ebook img

Prokaryotic metabolism and physiology PDF

506 Pages·2019·22.846 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Prokaryotic metabolism and physiology

Prokaryotic Metabolism and Physiology Determination of the genome sequences for a the National University of Malaysia. He has been wide range of bacteria and archaea has made an honouredbytheKoreanGovernment,whichdesig- in-depth knowledge of prokaryotic metabolic nated his research group a National Research functionevenmoreessential inordertogivebio- Laboratory, the Bioelectricity Laboratory, and has chemical,physiologicalandecologicalmeaningto served as President of the Korean Society for the genomic information. Clearly describing the Microbiology and Biotechnology. Professor Kim important metabolic processes that occur under wrote the classic Korean microbiology text on different conditions and in different environ- MicrobialPhysiologyandhaspublishedover200refer- ments,thisadvancedtextprovidesanoverviewof eed papers and reviews, and holds over 20 patents the key cellular processes that determine prokar- relating to applications of his research in environ- yoticrolesintheenvironment,biotechnologyand mentalandmicrobialbiotechnology. human health. Structure and composition are ProfessorGeoffreyMichaelGaddisanauthorityon describedaswellasthemeansbywhichnutrients microbial interactions with metals and minerals, are transported into cells across membranes. theirgeomicrobialsignificanceandapplicationsin Discussionofbiosynthesisandgrowthisfollowed environmental biotechnology. He holds the Boyd by detailed accounts of glucose metabolism BaxterChairofBiologyandleadstheGeomicrobio- through glycolysis, the TCA cycle, electron trans- logy Group at the University of Dundee and was port and oxidative phosphorylation, as well as founding Head of the Division of Molecular other trophic variations found in prokaryotes MicrobiologyintheSchoolofLifeSciences.Hehas including the use of organic compounds other published over 300 refereed scientific papers, than glucose, anaerobic fermentation, anaerobic books,chaptersandreviewsandhasreceivedinvi- respiration, chemolithotrophy and photosynth- tationstospeakatinternationalconferencesinover esis.Theregulationofmetabolismthroughcontrol 30countries.ProfessorGaddhasservedasPresident ofgeneexpressionandenzymeactivityisalsocov- oftheBritishMycologicalSocietyandisanelected ered, as well as the survival mechanisms used FellowoftheRoyalSocietyofBiology,theAmerican understarvationconditions. AcademyofMicrobiology,theLinneanSociety,the Learned Society of Wales, the Royal Society of ProfessorByungHongKimisanexpertonanaerobic Edinburgh and elected Member of the European metabolism, organic degradation and bioelectro- Academy of Microbiology. He has received the chemistry.HegraduatedfromKyungpookNational Berkeley Prize and President’s Award from the University, Korea and obtained a PhD from British Mycological Society, the Charles Thom University College Cardiff. He has carried out Award from the Society for Industrial research at several universities around the world, Microbiology and the Colworth Prize from the withanestablishedcareerintheKoreaInstituteof MicrobiologySocietyforhisresearchcontributions ScienceandTechnology.Currentlyheisteachingat tothemicrobiologicalsciences. Downloaded from https://www.cambridge.org/core. University of Newcastle Library, on 20 Oct 2019 at 20:19:43, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761625 Downloaded from https://www.cambridge.org/core. University of Newcastle Library, on 20 Oct 2019 at 20:19:43, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761625 Prokaryotic Metabolism and Physiology SECOND EDITION Byung Hong Kim KoreaInstituteofScienceandTechnology NationalUniversityofMalaysia Geoffrey Michael Gadd UniversityofDundee Downloaded from https://www.cambridge.org/core. University of Newcastle Library, on 20 Oct 2019 at 20:19:43, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761625 UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre, NewDelhi–110025,India 79AnsonRoad,#06–04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781107171732 DOI:10.1017/9781316761625 ©ByungHongKimandGeoffreyMichaelGadd2008,2019 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2008 3rdprinting2013 Secondedition2019 PrintedintheUnitedKingdombyTJInternationalLtd.PadstowCornwall AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. ISBN978-1-107-17173-2Hardback ISBN978-1-316-62291-9Paperback Additionalresourcesforthispublicationareatwww.cambridge.org/ProkaryoticMetabolism. CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. Downloaded from https://www.cambridge.org/core. University of Newcastle Library, on 20 Oct 2019 at 20:19:43, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761625 Contents in brief 1 Introductiontoprokaryoticmetabolismandphysiology page1 2 Compositionandstructureofprokaryoticcells 5 3 Membranetransport–nutrientuptakeandprotein excretion 31 4 Glycolysis 58 5 Tricarboxylicacid(TCA)cycle,electrontransportand oxidativephosphorylation 80 6 Biosynthesisandgrowth 115 7 Heterotrophicmetabolismonsubstratesotherthan glucose 185 8 Anaerobicfermentation 230 9 Anaerobicrespiration 268 10 Chemolithotrophy 321 11 Photosynthesis 351 12 Metabolicregulation 372 13 Energy,environmentandmicrobialsurvival 446 Downloaded from https://www.cambridge.org/core. Syracuse University Libraries, on 20 Oct 2019 at 20:21:38, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761625 Downloaded from https://www.cambridge.org/core. Syracuse University Libraries, on 20 Oct 2019 at 20:21:38, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761625 Contents Preface pagexxiii Chapter1 Introductiontoprokaryoticmetabolismand physiology 1 Furtherreading 3 Chapter2 Compositionandstructureofprokaryoticcells 5 2.1 Elementalcomposition 5 2.2 Importanceofchemicalform 6 2.2.1 Fivemajorelements 6 2.2.2 Oxygen 7 2.2.3 Growthfactors 8 2.3 Structureofmicrobialcells 8 2.3.1 Flagellaandpili 8 2.3.2 Capsulesandslimelayers 10 2.3.3 S-layer,outermembraneandcellwall 11 2.3.3.1 S-layer 11 2.3.3.2 Outermembrane 11 2.3.3.3 Cellwallandperiplasm 15 2.3.4 Cytoplasmicmembrane 19 2.3.4.1 Propertiesandfunctions 19 2.3.4.2 Membranestructure 20 2.3.4.3 Phospholipids 20 2.3.4.4 Proteins 24 2.3.5 Cytoplasm 24 2.3.6 Restingcells 27 Furtherreading 27 Chapter3 Membranetransport–nutrientuptakeand proteinexcretion 31 3.1 Ionophores:modelsofcarrierproteins 31 3.2 Diffusion 31 3.3 Activetransportandroleofelectrochemicalgradients 32 3.4 ATP-dependenttransport:theATP-bindingcassette(ABC) pathway 34 3.5 Grouptranslocation 35 3.6 Precursor/productantiport 36 3.7 Ferricion(Fe(III))uptake 37 3.8 TonB-dependentactivetransportacrosstheouter membraneinGram-negativebacteria 37 3.9 Multidrugeffluxpump 37 Downloaded from https://www.cambridge.org/core. Syracuse University Libraries, on 20 Oct 2019 at 20:23:31, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761625 x CONTENTS 3.10 Exportofcellsurfacestructuralcomponents 39 3.10.1 Proteintransport 40 3.10.1.1 Generalsecretorypathway(GSP) 40 3.10.1.2 Twin-argininetranslocation(TAT)pathway 40 3.10.1.3 ATP-bindingcassette(ABC)pathway 42 3.10.1.4 Proteintranslocationthroughthecellwallin Gram-positivebacteria 43 3.10.2 Proteintranslocationacrosstheoutermembranein Gram-negativebacteria 43 3.10.2.1 Chaperone/ushersystem 44 3.10.2.2 TypeIsecretionsystem(T1SS):ATP-bindingcassette (ABC)pathway 45 3.10.2.3 TypeIIsecretionsystem(T2SS) 45 3.10.2.4 TypeIIIsecretionsystem(T3SS) 46 3.10.2.5 TypeIVsecretionsystem(T4SS) 47 3.10.2.6 TypeVsecretionsystem(T5SS):autotransporter andproteinsrequiringsingleaccessoryfactors 48 3.10.2.7 TypeVIsecretionsystem(T6SS) 49 3.10.2.8 TypeVIIsecretionsystem(T7SS) 50 3.10.2.9 TypeVIIIsecretion(curlibiogenesis)system(T8SS) 51 3.10.3 Exportofpolysaccharides 51 3.10.4 Proteinsecretioninarchaea 53 3.11 Metallochaperones 53 Furtherreading 54 Chapter4 Glycolysis 58 4.1 EMPpathway 59 4.1.1 Phosphofructokinase(PFK):keyenzymeoftheEMPpathway 61 4.1.2 ATPsynthesisandproductionofpyruvate 61 4.1.3 ModifiedEMPpathwaysinbacteria 61 4.1.3.1 Useofatypicalcofactors 61 4.1.3.2 Methylglyoxalbypass 62 4.1.4 ModifiedEMPpathwaysinarchaea 63 4.1.5 RegulationoftheEMPpathway 64 4.1.5.1 Regulationofphosphofructokinase 64 4.1.5.2 Regulationofpyruvatekinase 65 4.1.5.3 RegulationofmodifiedEMPpathwaysinarchaea 65 4.1.5.4 Globalregulation 65 4.2 Glucose-6-phosphatesynthesis:gluconeogenesis 65 4.2.1 PEPsynthesis 65 4.2.2 Fructosediphosphatase 66 4.2.3 Gluconeogenesisinarchaea 66 4.2.4 Regulationofgluconeogenesis 67 4.3 Hexosemonophosphate(HMP)pathway 67 4.3.1 HMPpathwayinthreesteps 67 4.3.2 AdditionalfunctionsoftheHMPpathway 68 4.3.2.1 Utilizationofpentoses 69 4.3.2.2 OxidativeHMPcycle 69 Downloaded from https://www.cambridge.org/core. Syracuse University Libraries, on 20 Oct 2019 at 20:23:31, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761625 CONTENTS xi 4.3.3 RegulationoftheHMPpathway 69 4.3.4 F -dependentglucose-6-phosphatedehydrogenase 69 420 4.3.5 HMPpathwayandarchaea 70 4.4 Entner–Doudoroff(ED)pathway 70 4.4.1 GlycolyticpathwayinsomeGram-negativebacteria 70 4.4.2 KeyenzymesoftheEDpathway 71 4.4.3 ModifiedEDpathways 72 4.4.3.1 ExtracellularoxidationofglucosebyGram-negative bacteria 72 4.4.3.2 ModifiedEDpathwaysinarchaea 73 4.5 Phosphoketolasepathways 73 4.5.1 GlucosefermentationbyLeuconostocmesenteroides 73 4.5.2 Bifidumpathway 75 4.6 Glycolysisinarchaea 75 4.7 Useofradiorespirometrytodetermineglycolyticpathways 76 Furtherreading 77 Chapter5 Tricarboxylicacid(TCA)cycle,electrontransport andoxidativephosphorylation 80 5.1 Oxidativedecarboxylationofpyruvate 80 5.2 Tricarboxylicacid(TCA)cycle 81 5.2.1 CitratesynthesisandtheTCAcycle 81 5.2.2 ModifiedTCAcycle 82 5.2.3 RegulationoftheTCAcycle 83 5.3 ReplenishmentofTCAcycleintermediates 83 5.3.1 Anapleroticsequence 84 5.3.2 Glyoxylatecycle 84 5.3.2.1 Regulationoftheglyoxylatecycle 85 5.3.3 Ethylmalonyl-CoApathway 85 5.3.4 Methylaspartatecycle 86 5.4 IncompleteTCAforkandreductiveTCAcycle 86 5.4.1 IncompleteTCAfork 87 5.4.2 ReductiveTCAcycle 87 5.5 Energytransductioninprokaryotes 88 5.5.1 Freeenergy 89 5.5.1.1 ΔG00fromthefreeenergyofformation 89 5.5.1.2 ΔG00fromtheequilibriumconstant 90 5.5.1.3 ΔGfromΔG00 90 5.5.1.4 ΔG00fromΔG0 90 5.5.2 Freeenergyofanoxidation/reductionreaction 91 5.5.2.1 Oxidation/reductionpotential 91 5.5.2.2 FreeenergyfromΔE00 91 5.5.3 Freeenergyofosmoticpressure 92 5.5.4 Sumoffreeenergychangeinaseriesofreactions 93 5.6 RoleofATPinthebiologicalenergytransductionprocess 93 5.6.1 Highenergyphosphatebonds 94 5.6.2 Adenylateenergycharge 94 5.6.3 Phosphorylationpotential(ΔGp) 95 Downloaded from https://www.cambridge.org/core. Syracuse University Libraries, on 20 Oct 2019 at 20:23:31, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761625 xii CONTENTS 5.6.4 InterconversionofATPandtheprotonmotiveforce(Δp) 96 5.6.5 Substrate-levelphosphorylation(SLP) 96 5.7 Protonmotiveforce(Δp) 96 5.7.1 Protongradientandmembranepotential 96 5.7.2 Acidophilesandalkaliphiles 96 5.7.3 Protonmotiveforceinacidophiles 97 5.7.4 Protonmotiveforceandsodiummotiveforceinalkaliphiles 98 5.8 Electrontransport(oxidative)phosphorylation 98 5.8.1 Chemiosmotictheory 98 5.8.2 Electroncarriersandtheelectrontransportchain 99 5.8.2.1 Mitochondrialelectrontransportchain 99 5.8.2.2 Electroncarriers 100 5.8.2.3 Diversityofelectrontransportchainsinprokaryotes 101 5.8.2.4 Inhibitorsofelectrontransportphosphorylation(ETP) 104 5.8.2.5 Transhydrogenase 104 5.8.3 ArrangementofelectroncarriersintheH+-translocating membrane 104 5.8.3.1 Q-cycleandQ-loop 105 5.8.3.2 Protonpump 105 5.8.3.3 Sodiumpump 106 5.8.4 ATPsynthesis 107 5.8.4.1 ATPsynthase 107 5.8.4.2 H+/Oratio 107 5.8.4.3 H+/ATPstoichiometry 108 5.8.5 Uncouplers 108 5.8.6 PrimaryH+(Na+)pumpsinfermentativemetabolism 109 5.8.6.1 Fumaratereductase 109 5.8.6.2 Na+-dependentdecarboxylase 109 5.8.6.3 Δpformationthroughfermentationproduct/H+ symport 110 5.8.6.4 Energyconservationthroughelectronbifurcation 110 5.8.6.5 Energy-convertinghydrogenase 110 5.8.6.6 H+(Na+)-translocatingferredoxin:NAD+ oxidoreductase 110 5.9 Otherbiologicalenergytransductionprocesses 111 5.9.1 Bacterialbioluminescence 111 5.9.2 Electricityasanenergysource 111 Furtherreading 112 Chapter6 Biosynthesisandgrowth 115 6.1 Molecularcompositionofbacterialcells 115 6.2 Assimilationofinorganicnitrogen 115 6.2.1 Nitrogenfixation 116 6.2.1.1 N -fixingorganisms 116 2 6.2.1.2 BiochemistryofN fixation 117 2 6.2.1.3 BioenergeticsofN fixation 120 2 6.2.1.4 MolecularoxygenandN fixation 120 2 6.2.1.5 RegulationofN fixation 122 2 Downloaded from https://www.cambridge.org/core. Syracuse University Libraries, on 20 Oct 2019 at 20:23:31, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761625

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.