9 0 0 Progress on Calorons 2 n a J 9 1 ] h p Pierre van Baal∗ - Instituut-LorentzforTheoreticalPhysics p e UniversityofLeiden,P.O.Box9506 h NL-2300RALeiden,TheNetherlands [ E-mail: [email protected] 1 v 3 Theprogressoncalorons(finitetemperatureinstantons)issketched. Inparticularthereissome 5 interestforconfiningtemperatures,wheretheholonomyisnon-trivial. 8 2 . 1 0 9 0 : v i X r a 8thConferenceQuarkConfinementandtheHadronSpectrum September1-62008 Mainz,Germany ∗Speaker. (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ ProgressonCalorons PierrevanBaal 1. Introduction There has been a revised interest in studying instantons at finite temperature T, so-called calorons[1,2],becausenewexplicitsolutionscouldbeobtainedwherethePolyakovloopatspatial infinity(theso-calledholonomy)isnon-trivial. Theyrevealmoreclearlythemonopoleconstituent nature of these calorons [3]. Non-trivial holonomy is therefore expected to play arole inthe con- fined phase (i.e. for T <T ) where the trace of the Polyakov loop fluctuates around small values. c Theproperties ofinstantons aretherefore directly coupledtotheorderparameterforthedeconfin- ingphasetransition. At finite temperature A plays in some sense the role of a Higgs field in the adjoint rep- 0 resentation, which explains why magnetic monopoles occur as constituents of calorons. Since A is not necessarily static it is better to consider the Polyakov loop as the analog of the Higgs 0 b field, P(t,~x)=Pexp A (t+s,~x)ds , which transforms under a periodic gauge transformation 0 0 g(x) to g(x)P(x)g−1(cid:16)(xR), like an adjoin(cid:17)t Higgs field. Here b = 1/kT is the period in the imag- inary time direction, under which the gauge field is assumed to be periodic. Finite action re- quires the Polyakov loop at spatial infinity to be constant. For SU(n) gauge theory this gives P¥ =lim|~x|→¥ P(0,~x)=g†exp(2p idiag(m 1,m 2,...,m n))g,wheregbringsP¥ toitsdiagonalform, withneigenvaluesbeingorderedaccordingto(cid:229) n m =0andm ≤m ≤...≤m ≤m ≡1+m . i=1 i 1 2 n n+1 1 Inthealgebraicgauge,whereA (x)istransformedtozeroatspatialinfinity,thegaugefieldssatisfy 0 theboundary condition Am (t+b ,~x)=P¥ Am (t,~x)P¥−1. Caloron solutions are such that the total magnetic charge vanishes. A single caloron with topological charge one contains n−1 monopoles with a unit magnetic charge in the i-th U(1) subgroup, which are compensated by the n-th monopole of so-called type (1,1,...,1), having a magneticchargeineachofthesesubgroups[4]. Attopologicalchargekthereareknconstituents, k monopolesofeachofthentypes. Monopolesoftype jhaveamass8p 2n /b ,withn ≡m −m . j j j+1 j Thesumrule(cid:229) n n =1guarantees thecorrectaction,8p 2k. j=1 j Priortotheir explicit construction, calorons withnon-trivial holonomy wereconsidered irrel- evant [2], because the one-loop correction gives rise to an infinite action barrier. However, the infinity simply arises due to the integration over the finite energy density induced by the pertur- bative fluctuations in the background of a non-trivial Polyakov loop [5]. The calculation of the non-perturbative contribution wasperformed in[6]. Whenadded tothisperturbative contribution, withminimaatcenterelements,theseminimaturnunstablefordecreasingtemperaturerightaround theexpected valueofT . Thislendssomesupport tomonopole constituents being therelevant de- c grees of freedom which drive the transition from a phase in which the center symmetry is broken at high temperatures to one in which the center symmetry is restored atlow temperatures. Lattice studies, bothusingcooling [7]andchiral fermionzero-modes [8]asfilters, havealsoconclusively confirmedthatmonopoleconstituents dodynamically occurintheconfinedphase. 2. SomeProperties ofCaloronSolutions Usingtheclassicalscaleinvariancewecanalwaysarrangeb =1,aswillbeassumedthrough- out. Aremarkably simpleformulafortheSU(n)actiondensity exists[4], TrFab2 (x)=¶ a2¶ b2logy (x), y (x)= 21tr(An···A1)−cos(2p t), 2 ProgressonCalorons PierrevanBaal 1 r |~r | cosh(2pn r )sinh(2pn r ) A ≡ m m+1 m m m m , m r 0 r sinh(2pn r )cosh(2pn r ) m m+1! m m m m ! with r ≡|~x−~y | and~r ≡~y −~y , where~y is the location of the mth constituent monopole m m m m m−1 m withamass8p 2n . Notethattheindexmshouldbeconsideredmodn,suchthate.g. r =r and m n+1 1 ~y =~y (thereisoneexception, m =1+m ). Itissufficientthatonlyoneconstituent location n+1 1 n+1 1 isfarseparatedfromtheothers,toshowthatonecanneglectthecos(2p t)terminy (x),givingrise toastaticactiondensityinthislimit[4]. Figure1: ShownarethreechargeoneSU(2)caloronprofilesatt =0withb =1andr =1. Fromleftto right for m =−m =0 (n =0,n =1), m =−m =0.125 (n =1/4,n =3/4) and m =−m =0.25 2 1 1 2 2 1 1 2 2 1 (n =n =1/2)onequallogarithmicscales,cutoffbelowanactiondensityof1/(2e). 1 2 In Fig. 1 we show how for SU(2) there are two lumps, except that the second lump is absent for trivial holonomy. Fig. 2 demonstrates for SU(2) and SU(3) that there are indeed n lumps (for SU(n)) which can be put anywhere. These lumps are constituent monopoles, where one of them hasawindinginthetemporaldirection (whichcannot beseenfromtheactiondensity). Figure 2: On the left are shown two charge one SU(2) caloron profiles at t = 0 with b = 1 and m =−m =0.125, for r =1.6 (bottom) and 0.8 (top) on equal logarithmic scales, cutoff below an ac- 2 1 tion density of 1/(2e2). On the right are shown two charge one SU(3) caloron profiles at t = 0 and (n ,n ,n )=(1/4,7/20,2/5),implementedby(m ,m ,m )=(−17/60,−1/30,19/60). Thebottomcon- 1 2 3 1 2 3 figurationhasthelocationofthelumpsscaledby8/3.Theyarecutoffat1/(2e). 2.1 FermionZero-Modes An essential property of calorons is that the chiral fermion zero-modes are localized to con- stituents of a certain charge only. The latter depends on the choice of boundary condition for the fermions inthe imaginary time direction (allowing for an arbitrary U(1)phase exp(2p iz)) [9]. This provides an important signature for the dynamical lattice studies, using chiral fermion zero- modes as a filter [8]. To be precise, the zero-modes are localized to the monopoles of type 3 ProgressonCalorons PierrevanBaal m provided m < z < m . Denoting the zero-modes by Yˆ (x), we can write Yˆ†(x)Yˆ (x) = m m+1 z z z −(2p )−2¶ m2fˆx(z,z),where fˆx(z,z′)isaGreen’sfunctionwhichforz∈[m m,m m+1]satisfies fˆz(z,z)= p <v (z)|A ···A A ···A |w (z)> /(r y ), where the spinors v and w are defined by m m−1 1 n m m m m m v1(z)=−w2(z)=sinh(2p (z−m )r ),andv2(z)=w1(z)=cosh(2p (z−m )r ). m m m m m m m m To obtain the finite temperature fermion zero-mode one puts z= 1, whereas for the fermion 2 zero-mode with periodic boundary conditions one takes z=0. From this it is easily seen that in caseofwellseparated constituents thezero-mode islocalized onlyat~y forwhichz∈[m ,m ]. m m m+1 To be specific, in this limit fˆ(z,z)=p tanh(p r n )/r for SU(2), and more generally fˆ(z,z)= x m m m x 2p sinh[2p (z−m )r ]sinh[2p (m −z)r ]/(r sinh[2pn r ])−1. We illustrate in Fig. 3 the lo- m m m+1 m m m m calization ofthefermionzero-modes forthecaseofSU(3). Figure3: FortheSU(3)configurationinthelowerrightcornerofFig.2wehavedeterminedontheleftthe zero-modedensityforfermionswithanti-periodicboundaryconditionsintimeandontherightforperiodic boundaryconditions.Theyareplottedatequallogarithmicscales,cutoffbelow1/e5. 2.2 CaloronsofHigherCharge We have been able to use a “mix” of the ADHM and Nahm formalism [10], both in making powerfulapproximations,likeinthefarfieldlimit(basedonourabilitytoidentifytheexponentially risingandfallingterms),andforfindingexactsolutionsthroughsolvingthehomogeneousGreen’s function [11]. We found axially symmetric solutions for arbitrary k, as well as for k=2 two sets Figure 4: In the middle is shown the action densityin the plane of the constituentsatt =0 for an SU(2) charge2caloronwithtrP¥ =0,whereallconstituentsstronglyoverlap. Onascaleenhancedbyafactor 10p 2 are shown the densities for the two zero-modes, using either periodic (left) or anti-periodic (right) boundaryconditionsinthetimedirection. 4 ProgressonCalorons PierrevanBaal ofnon-trivial solutions forthematching conditions thatinterpolate betweenoverlapping andwell- separated constituents. Forthis task wecould makeuse ofan existing analytic result for charge-2 monopoles [12],adapting ittothecaseofcarolons. AnexampleisshowninFig.4. There has also been some progress on constructing the hyperKähler metric which approxi- mates the metric for an arbitrary number of calorons. They claim that this already gives confine- ment[13]. Fortheimplications ofcaloronconstituents nearthephasetransition see[14]. Acknowledgments AgainImanagedtowriteproceedings, butIneededsomewhatmoretime,andIamgratefulto Matthias Neubert to allow for that and organizing a wonderful conference. Also, there are simply toomanynames,butIthankeverybody whoworkedwithme. References [1] B.J.HarringtonandH.K.Shepard,Phys.Rev.D17(1978)2122;Phys.Rev.D18(1978)2990. [2] D.J.Gross,R.D.PisarskiandL.G.Yaffe,Rev.Mod.Phys.53(1981)43. [3] T.C.KraanandP.vanBaal,Phys.Lett.B428(1998)268[hep-th/9802049];Nucl.Phys.B533(1998) 627[hep-th/9805168];K.Lee,Phys.LettB426(1998)323[hep-th/9802012];K.LeeandC.Lu, Phys.Rev.D58(1998)025011[hep-th/9802108]. [4] T.C.KraanandP.vanBaal,Phys.Lett.B435(1998)389[hep-th/9806034]. [5] N.Weiss,Phys.Rev.D24(1981)475. [6] D.Diakonov,N.Gromov,V.PetrovandS.Slizovskiy,Phys.Rev.D70(2004)036003 [hep-th/0404042];D.DiakonovandN.Gromov,Phys.Rev.D72(2005)025003[hep-th/0502132]. [7] E.-M.Ilgenfritz,B.V.Martemyanov,M.Müller-Preussker,S.ShcheredinandA.I.Veselov,Phys.Rev. D66(2002)074503[hep-lat/0206004];F.Bruckmann,E.-M.Ilgenfritz,B.V.MartemyanovandP.van Baal,Phys.Rev.D70(2004)105013[hep-lat/0408004];P.Gerhold,E.-M.IlgenfritzandM. Müller-Preussker,Nucl.Phys.B760(2007)1[hep-ph/0607315]. [8] C.GattringerandS.Schaefer,Nucl.Phys.B654(2003)30[hep-lat/0212029];C.GattringerandR. Pullirsch,Phys.Rev.D69(2004)094510[hep-lat/0402008]. [9] M.GarcíaPérez,A.González-Arroyo,C.PenaandP.vanBaal,Phys.Rev.D60(1999)031901 [hep-th/9905016];M.N.Chernodub,T.C.KraanandP.vanBaal,Nucl.Phys.B(Proc.Suppl.)83-84 (2000)556. [10] M.F.Atiyah,N.J.Hitchin,V.DrinfeldandYu.I.Manin,Phys.Lett.65A(1978)185;W.Nahm, “Self-dualmonopolesandcalorons,”in:LectureNotesinPhysics,201(1984)189. [11] F.BruckmannandP.vanBaal,Nucl.Phys.B645(2002)105[hep-th/0209010];F.Bruckmann,D. NógrádiandP.vanBaal,Nucl.Phys.B666(2003)197[hep-th/0305063];Nucl.Phys.B698(2004) 233[hep-th/0404210]. [12] H.Panagopoulos,Phys.Rev.D28(1983)380. [13] D.DiakonovandV.Petrov,Phys.Rev.D76(2007)056001[arXiv:0704.3181[hep-th]]; D.Diakonov,ActaPhys.Polon.B39(2008)3365[arXiv:0807.0902[hep-th]];D.DiakonovandV. Petrov,“Statisticalphysicsofdyonsandquarkconfinement,”arXiv:0809.2063[hep-th]. [14] F.Bruckmann,“Howinstantonscouldsurvivethephasetransition,”arXiv:0901.0987[hep-ph]. 5