experiment 5.3.2 . . . . . . . . . . . . . . . . . . . . . . . 164 5.3.3 Experiment 5.3.3 . . . . . . . . . . . . . . . . . . . . . . . 168 CONTENTS IX 6 Rational Approximations of PSWFs 171 6.1 Overview of the Analysis. . . . . . . . . . . . . . . . . . . . . . . 171 6.2 Oscillation Properties of PSWFs Outside (−1,1) . . . . . . . . . 174 6.3 Growth Properties of PSWFs Outside (−1,1) . . . . . . . . . . . 179 6.3.1 Transformation of a Prolate ODE into a 2×2 System . . 179 6.3.2 The Behavior of ψn in the Upper Half-Plane . . . . . . . 182 6.4 Partial Fraction Expansion of 1/ψn . . . . . . . . . . . . . . . . . 190 6.4.1 The First Few Terms of the Expansion . . . . . . . . . . . 190 6.4.2 The Tail of the Expansion . . . . . . . . . . . . . . . . . . 193 6.4.3 The Cauchy Boundary Term . . . . . . . . . . . . . . . . 201 6.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . 207 6.5.1 Illustration of Results from Sect. 6.2 . . . . . . . . . . . . 208 6.5.1.1 Experiment 6.5.1.1 . . . . . . . . . . . . . . . . . 208 6.5.1.2 Experiment 6.5.1.2 . . . . . . . . . . . . . . . . . 209 6.5.1.3 Experiment 6.5.1.3 . . . . . . . . . . . . . . . . . 210 6.5.2 Illustration of Results from Sect. 6.3 . . . . . . . . . . . . 213 6.5.2.1 Experiment 6.5.2.1 . . . . . . . . . . . . . . . . . 214 6.5.2.2 Experiment 6.5.2.2 . . . . . . . . . . . . . . . . . 214 6.5.2.3 Experiment 6.5.2.3 . . . . . . . . . . . . . . . . . 214 6.5.3 Illustration of Results from Sect. 6.4 . . . . . . . . . . . . 219 6.5.3.1 Experiment 6.5.3.1 . . . . . . . . . . . . . . . . . 219 6.5.3.2 Experiment 6.5.3.2 . . . . . . . . . . . . . . . . . 220 7 Miscellaneous Properties of PSWFs 225 7.1 The Ratio λm/λn . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 7.2 Decay of Legendre Coefficients of PSWFs . . . . . . . . . . . . . 227 7.3 Additional Properties . . . . . . . . . . . . . . . . . . . . . . . . 230 8 Asymptotic Analysis of PSWFs 243 8.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 8.2 Analytical Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 8.2.1 Inverse Power Method as an Analytical Tool . . . . . . . 244 8.2.2 Connections Between ψm(1) and λm for Large m . . . . . 246 8.3 Formulas Based on Legendre Series . . . . . . . . . . . . . . . . . 248 8.3.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 254 8.4 Formulas Based on WKB Analysis of the Prolate ODE . . . . . . . . . . . . . . . . . . . . . . . . . 254 8.5 Formulas Based on Hermite Series . . . . . . . . . . . . . . . . . 255 8.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 255 8.5.2 Expansion of PSWFs into a Hermite Series . . . . . . . . 257 8.5.3 Asymptotic Expansions for Prolate Functions . . . . . . . 260 8.5.4 Asymptotic Expansions for Eigenvalues χm . . . . . . . . 263 8.5.5 Error Estimates . . . . . . . . . . . . . . . . . . . . . . . 264 8.5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 266
Description: