Progress On Neutrino-Proton Neutral-Current Scattering In MicroBooNE 7 1 Stephen Pate∗† 0 2 (fortheMicroBooNECollaboration) PhysicsDepartment,NewMexicoStateUniversity,LasCrucesNM88003,USA n a E-mail: [email protected] J 6 1 The MicroBooNE Experiment at the Fermi National Accelerator Laboratory, an 89-ton active mass liquid argon time projection chamber, affords a unique opportunity to observe low-Q2 ] x neutral-current neutrino-proton scattering events. Neutral-current neutrino-proton scattering at e - Q2<1GeV2 isdominatedbytheproton’saxialformfactor,whichcanbewrittenasacombina- l c tionofcontributionsfromtheup,down,andstrangequarks: G (Q2)= 1[−Gu(Q2)+Gd(Q2)+ u A 2 A A Gs(Q2)]. Thecontributionfromupanddownquarkshasbeenestablishedinpastcharged-current n A [ measurements. The contribution from strange quarks at low Q2 remains unmeasured; this is of 1 greatinterestsincethestrangequarkcontributiontotheprotonspincanbedeterminedfromthe v low-Q2 behavior: ∆S =Gs(Q2 =0). MicroBooNE began operating in the Booster Neutrino 3 A 8 BeaminOctober2015. IwillpresentthestatusinobservingisolatedprotontracksintheMicro- 4 BooNEdetectorasasignatureforneutral-currentneutrino-protonevents. Thesensitivityofthe 4 0 MicroBooNEexperimentformeasuringthestrangequarkcontributiontotheprotonspinwillbe . 1 discussed. 0 7 1 : v i X r a The26thInternationalNuclearPhysicsConference 11-16September,2016 Adelaide,Australia ∗Speaker. †ThisresearchsupportedbytheUSDepartmentofEnergy,OfficeofScience,MediumEnergyNuclearPhysics. (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ ProgressOnNeutrino-ProtonNeutral-CurrentScatteringInMicroBooNE StephenPate 1. Motivation Thecrosssectionforneutrino-protonneutral-currentscattering[12],νp→νp,isdetermined by the standard model behavior of neutrinos and the structure of the proton as expressed in the electric,magnetic,andaxialformfactorsoftheproton;Gp(Q2),Gp(Q2),andGp(Q2)respectively. E M A Theelectricandmagneticformfactorsarewell-determinedformomentumtransfersQ2<1GeV2 fromelectron-nucleonelasticscatteringdata[4]. Thecontributiontotheaxialformfactorfromup and down quarks is also well-determined for Q2 <1 GeV2 by neutrino-deuteron charged-current reaction data [7], and at Q2 = 0 GeV2 from neutron decay [8]. The dominant unknown is the strangequarkcontributiontotheaxialformfactor: Gs(Q2). Ameasurementofthisformfactorat A low Q2 can determine the total strange quark contribution to the proton spin, ∆S≡∆s+∆s¯, from anextrapolationtoQ2=0: ∆S=Gs(Q2=0)[21]. A Thephysicsinterestinthestrangequarkcontributiontothenucleonspinislong-standingand widespread. In addition to being a missing piece of the proton spin puzzle, it is also vital for theinterpretationofsearchesforheavydark-matterparticles[10]. Three-dimensionalsimulations of supernovae [17] are sensitive to the value of ∆S, as are atomic parity-violation experiments on hydrogen [13]. Recent lattice QCD calculations [11, 5] give small values (less than 0.003 in magnitude)for∆S;thisrequiresexperimentalverification. Thefirstexperimentaldataon∆Scamefrommeasurementsoftheinclusivedeep-inelasticscat- tering(DIS)ofpolarizedmuonsfrompolarizedhydrogen,intheEMCexperimentinthe1980s[3], and indicated a negative value for ∆S. This has been confirmed in all subsequent inclusive mea- surements at SMC, SLAC, HERMES, COMPASS, and JLab. The analysis of polarized inclusive DIS data always assumes SU(3) flavor symmetry, combining the extrapolated integral of the DIS measurementswiththetripletandoctetaxialchargesdeterminedfromhyperonβ-decay. Later,itbecamepossibletoobservesemi-inclusivedeep-inelasticscattering,wheretheleading hadron(apionorkaon)servedto“tag”thestruckquark. ThesemeasurementsbySMC,HERMES, and COMPASS [3] have consistently implied that ∆S is consistent with zero, in contradiction to the inclusive measurements. The analysis of these data differs strongly from that of the inclusive data, not using SU(3) flavor symmetry but instead relying on an understanding of quark→hadron fragmentationfunctions. Thisdichotomybetweentheresultsoftheinclusiveandsemi-inclusivemeasurementscontin- uestothepresentday. Globalanalyses[9,18,16,14,6]ofleptonicDISandpolarized ppcollision datashowthisdiscrepancyinthedeterminationof∆S. Analternativemethodtodetermine∆Sisavailablefromameasurementoftheaxialformfactor of the proton in elastic neutrino-proton scattering. Cross sections for elastic νp scattering (from withincarbonnuclei)existfromtheBNL-E734experiment[2]andMiniBooNE[1],butneitherof thesemeasurementsextendsbelowQ2 =0.45GeV2 andthereforecannotbereliablyextrapolated to Q2 =0 for a precise determination of ∆S. An analysis of currently available data was explored indetailin[22]and[19]. Ameasurementofneutrino-protonelasticscatteringatlowQ2 willmake possibleamoreprecisedeterminationof∆S. Such a measurement is a difficult pursuit. The observable part of the final state in elastic νp→νp is a single isolated proton track. For Q2 ≈0.1 GeV2, the kinetic energy of the proton willbeapproximately50MeV.Inaliquidorsoliddetector,suchaprotonmighttravelonlyafew 2 ProgressOnNeutrino-ProtonNeutral-CurrentScatteringInMicroBooNE StephenPate centimeters. The development of large-scale liquid argon time projection chambers, however, has madetheefficientdetectionofsuchevents,withgoodstatistics,arealisticpossibility. Another difficulty arises from the use of a nuclear target, in our case the argon-40 nucleus. In particular, the proton in the final state may re-scatter with other nucleons before escaping the nucleus. Tomitigatethisandothereffects,wehavechosenasourobservabletheneutral-currentto charged-currentyieldratio(seeSection3), N(νp→νp) R = . NC/CC N(νn→µp) Wewillneedinputfromnucleartheorytoestablishthereliabilityofthis(oranyother)approachto theeffectsthenucleuswillhaveontheneutral-currentandcharged-currentyields. 2. TheMicroBooNEExperiment MicroBooNE[15]isanaccelerator-basedneutrinoexperimentatFermiNationalAccelerator Laboratory,centeredaroundaliquidargontimeprojectionchamber(LArTPC)withanactivemass of 89 tons of liquid argon in a field cage of dimensions (10 m)×(2.3 m)×(2.6 m). The TPC was placed into the experimental hall in the summer of 2014, installed and commissioned, observed first cosmic rays in the summer of 2015, and began to take data with the Booster Neutrino Beam (BNB)onOctober15,2015. Sincethattime,in-beamdatahasbeentakenusing3.4×1020protons- on-target. AnalysisoftheTPCwiredataproducesimagesofchargevs. timeintheTPCvolume,reveal- ingtracksfromcharged-particlesthattransitedtheactivevolume. Withthreewireplanes,thereare three images of each event, making possible a three-dimensional reconstruction of the ionization tracks. In addition to the charged-track images, a light collection system (composed of 32 8-inch photomultipliertubes)recordsflashesoflightfromthescintillationoftheliquidargon. Therewill bemillionsoftheseimagesandassociatedlightflashesrecordedoverthecourseoftheexperiment, sotraditional“visualscanning”ofsuchdataisoutofthequestion. Automatedsoftwaremustsort throughtheevents;forlarge-scaleLArTPCdatathiswillbethefirsttimesuchautomatedsorting hasbeenattempted. For finding the isolated proton tracks of interest here, Katherine Woodruff of NMSU has led an effort to utilize a “boosted decision tree” technique. A boosted decision tree is a series of if/then/elsequestionsthatistunedusing“trainingdata.” Inourcase,thequestionswillbedirected at a variety of track features; geometry (track length and orientation), calorimetry (total charge, total light), and matching between the track location and flash location. The result of the tree, for eachtrack,istheassignmentofprobabilitiesthatthetrackisamemberoffivedifferentclasses: a proton,amuon,apion,anelectromagneticshower,oracosmic-generatedtrack. Using a full simulation of the detector, including all detector effects (true geometry, realistic noise,missingwires,etc.),wecantrainthetreetooptimizethetrackclassification. Then,usinga secondsetofsimulatedevents,wedeterminetheefficiencyofthetreeforeachclass. Thenweare abletousetheboosteddecisiontreeonrealin-beamdata. Figure1showsacandidateforanisolatedprotontrackthatwasselectedbyaboosteddecision tree. The proton probability assigned to this track was 87%. This view of the track is from just 3 ProgressOnNeutrino-ProtonNeutral-CurrentScatteringInMicroBooNE StephenPate Figure 1: A proton candidate track in MicroBooNE data selected by a trained boosted decision tree. The wirespacingis3mm. Thepixelcolorisproportionaltoionizationchargedensity. onewireplane. Usingallthreeplanes,thereconstructedthree-dimensionaltracklengthis5.9cm, corresponding to a proton kinetic energy of approximately 82 MeV. If this were in fact a neutral- currentscatteringevent,themomentumtransferwouldbeQ2≈0.15GeV2. 3. PotentialImpact What will be the impact on our knowledge of ∆S due to the new neutral-current elastic scat- teringdatafromMicroBooNE?Thisquestionhasbeenstudiedinsomedetailandreportedalready in [20]; a review of that work is given here. The central feature of this study is a global fit of elasticelectron-nucleonandneutrino-electronscatteringdatatoextractthestrangequarkcontribu- tion to the electric, magnetic and axial form factors of the proton; Gs(Q2), Gs (Q2), and Gs(Q2) E M A respectively. Asimplefunctionalmodelisusedforthosethreeformfactorsinthisglobalfit: ∆S+S Q2 Gs =ρ τ Gs =µ Gs = A E s M s A (1+Q2/Λ2)2 A where ρ is the strangeness radius, τ =Q2/4M2, µ is the strangeness contribution to the proton s N s magnetic moment, and S and Λ are shape parameters that were needed to obtain a good fit A A to the existing data. The result (see Table 1) is that Gs(Q2) and Gs (Q2) are well constrained E M throughouttherange0<Q2<1.0GeV2byexistingdata(andareconsistentwithzero),butGs(Q2) A isunconstrainedatlowQ2 duetothelackofneutrino-protonelasticdatabelowQ2=0.45GeV2. 4 ProgressOnNeutrino-ProtonNeutral-CurrentScatteringInMicroBooNE StephenPate Table1: Preliminaryresultsforour5-parameterfittothe49elasticneutrino-andparity-violatingelectron- scatteringdatapointsfromBNLE734,HAPPEx,SAMPLE,G0,andPVA4.Thefirstuncertaintyarisesfrom theexperimentaldatauncertainties;theseconduncertaintyarisesfromuncertaintiesinradiativecorrections. Note: thesevaluesdifferfromreference[20]duetotheinclusionofnewdatafromPVA4onscatteringfrom deuterium. Parameter Fitvalue ρ −0.10±0.09±0.03 s µ 0.056±0.029±0.022 s ∆S −0.29±0.42±0.19 Λ 1.1±1.0±1.1 A S 0.4±0.5±0.2 A Taking that fit as a starting point, a simulation1 was performed to generate a set of neutral current (NC) νp→νp and charged-current (CC) νn→ µp events corresponding to a sample of MicroBooNE data using 2×1020 protons-on-target, that is about 1/3 of the data sample that Mi- croBooNE plans to collect in our initial run. These simulated events were used to estimate the statisticaluncertaintyintheNC/CCyieldratio, N(νp→νp) R = . NC/CC N(νn→µp) Thisratioischosenasourexperimentalobservablenotonlybecausemanyexperimentaluncertain- tiesapproximatelycancelinthisratio(e.g. protondetectionefficiencies,targetmass,neutrinoflux), butalsobecausesometheoreticaluncertainties(e.g. nuclearfinalstateeffectsontheprotonyield) maycancelaswell. Thissampledoesnotrepresentthefullstatisticsweexpectintheexperiment, butontheotherhanditdoesnotincludetheeffectofreconstructionefficienciesandbackgrounds fromneutronsandcosmicrays. Ourintentionhereistoqualitativelyshowthepotentialimpactof newdatainthelow-Q2 region. The simulatedresults forR are thentreated as actual dataand the global fitis repeated. NC/CC ThechangeintheuncertaintiesofthefitparametersareshowninTable2. Thefittedmeanvalues fortheformfactorsdonotshiftbecausetheywerethebasisoftheMicroBooNEeventsimulation, so these are not shown in the table; however the uncertainties in those form factors are reduced. Theuncertaintiesintheelectricandmagneticformfactorsareimproved,butnotverysignificantly. However, the uncertainty in the parameters for the axial form factor (∆S, S , and Λ ) are greatly A A reduced, by approximately a factor of 10. This illustrates the very significant impact that Micro- BooNE data on neutral current elastic scattering can potentially have on our knowledge of the strangenesscontributiontotheaxialformfactorandtotheprotonspin. 4. Summary TheMicroBooNEExperimenthastakendataforoneyearwiththeBoosterNeutrinoBeamat Fermilab, the start of a multi-year data program. We expect to have a dataset on elastic neutrino- proton interactions in argon that will allow us to determine the strangeness contribution to the 1ThankstoB.Fleming,J.Spitz,andV.Papavassiliouforprovidingthissimulation. 5 ProgressOnNeutrino-ProtonNeutral-CurrentScatteringInMicroBooNE StephenPate Table 2: Improvement in uncertainties in global fit parameters, when simulated MicroBooNE data are includedinthefit. Parameter UsingExistingData IncludingMicroBooNE ρ ±0.09±0.03 ±0.08±0.02 s µ ±0.029±0.022 ±0.023±0.017 s ∆S ±0.42±0.19 ±0.036±0.003 Λ ±1.0±1.1 ±0.42±0.03 A S ±0.5±0.2 ±0.05±0.02 A proton axial form factor and thus provide a value for the strangeness contribution to the proton spin. Thiswillbethefirstsuchmeasurementinaliquidargonneutrinodetector. References [1] A.AGUILAR-AREVALOETAL.,MeasurementoftheNeutrinoNeutral-CurrentElasticDifferential CrossSectiononMineralOilatE ∼1GeV,Phys.Rev.,D82(2010),p.092005. ν [2] L.A.AHRENSETAL.,Measurementofneutrino-protonandantineutrino-protonelasticscattering, Phys.Rev.,D35(1987),p.785. [3] C.A.AIDALA,S.D.BASS,D.HASCH,ANDG.K.MALLOT,TheSpinStructureoftheNucleon, Rev.Mod.Phys.,85(2013),pp.655–691. [4] J.ARRINGTON,W.MELNITCHOUK,ANDJ.A.TJON,Globalanalysisofprotonelasticformfactor datawithtwo-photonexchangecorrections,Phys.Rev.C,76(2007),p.035205. [5] R.BABICH,R.C.BROWER,M.A.CLARK,G.T.FLEMING,J.C.OSBORN,C.REBBI,AND D.SCHAICH,Exploringstrangenucleonformfactorsonthelattice,Phys.Rev.D,85(2012), p.054510. [6] J.BLÜMLEINANDH.BÖTTCHER,QCDanalysisofpolarizeddeepinelasticscatteringdata, NuclearPhysicsB,841(2010),pp.205–230. [7] A.BODEK,S.AVVAKUMOV,R.BRADFORD,ANDH.S.BUDD,VectorandAxialNucleonForm Factors:ADualityConstrainedParameterization,Eur.Phys.J.,C53(2008),pp.349–354. [8] N.CABIBBO,E.C.SWALLOW,ANDR.WINSTON,Semileptonichyperondecays,Ann.Rev.Nucl. Part.Sci.,53(2003),pp.39–75. [9] D.DEFLORIAN,R.SASSOT,M.STRATMANN,ANDW.VOGELSANG,Extractionofspin-dependent partondensitiesandtheiruncertainties,Phys.Rev.D,80(2009),p.034030. [10] J.R.ELLIS,K.A.OLIVE,ANDC.SAVAGE,HadronicUncertaintiesintheElasticScatteringof SupersymmetricDarkMatter,Phys.Rev.,D77(2008),p.065026. [11] M.ENGELHARDT,StrangequarkcontributionstonucleonmassandspinfromlatticeQCD,Phys. Rev.D,86(2012),p.114510. [12] G.T.GARVEY,W.C.LOUIS,ANDD.H.WHITE,Determinationofprotonstrangeformfactors fromν pelasticscattering,Phys.Rev.,C48(1993),pp.761–765. [13] T.GASENZER,O.NACHTMANN,ANDM.-I.TRAPPE,Metastablestatesofhydrogen: their geometricphasesandfluxdensities,Eur.Phys.J.,D66(2012),p.113. 6 ProgressOnNeutrino-ProtonNeutral-CurrentScatteringInMicroBooNE StephenPate [14] M.HIRAIANDS.KUMANO,Determinationofgluonpolarizationfromdeepinelasticscatteringand colliderdata,NuclearPhysicsB,813(2009),pp.106–122. [15] G.KARAGIORGI,MicroBooNEandtheRoadtoLargeLiquidArgonNeutrinoDetectors,Phys. Procedia,37(2012),pp.1319–1323. [16] E.LEADER,A.V.SIDOROV,ANDD.B.STAMENOV,Newanalysisconcerningthestrangequark polarizationpuzzle,Phys.Rev.,D91(2015),p.054017. [17] T.MELSON,H.-T.JANKA,R.BOLLIG,F.HANKE,A.MAREK,ANDB.MÃIJLLER, Neutrino-drivenExplosionofa20Solar-massStarinThreeDimensionsEnabledbyStrange-quark ContributionstoNeutrino-nucleonScattering,Astrophys.J.,808(2015),p.L42. [18] E.R.NOCERA,R.D.BALL,S.FORTE,G.RIDOLFI,ANDJ.ROJO,Afirstunbiasedglobal determinationofpolarizedPDFsandtheiruncertainties,Nucl.Phys.,B887(2014),pp.276–308. [19] S.PATE,J.SCHAUB,ANDD.TRUJILLO,StrangeQuarkContributiontotheNucleonSpinfrom ElectroweakElasticScatteringData,AIPConf.Proc.,1560(2013),pp.503–505. [20] S.PATEANDD.TRUJILLO,StrangenessVectorandAxial-VectorFormFactorsoftheNucleon,EPJ WebConf.,66(2014),p.06018. [21] S.F.PATE,Determinationofthestrangeformfactorsofthenucleonfromνp,ν¯p,and parity-violating(cid:126)epelasticscattering,Phys.Rev.Lett.,92(2004),p.082002. [22] S.F.PATE,D.W.MCKEE,ANDV.PAPAVASSILIOU,StrangeQuarkContributiontotheVectorand AxialFormFactorsoftheNucleon: CombinedAnalysisofG0,HAPPEx,andBrookhavenE734Data, Phys.Rev.,C78(2008),p.015207. 7