ebook img

Progress on Carolons PDF

0.45 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Progress on Carolons

9 0 0 Progress on Calorons 2 n a J 9 1 ] h p Pierre van Baal∗ - Instituut-LorentzforTheoreticalPhysics p e UniversityofLeiden,P.O.Box9506 h NL-2300RALeiden,TheNetherlands [ E-mail: [email protected] 1 v 3 Theprogressoncalorons(finitetemperatureinstantons)issketched. Inparticularthereissome 5 interestforconfiningtemperatures,wheretheholonomyisnon-trivial. 8 2 . 1 0 9 0 : v i X r a 8thConferenceQuarkConfinementandtheHadronSpectrum September1-62008 Mainz,Germany ∗Speaker. (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ ProgressonCalorons PierrevanBaal 1. Introduction There has been a revised interest in studying instantons at finite temperature T, so-called calorons[1,2],becausenewexplicitsolutionscouldbeobtainedwherethePolyakovloopatspatial infinity(theso-calledholonomy)isnon-trivial. Theyrevealmoreclearlythemonopoleconstituent nature of these calorons [3]. Non-trivial holonomy is therefore expected to play arole inthe con- fined phase (i.e. for T <T ) where the trace of the Polyakov loop fluctuates around small values. c Theproperties ofinstantons aretherefore directly coupledtotheorderparameterforthedeconfin- ingphasetransition. At finite temperature A plays in some sense the role of a Higgs field in the adjoint rep- 0 resentation, which explains why magnetic monopoles occur as constituents of calorons. Since A is not necessarily static it is better to consider the Polyakov loop as the analog of the Higgs 0 b field, P(t,~x)=Pexp A (t+s,~x)ds , which transforms under a periodic gauge transformation 0 0 g(x) to g(x)P(x)g−1(cid:16)(xR), like an adjoin(cid:17)t Higgs field. Here b = 1/kT is the period in the imag- inary time direction, under which the gauge field is assumed to be periodic. Finite action re- quires the Polyakov loop at spatial infinity to be constant. For SU(n) gauge theory this gives P¥ =lim|~x|→¥ P(0,~x)=g†exp(2p idiag(m 1,m 2,...,m n))g,wheregbringsP¥ toitsdiagonalform, withneigenvaluesbeingorderedaccordingto(cid:229) n m =0andm ≤m ≤...≤m ≤m ≡1+m . i=1 i 1 2 n n+1 1 Inthealgebraicgauge,whereA (x)istransformedtozeroatspatialinfinity,thegaugefieldssatisfy 0 theboundary condition Am (t+b ,~x)=P¥ Am (t,~x)P¥−1. Caloron solutions are such that the total magnetic charge vanishes. A single caloron with topological charge one contains n−1 monopoles with a unit magnetic charge in the i-th U(1) subgroup, which are compensated by the n-th monopole of so-called type (1,1,...,1), having a magneticchargeineachofthesesubgroups[4]. Attopologicalchargekthereareknconstituents, k monopolesofeachofthentypes. Monopolesoftype jhaveamass8p 2n /b ,withn ≡m −m . j j j+1 j Thesumrule(cid:229) n n =1guarantees thecorrectaction,8p 2k. j=1 j Priortotheir explicit construction, calorons withnon-trivial holonomy wereconsidered irrel- evant [2], because the one-loop correction gives rise to an infinite action barrier. However, the infinity simply arises due to the integration over the finite energy density induced by the pertur- bative fluctuations in the background of a non-trivial Polyakov loop [5]. The calculation of the non-perturbative contribution wasperformed in[6]. Whenadded tothisperturbative contribution, withminimaatcenterelements,theseminimaturnunstablefordecreasingtemperaturerightaround theexpected valueofT . Thislendssomesupport tomonopole constituents being therelevant de- c grees of freedom which drive the transition from a phase in which the center symmetry is broken at high temperatures to one in which the center symmetry is restored atlow temperatures. Lattice studies, bothusingcooling [7]andchiral fermionzero-modes [8]asfilters, havealsoconclusively confirmedthatmonopoleconstituents dodynamically occurintheconfinedphase. 2. SomeProperties ofCaloronSolutions Usingtheclassicalscaleinvariancewecanalwaysarrangeb =1,aswillbeassumedthrough- out. Aremarkably simpleformulafortheSU(n)actiondensity exists[4], TrFab2 (x)=¶ a2¶ b2logy (x), y (x)= 21tr(An···A1)−cos(2p t), 2 ProgressonCalorons PierrevanBaal 1 r |~r | cosh(2pn r )sinh(2pn r ) A ≡ m m+1 m m m m , m r 0 r sinh(2pn r )cosh(2pn r ) m m+1! m m m m ! with r ≡|~x−~y | and~r ≡~y −~y , where~y is the location of the mth constituent monopole m m m m m−1 m withamass8p 2n . Notethattheindexmshouldbeconsideredmodn,suchthate.g. r =r and m n+1 1 ~y =~y (thereisoneexception, m =1+m ). Itissufficientthatonlyoneconstituent location n+1 1 n+1 1 isfarseparatedfromtheothers,toshowthatonecanneglectthecos(2p t)terminy (x),givingrise toastaticactiondensityinthislimit[4]. Figure1: ShownarethreechargeoneSU(2)caloronprofilesatt =0withb =1andr =1. Fromleftto right for m =−m =0 (n =0,n =1), m =−m =0.125 (n =1/4,n =3/4) and m =−m =0.25 2 1 1 2 2 1 1 2 2 1 (n =n =1/2)onequallogarithmicscales,cutoffbelowanactiondensityof1/(2e). 1 2 In Fig. 1 we show how for SU(2) there are two lumps, except that the second lump is absent for trivial holonomy. Fig. 2 demonstrates for SU(2) and SU(3) that there are indeed n lumps (for SU(n)) which can be put anywhere. These lumps are constituent monopoles, where one of them hasawindinginthetemporaldirection (whichcannot beseenfromtheactiondensity). Figure 2: On the left are shown two charge one SU(2) caloron profiles at t = 0 with b = 1 and m =−m =0.125, for r =1.6 (bottom) and 0.8 (top) on equal logarithmic scales, cutoff below an ac- 2 1 tion density of 1/(2e2). On the right are shown two charge one SU(3) caloron profiles at t = 0 and (n ,n ,n )=(1/4,7/20,2/5),implementedby(m ,m ,m )=(−17/60,−1/30,19/60). Thebottomcon- 1 2 3 1 2 3 figurationhasthelocationofthelumpsscaledby8/3.Theyarecutoffat1/(2e). 2.1 FermionZero-Modes An essential property of calorons is that the chiral fermion zero-modes are localized to con- stituents of a certain charge only. The latter depends on the choice of boundary condition for the fermions inthe imaginary time direction (allowing for an arbitrary U(1)phase exp(2p iz)) [9]. This provides an important signature for the dynamical lattice studies, using chiral fermion zero- modes as a filter [8]. To be precise, the zero-modes are localized to the monopoles of type 3 ProgressonCalorons PierrevanBaal m provided m < z < m . Denoting the zero-modes by Yˆ (x), we can write Yˆ†(x)Yˆ (x) = m m+1 z z z −(2p )−2¶ m2fˆx(z,z),where fˆx(z,z′)isaGreen’sfunctionwhichforz∈[m m,m m+1]satisfies fˆz(z,z)= p <v (z)|A ···A A ···A |w (z)> /(r y ), where the spinors v and w are defined by m m−1 1 n m m m m m v1(z)=−w2(z)=sinh(2p (z−m )r ),andv2(z)=w1(z)=cosh(2p (z−m )r ). m m m m m m m m To obtain the finite temperature fermion zero-mode one puts z= 1, whereas for the fermion 2 zero-mode with periodic boundary conditions one takes z=0. From this it is easily seen that in caseofwellseparated constituents thezero-mode islocalized onlyat~y forwhichz∈[m ,m ]. m m m+1 To be specific, in this limit fˆ(z,z)=p tanh(p r n )/r for SU(2), and more generally fˆ(z,z)= x m m m x 2p sinh[2p (z−m )r ]sinh[2p (m −z)r ]/(r sinh[2pn r ])−1. We illustrate in Fig. 3 the lo- m m m+1 m m m m calization ofthefermionzero-modes forthecaseofSU(3). Figure3: FortheSU(3)configurationinthelowerrightcornerofFig.2wehavedeterminedontheleftthe zero-modedensityforfermionswithanti-periodicboundaryconditionsintimeandontherightforperiodic boundaryconditions.Theyareplottedatequallogarithmicscales,cutoffbelow1/e5. 2.2 CaloronsofHigherCharge We have been able to use a “mix” of the ADHM and Nahm formalism [10], both in making powerfulapproximations,likeinthefarfieldlimit(basedonourabilitytoidentifytheexponentially risingandfallingterms),andforfindingexactsolutionsthroughsolvingthehomogeneousGreen’s function [11]. We found axially symmetric solutions for arbitrary k, as well as for k=2 two sets Figure 4: In the middle is shown the action densityin the plane of the constituentsatt =0 for an SU(2) charge2caloronwithtrP¥ =0,whereallconstituentsstronglyoverlap. Onascaleenhancedbyafactor 10p 2 are shown the densities for the two zero-modes, using either periodic (left) or anti-periodic (right) boundaryconditionsinthetimedirection. 4 ProgressonCalorons PierrevanBaal ofnon-trivial solutions forthematching conditions thatinterpolate betweenoverlapping andwell- separated constituents. Forthis task wecould makeuse ofan existing analytic result for charge-2 monopoles [12],adapting ittothecaseofcarolons. AnexampleisshowninFig.4. There has also been some progress on constructing the hyperKähler metric which approxi- mates the metric for an arbitrary number of calorons. They claim that this already gives confine- ment[13]. Fortheimplications ofcaloronconstituents nearthephasetransition see[14]. Acknowledgments AgainImanagedtowriteproceedings, butIneededsomewhatmoretime,andIamgratefulto Matthias Neubert to allow for that and organizing a wonderful conference. Also, there are simply toomanynames,butIthankeverybody whoworkedwithme. References [1] B.J.HarringtonandH.K.Shepard,Phys.Rev.D17(1978)2122;Phys.Rev.D18(1978)2990. [2] D.J.Gross,R.D.PisarskiandL.G.Yaffe,Rev.Mod.Phys.53(1981)43. [3] T.C.KraanandP.vanBaal,Phys.Lett.B428(1998)268[hep-th/9802049];Nucl.Phys.B533(1998) 627[hep-th/9805168];K.Lee,Phys.LettB426(1998)323[hep-th/9802012];K.LeeandC.Lu, Phys.Rev.D58(1998)025011[hep-th/9802108]. [4] T.C.KraanandP.vanBaal,Phys.Lett.B435(1998)389[hep-th/9806034]. [5] N.Weiss,Phys.Rev.D24(1981)475. [6] D.Diakonov,N.Gromov,V.PetrovandS.Slizovskiy,Phys.Rev.D70(2004)036003 [hep-th/0404042];D.DiakonovandN.Gromov,Phys.Rev.D72(2005)025003[hep-th/0502132]. [7] E.-M.Ilgenfritz,B.V.Martemyanov,M.Müller-Preussker,S.ShcheredinandA.I.Veselov,Phys.Rev. D66(2002)074503[hep-lat/0206004];F.Bruckmann,E.-M.Ilgenfritz,B.V.MartemyanovandP.van Baal,Phys.Rev.D70(2004)105013[hep-lat/0408004];P.Gerhold,E.-M.IlgenfritzandM. Müller-Preussker,Nucl.Phys.B760(2007)1[hep-ph/0607315]. [8] C.GattringerandS.Schaefer,Nucl.Phys.B654(2003)30[hep-lat/0212029];C.GattringerandR. Pullirsch,Phys.Rev.D69(2004)094510[hep-lat/0402008]. [9] M.GarcíaPérez,A.González-Arroyo,C.PenaandP.vanBaal,Phys.Rev.D60(1999)031901 [hep-th/9905016];M.N.Chernodub,T.C.KraanandP.vanBaal,Nucl.Phys.B(Proc.Suppl.)83-84 (2000)556. [10] M.F.Atiyah,N.J.Hitchin,V.DrinfeldandYu.I.Manin,Phys.Lett.65A(1978)185;W.Nahm, “Self-dualmonopolesandcalorons,”in:LectureNotesinPhysics,201(1984)189. [11] F.BruckmannandP.vanBaal,Nucl.Phys.B645(2002)105[hep-th/0209010];F.Bruckmann,D. NógrádiandP.vanBaal,Nucl.Phys.B666(2003)197[hep-th/0305063];Nucl.Phys.B698(2004) 233[hep-th/0404210]. [12] H.Panagopoulos,Phys.Rev.D28(1983)380. [13] D.DiakonovandV.Petrov,Phys.Rev.D76(2007)056001[arXiv:0704.3181[hep-th]]; D.Diakonov,ActaPhys.Polon.B39(2008)3365[arXiv:0807.0902[hep-th]];D.DiakonovandV. Petrov,“Statisticalphysicsofdyonsandquarkconfinement,”arXiv:0809.2063[hep-th]. [14] F.Bruckmann,“Howinstantonscouldsurvivethephasetransition,”arXiv:0901.0987[hep-ph]. 5

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.