ebook img

Projection Methods in Constrained Optimisation and Applications to Optimal Policy Decisions PDF

329 Pages·1981·3.095 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Projection Methods in Constrained Optimisation and Applications to Optimal Policy Decisions

Lecture Notes ni lortnoC dna noitamrofnI Sciences Edited by .V.A and Balakrishnan .M Thoma 13 Berc Rustem Projection Methods ni Constrained Optimisation and Applications to Optimal Policy Decisions galreV-regnirpS Berlin Heidelberg New kroY 1891 Series Editors A.V. Balakrishnan • M. Thoma Advisory Board L D. Davisson • A. G. .J MacFarlane • H. Kwakernaak .J L Massey • Ya. Z. Tsypkin - A. .J Viterbi Author Dr. Berc Rustem Control Section Dept. of Electrical Engineering Imperial College of Science and Technology Exhibition Road London. SW? 2BT - England ISBN 3-540-10646-4 Springer-Verlag Berlin Heidelberg NewYork ISBN 0-387-10646-4 Springer-Verlag NewYork Heidelberg Berlin This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, re- printing, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use a fee is payable to 'Verwertungsgesellschaft Wort', Munich. © Springer-Verlag Berlin Heidelberg 1891 Printed in Germany Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr. 206113020-543210 TCARTSBA This work is denrecnoc with projection sdohtem in constrained optimisation dna the application of projection techniques to policy optimisation problems. ehT constrained optimisation melborp of minimising a nonlinear function of n variables subject to equality dna inequality constraints is also nwonk sa the nonlinear gnimmargorp problem. Projection sdohtem for constrained minimisation involve projections of descent directions. ehT basic idea underlying these sdohtem is the principle of projections which yam eb considered to eb the generalisation of the fact that in n-dimensional Euclidean ecaps the shortest vector from a point to a ecapsbus is orthogonal to the bus p s .eca In effect, this work consists of owt parts, ehT first part, sretpahC l - 4, is denrecnoc with the tnempoleved of projection techniques for different aspects of constrained optimisation. retpahC l provides a unified hcaorppa to the derivation of projection techniques dna reviews existing methods. ehT application of projection techniques to the computation of a feasible point of a linearly constrained region is discussed in retpahC 2 . In retpahC 3 a projection dohtem is discussed for the quadratic gnimmargorp melborp of minimising a quadratic objective function subject to inequality constraints. This dohtem requires na initial feasible point. In retpahC 4 a method is discussed for solving the nonlinear gnimmargorp problem. This dohtem requires solutions to quadratic minimisation .smelborpbus V) ehT dnoces part of the work is denrecnoc with eht application of projection techniques to lanoitatupmoc smelborp in policy optimisation. A latnemadnuf melborp in eht optimisation of policy decisions is eht specification of a suitable objective function. In retpahC 5 na iterative dohtem is given for specifying objective functions. In retpahC 6 policy optimisation algorithms, desab no extensions of projection sdohtem in retpahC l , era .dessucsid esehT algorithms quadratic minimise objective functions subject to large nonlinear sledom treated sa equality constraints. XI retpahC 3 NA MHTIROGLA ROF EVITISOP ETINIFED CITARDAUQ GNIMMARGORP 1.3 Introduction 67 3.1.1 ehT deniartsnocnU muminiM 77 3.1.2 ehT Quadratic gnimmargorP melborP 78 2.3 Projecti no srotarepO 97 97 3.2.1 Preliminaries 80 3.2.2 Projections in n E 3.3 Motivation for a Positive Definite Quadratic gnimmargorP 1A gori mht 28 3.3.1 ehT Quadratic Objective noitcnuF 28 3.3.2 Inequality Constraints dna eht deniartsnocnU mumitpO 09 4.3 ehT Algorithm 6g 3.4.1 A Positive Definite Quadratic gnimmargorP 1A gori mht 79 3.4.2 ehT isoP ti ev lleD-imeS ni te dna Indefinite sesaC 001 3.4.3 snoisnetxE to Nonlinear Constraints 101 STNEMEGDELWONKCA I would like to thank .rD Heather Liddell for her valuable guidance dna great patience. I ma also grateful to Dr. Alan Frieze for helpful discussions dna valuable stnemmoc dna to Drs. ymawsaramuK Velupillai, naeS Holly for providing the scimonoce dnuorgkcab of Chapter .5 Finally, I wish to thank Miss Claudia regrebmahcS for patiently typing the manuscript. STNETNOC egaP snoitnevnoC dna slobmyS XIII retpahC l YLRAENILNON DENIARTSNOC NOITASIMITPO SEUQINHCET DESAB SNNOOITCEJORP l.l Introduction l.l.l latnemadnuF stpecnoC dna seR u Its 3 l.l.2 Projection sdohteM for snoC trai den Mini im s ati no 7 l.l.3 sdohteM desaB no gnitupmoC sesaB for 61 l.l.4 sdohteM desaB no gnitupmoC sesaB for %I o 32 2.1 snoisnetxE of Projection smhtiroglA for solving eht Linear Equality deniartsnoC melborP 92 1.2.1 snoisnetxE for raenilnoN snoC trai stn 03 2.2.1 Active teS Strategies 83 3.1 weiveR dna Original Contributions 04 Vlll retpahC 2 NOITCEJORP SDOHTEM ROF GNITUPMOC ELBISAEF STNIOP FO YLRAENIL DENIARTSNOC SNOIGER 1.2 Introduction 34 2.l.l ehT Feasible noigeR 44 2.1.2 ehT Linear ecnednepeD of Constrai nt slamroN 84 2.1.3 A Projection Algorithm 25 2.2 Projection Algorithms, ycnadnudeR dna ycarenegeD 16 2.2.l ,ycarenegeD tnadnudeR Constraints, Infeasibil ity dna Computational snoC i derati sno 16 2.2.2 Projection Algorithms for gnitupmoC Feasible Points of a Linearly Constrained noigeR 76 2.3 Concluding skrameR 47 X 5.3 ecnarruceR snoitaleR II0 3.5.1 gnitadpU *N dna detaleR srotarepO III 3.5.2 gnitadpU l')mNH~N( 021 3.5.3 Linear ecnednepeD 321 6.3 ecnegrevnoC 521 3.7 gnidulcnoC skrameR 031 :xidneppA laciremuN stluseR 131 retpahC 4 NOITASIMITPO HTIW RAENIL DNA RAENILNON STNIARTSNOC 1.4 Introduction 531 4.1.1 Projection Algorithms for Nonlinear gnimmargorP 731 4.1.2 Approximations to the Inverse Hessian dna the noitatupmoC of deniartsnoC tnecseD Directions 441 4.2 Convergence of the Algorithm 651 4.2.1 Stepsize Strategies 651 lX 4.2.2 ecnegrevnoC : Proofs Exact dnoceS Derivatives 761 4.2.3 ecnegrevnoC : Proofs ixorppA etam dnoceS Deri vati sev 081 4.3 Concluding skrameR 812 retpahC 5 EHT EVITARETI NOITACIFICEPS FO EVITCEJBO SNOITCNUF NI CIMONOCE YCILOP :NOITASIMITPO NA NOITACILPPA FO NOITCEJORP SDOHTEM 1.5 Introduction 912 5.2 Preliminaries 022 5.3 ehT lautpecnoC Algorithm 822 5.4 lanoitatupmoC Considerations for the Implementation of the Algorithm 332 5.5 snoisulcnoC 832 :xidneppA A laciremuN elpmaxE 042 A.l ehT Structure of the Objective Functi no 342 2.A First icepseR ficati no 542

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.